Uncategorized

New paper: Removal modelling in ecology – A systematic review

SE@K members Oscar and Rachel have published a paper reviewing the current state-of-the-art in modelling removal data. This work is part of the the EPSRC project EP/S020470/1 “Modelling removal and re-introduction data for improved conservation”.

The paper is available in full here: https://journals.plos.org/plosone/article/authors?id=10.1371/journal.pone.0229965

Removal modelling in ecology: A systematic review

Oscar Rodriguez de Rivera and Rachel McCrea

Removal models were proposed over 80 years ago as a tool to estimate unknown population size. More recently, they are used as an effective tool for management actions for the control of non desirable species, or for the evaluation of translocation management actions. Although the models have evolved over time, in essence, the protocol for data collection has remained similar: at each sampling occasion attempts are made to capture and remove individuals from the study area. Within this paper we review the literature of removal modelling and highlight the methodological developments for the analysis of removal data, in order to provide a unified resource for ecologists wishing to implement these approaches. Models for removal data have developed to better accommodate important features of the data and we discuss the shift in the required assumptions for the implementation of the models. The relative simplicity of this type of data and associated models mean that the method remains attractive and we discuss the potential future role of this technique.

Standard
Uncategorized

New paper: A Test for the Underlying State-Structure of Hideen Markov Models – Partially Observed Capture-Recapture Data

Former SE@K PhD student Anita Jeyam, Rachel and Roger Pradel (Montpellier) have had a paper published presenting a new test for determining the underlying state structure of Hidden Markov models.  This is an exciting piece of work which provides the foundation for addressing a complex topic for general HMMs.

The full paper is available open access here: https://www.frontiersin.org/articles/10.3389/fevo.2021.598325/full

A Test for the Underlying State-Structure of Hideen Markov Models – Partially Observed Capture-Recapture Data

Hidden Markov models (HMMs) are being widely used in the field of ecological modeling,
however determining the number of underlying states in an HMM remains a challenge.
Here we examine a special case of capture-recapture models for open populations,
where some animals are observed but it is not possible to ascertain their state (partial
observations), whilst the other animals’ states are assigned without error (complete
observations). We propose a mixture test of the underlying state structure generating
the partial observations, which assesses whether they are compatible with the set of
states observed in the complete observations. We demonstrate the good performance
of the test using simulation and through application to a data set of Canada Geese.

Standard
Uncategorized

New paper: Modeling Recruitment of Birth Cohorts to the Breeding Population: A Hidden Markov Approach

Rachel McCrea and co-authors from St Andrews and Edinburgh have published a paper on modelling the recruitment process of gray seals.

The full paper is available open access here: https://www.frontiersin.org/articles/10.3389/fevo.2021.600967/full

Modeling Recruitment of Birth Cohorts to the Breeding Population: A Hidden Markov Approach

Worthington, King, McCrea, Smout and Pomeroy

Long-term capture-recapture studies provide an opportunity to investigate the population dynamics of long-lived species through individual maturation and adulthood and/or
time. We consider capture-recapture data collected on cohorts of female gray seals
(Halichoerus grypus) born during the 1990s and later observed breeding on the Isle
of May, Firth of Forth, Scotland. Female gray seals can live for 30+ years but display
individual variability in their maturation rates and so recruit into the breeding population
across a range of ages. Understanding the partially hidden process by which individuals
transition from immature to breeding members, and in particular the identification of
any changes to this process through time, are important for understanding the factors
affecting the population dynamics of this species. Age-structured capture-recapture
models can explicitly relate recruitment, and other demographic parameters of interest,
to the age of individuals and/or time. To account for the monitoring of the seals from
several birth cohorts we consider an age-structured model that incorporates a specific
cohort-structure. Within this model we focus on the estimation of the distribution of
the age of recruitment to the breeding population at this colony. Understanding this
recruitment process, and identifying any changes or trends in this process, will offer
insight into individual year effects and give a more realistic recruitment profile for the
current UK gray seal population model. The use of the hidden Markov model provides an
intuitive framework following the evolution of the true underlying states of the individuals.
The model breaks down the different processes of the system: recruitment into the
breeding population; survival; and the associated observation process. This model
specification results in an explicit and compact expression for the model with associated
efficiency in model fitting. Further, this framework naturally leads to extensions to more
complex models, for example the separation of first-time from return breeders, through
relatively simple changes to the mathematical structure of the model.

 

Standard