Uncategorized

New paper: Duration of female parental care and their survival in the little auk Alle alle – are these two traits linked?

The paper: Duration of female parental care and their survival in the little auk Alle alle – are these two traits linked? by: Katarzyna Wojczulanis-Jakubas, Marina Jiménez-Muñoz, Dariusz Jakubas, Dorota Kidawa, Nina Karnovsky, Diana Cole and Eleni Matechou, has just been published in Behavioral Ecology and Sociobiology.

Abstract:

Desertion of offspring before its independence by one of the parents is observed in a number of avian species with bi-parental care but reasons for this strategy are not fully understood. This behaviour is particularly intriguing in species where bi-parental care is crucial to raise the brood successfully. Here, we focus on the little auk, Alle alle, a small seabird with intensive bi-parental care, where the female deserts the brood at the end of the chick rearing period. The little auk example is interesting as most hypotheses to explain desertion of the brood by females (e.g. “re-mating hypothesis”, “body condition hypothesis”) have been rejected for this species. Here, we analysed a possible relationship between the duration of female parental care over the chick and her chances to survive to the next breeding season. We performed the study in two breeding colonies on Spitsbergen with different foraging conditions – more favourable in Hornsund and less favourable in Magdalenefjorden. We predicted that in Hornsund females would stay for shorter periods of time with the brood and would have higher survival rates in comparison with birds from Magdalenefjorden. We found that indeed in less favourable conditions of Magdalenefjorden, females stay longer with the brood than in the more favourable conditions of Hornsund. Moreover, female survival was negatively affected by the length of stay in the brood. Nevertheless, duration of female parental care over the chick was not related to their parental efforts, earlier in the chick rearing period, and survival of males and females was similar. Thus, although females brood desertion and winter survival are linked, the relationship is not straightforward.

 

Standard
Papers

New Paper: Size‐ and stage‐dependence in cause‐specific mortality of migratory brown trout

The paper Size‐ and stage‐dependence in cause‐specific mortality of migratory brown trout by Chloé R. Nater, Yngvild Vindenes, Per Aass, Diana Cole, Øystein Langangen, S. Jannicke Moe, Atle Rustadbakken, Daniel Turek, Leif Asbjørn Vøllestad and Torbjørn Ergon was published in Journal of Animal Ecology.

Abstract

  1. Evidence‐based management of natural populations under strong human influence frequently requires not only estimates of survival but also knowledge about how much mortality is due to anthropogenic vs. natural causes. This is the case particularly when individuals vary in their vulnerability to different causes of mortality due to traits, life history stages, or locations.
  2. Here, we estimated harvest and background (other cause) mortality of landlocked migratory salmonids over half a century. In doing so, we quantified among‐individual variation in vulnerability to cause‐specific mortality resulting from differences in body size and spawning location relative to a hydropower dam.
  3. We constructed a multistate mark–recapture model to estimate harvest and background mortality hazard rates as functions of a discrete state (spawning location) and an individual time‐varying covariate (body size). We further accounted for among‐year variation in mortality and migratory behaviour and fit the model to a unique 50‐year time series of mark–recapture–recovery data on brown trout (Salmo trutta) in Norway.
  4. Harvest mortality was highest for intermediate‐sized trout, and outweighed background mortality for most of the observed size range. Background mortality decreased with body size for trout spawning above the dam and increased for those spawning below. All vital rates varied substantially over time, but a trend was evident only in estimates of fishers’ reporting rate, which decreased from over 50% to less than 10% throughout the study period.
  5. We highlight the importance of body size for cause‐specific mortality and demonstrate how this can be estimated using a novel hazard rate parameterization for mark–recapture models. Our approach allows estimating effects of individual traits and environment on cause‐specific mortality without confounding, and provides an intuitive way to estimate temporal patterns within and correlation among different mortality sources.
Standard
Uncategorized

Parameter Redundancy and Identifiability Book Published

Diana Cole’s book Parameter Redundancy and Identifiability has been publish by Chapman and Hall/CRC

Book Synopsis

Statistical and mathematical models are defined by parameters that describe different characteristics of those models. Ideally it would be possible to find parameter estimates for every parameter in that model, but, in some cases, this is not possible. For example, two parameters that only ever appear in the model as a product could not be estimated individually; only the product can be estimated. Such a model is said to be parameter redundant, or the parameters are described as non-identifiable. This book explains why parameter redundancy and non-identifiability is a problem and the different methods that can be used for detection, including in a Bayesian context. Key features of this book:

  • Detailed discussion of the problems caused by parameter redundancy and non-identifiability
  • Explanation of the different general methods for detecting parameter redundancy and non-identifiability, including symbolic algebra and numerical methods
  • Chapter on Bayesian identifiability
  • Throughout illustrative examples are used to clearly demonstrate each problem and method. Maple and R code are available for these examples
  • More in-depth focus on the areas of discrete and continuous state-space models and ecological statistics, including methods that have been specifically developed for each of these areas

This book is designed to make parameter redundancy and non-identifiability accessible and understandable to a wide audience from masters and PhD students to researchers, from mathematicians and statisticians to practitioners using mathematical or statistical models.

Book website: https://www.routledge.com/Parameter-Redundancy-and-Identifiability/Cole/p/book/9781498720878

Code for book available at: https://www.kent.ac.uk/smsas/personal/djc24/parameterredundancy.html

Standard
Uncategorized

Guy Bronze Medal awarded to Rachel McCrea

Rachel has been awarded the 2020 Guy Bronze Medal by the Royal Statistical Society (RSS).

The Guy Medal in Bronze has been awarded for her innovative and novel work in statistical ecology, with particular reference to the development of goodness-of-fit tests and model selection strategies for complex ecological data. Important areas include (multi-state) capture-recapture-type models and integrated models. Notable publications include: the 2017 JRSSC paper ‘A new strategy for diagnostic model assessment in capture-recapture’, which identified a direct relationship between particular diagnostic tests and score tests; and the 2020 JRSSC paper ‘Diagnosing heterogeneity in transition probabilities in multistate capture-recapture data’, which developed new tests to identify unmodelled transition heterogeneity.

Professor Deborah Ashby, President of the Royal Statistical Society, said: “Dr McCrea has made a profound contribution to statistical ecology. The Society’s journals have published a number of noteworthy papers authored by Rachel, and her development of goodness-of-fit tests and model selection strategies has been particularly innovative.”

The medal will be presented to Rachel at the RSS Annual Conference in Bournemouth in September.

Standard
Uncategorized

Royal Statistical Society Barnett Award for Byron Morgan

Emeritus Professor of Statistics, Byron Morgan, has been awarded the Barnett Award by the Royal Statistical Society.

Being the leading authority on age-structured modelling of capture-recapture and ring-recovery data, his joint paper was the first to model how survival probabilities were influenced by weather covariates. Another influential paper on integrating mark-recapture-recovery and census data was foundational to the internationally-embraced sub-field of Integrated Population Modelling within statistical ecology. Most recently, he has been at the forefront of developing computationally-efficient methods for co-analysis of the UK Butterfly Monitoring Scheme with citizen science data sources, to give insights to biodiversity in urban versus rural settings. Byron Morgan was also one of the co-founders and first director of the National Centre for Statistical Ecology, a virtual Centre that links up statistical ecologists in the UK, and internationally.

Professor Deborah Ashby, President of the Royal Statistical Society, said: “Professor Morgan has had a great influence on the world of statistics and statistical ecology. His innovative work on computationally efficient methods for co-analysis of the UK Butterfly Monitoring Scheme has led to great insights into biodiversity and he had been a significant figure in creating better networks of statistical ecologists.”

Byron will be presented with the award at the Royal Statistical Society Annual Conference in September 2020 where he will also give a keynote presentation.

Standard