Uncategorized

New Paper: Parameter redundancy in Jolly‐Seber tag loss models

Diana along with Wei Cai, Stephanie Yurchak and Laura Cowen have published the paper:

Parameter redundancy in Jolly‐Seber tag loss models

in Ecology and Evolution

Abstract: 

1. Capture–recapture experiments are conducted to estimate population parameters such as population size, survival rates, and capture rates. Typically, individuals are captured and given unique tags, then recaptured over several time periods with the assumption that these tags are not lost. However, for some populations, tag loss cannot be assumed negligible. The Jolly‐Seber tag loss model is used when the no‐tag‐loss assumption is invalid. Further, the model has been extended to incorporate group heterogeneity, which allows parameters to vary by group membership. Many mark–recapture models become overparameterized resulting in the inability to independently estimate parameters. This is known as parameter redundancy.
2. We investigate parameter redundancy using symbolic methods. Because of the complex structure of some tag loss models, the methods cannot always be applied directly. Instead, we develop a simple combination of parameters that can be used to investigate parameter redundancy in tag loss models.
3. The incorporation of tag loss and group heterogeneity into Jolly‐Seber models does not result in further parameter redundancies. Furthermore, using hybrid methods we studied the parameter redundancy caused by data through case studies and generated tag histories with different parameter values.
4. Smaller capture and survival rates are found to cause parameter redundancy in these models. These problems resolve when applied to large populations.

Standard
Uncategorized

New Paper by Emily and Byron: Integrated modelling of insect population dynamics at two temporal scales

Emily and Byron, along with Marc Kery, Armin Coray, Michael Schaub and Bruno Baur have published the paper:

Integrated modelling of insect population dynamics at two temporal scales

in Ecological Modelling.

Abstract:

Population size of species with birth-pulse life-cycles varies both within and between seasons, but most population dynamics models assume that a population can be characterised adequately by a single number within a season. However, within-season dynamics can sometimes be too substantial to be ignored when modelling dynamics between seasons. Typical examples are insect populations or migratory animals. Numerous models for only between-season dynamics exist, but very few have combined dynamics at both temporal scales.

In a new approach, we extend appreciably the models of Dennis et al. (2016b): we show how to adapt them for a generation time  year and fit an integrated population model for multiple data types, by maximising a joint likelihood for population counts of unmarked individuals and capture–recapture data from a study with marked individuals. We illustrate the approach using annual monitoring data for the endangered flightless beetle Iberodorcadion fuliginator from 18 populations in the Upper Rhine Valley for 1998–2016, with a 2-year life cycle. Standard likelihood methods are used for model fitting and comparison, and a concentrated (profile) likelihood approach provides computational efficiency.

Additional information from the capture–recapture data makes the population model more robust and, importantly, enables true, rather than relative, abundance to be estimated. A dynamic stopover model provides estimates of both survival and phenology parameters within a season, and also of productivity between seasons. For  I. fuliginator, we demonstrate a population decline since 1998 and how this links with productivity, which is affected by temperature. A delayed mean emergence date in recent years is also shown.

A main point of interest is the focus on the two temporal scales at which perhaps most animal populations vary: in the short-term, a population is seldom truly closed within a single season, and in the long-term (between seasons) it never is. Hence our models may serve as a template for a general description of population dynamics in many species. This includes rare species with limited data sets, for which there is a general lack of population dynamic models, yet conservation actions may greatly benefit from this kind of models.

Standard