I am delighted to have had this opportunity to interview Julia Staffel and contribute to the great work that Hykel and the main Reasoner editor team do. Staffel is an up-and-coming philosopher doing some very exciting work in formal epistemology. In epistemology we often focus on the perfect, or ideal, reasoner; but Julia is thinking about the important issue of imperfection. She’s in the final stages of writing a book on this, *Unsettled Thoughts: A Theory of Degrees of Rationality*, which offers a comprehensive picture of what it is to be more or less rational and which I’m very much looking forward to reading. We met at the Kent Formal Epistemology conference and she told me a bit about her work and where she’s coming from. Julia is currently an assistant professor at Washington University in St. Louis, moving to University of Colorado in Boulder in the fall.

Catrin Campbell-Moore
Bristol University

Interview with Julia Staffel

Julia Staffel: I went to a high school that had philosophy classes you could take in the last three years. I had read a bit of philosophy on my own, but when I took it at school I really liked it. I didn’t initially decide to study philosophy at University because I was worried about getting a job. I instead started to do a degree in Advertising and Communication, but I realised after a few months that I didn’t like it so I decided to enrol for Philosophy and German after all. I always kind of wanted to be a professor but I wasn’t sure if that would work out so I thought I could always be a high school teacher, which you can do in Germany. But then it did work out in the end!

CCM: And how about Epistemology? You specialise in formal epistemology, right? How did that come about? JS: When I first went to graduate school I thought I was going to study Philosophy of Language. When I was an undergraduate I mostly specialised in logic and I took a lot of linguistics classes as part of my degree in German. I started to think about epistemology by thinking about language. I was thinking of the semantics of the word “rational” and I thought: ah, that’s a gradable adjec-
tive, so what does it take to be more and less rational? But the theories I found only specified what it is to be ideally rational so I realised there was some work to do, which led me to my PhD dissertation topic.

CCM: This is connected to your book, right?

JS: Yes, I started working on the topic in my dissertation, but the book is giving a much more expanded and comprehensive theory of degrees of rationality based on a Bayesian framework. Basically, my approach is to say that if you have a theory of rationality that gives you norms of rationality that are never fulfillable by non-ideal agents like you and me, you have to have some story about how these ideal norms relate to those non-ideal thinkers. Most people want to say that the ideal norms are goals that the imperfect thinkers are supposed to strive towards. But then you have to explain what it means to be closer to or further away from those ideal norms and why there is something good about becoming less irrational. In the book I try to answer these questions.

CCM: So why should one be closer to ideal, or more rational?

JS: Often these ideal conceptions of rationality say you should be rational because doing so gives you optimal access to some kind of value. Some people think the relevant value is that your degrees of confidence are as accurate as they can be given the evidence that you have. Other people think that if you’re ideally rational then your degrees of confidence are optimally action-guiding, because they won’t lead you to situations where you act in a self-undermining way; in technical terms, this is called being Dutch-bookable. What I show is that we can incorporate this distinction into their theories. I don’t think I’m going to be able to do this at length in the book but it’s something I want to think more about how formal epistemologists should accommodate this distinction into their theories. I don’t think I’m going to be able to do this at length in the book but it’s something I want to think about further in the future.

More generally, imperfection in our reasoning hasn’t been given the attention it deserves in epistemology, so there’s definitely a lot more to do in that general area beyond what I can accomplish in the book.

CCM: Outside of philosophy, any interests? You knit?

JS: Yes, I like knitting. I started about three years ago and it’s been a great relaxing hobby ever since. At about the same time, I also started knitting nuclear silks which is a circus art where you have fabrics hanging from the ceiling that you climb up and wrap yourself up in and do different figures and moves. That’s extremely fun and is a good balance from Philosophy where you don’t see very fast results, and you sit in a chair all day. So, it’s nice to have another activity that’s also challenging but in a very different way, and where you make progress in a very different way.

CCM: You’re about to move institutions, can you tell me a bit about that?

JS: Currently I’m an assistant professor at Washington University in St. Louis, but starting in the fall I’m going to be an assistant professor at the University of Colorado in Boulder. I’m looking forward to the new department and new challenges there. I already know many of the faculty in the Boulder department and have talked to them about philosophy a lot, and the graduate and undergraduate students I’ve met are very enthusiastic and interesting. So, I’m very excited about joining the graduate and undergraduate students I’ve met are very enthusiastic and interesting.
Philosophy of science is concerned with exploring relations between evidence and scientific hypotheses. One paradigmatic approach in the philosophy of science is Bayesian epistemology, which governs an agent’s degrees of belief given her evidence. One key component of Bayesian epistemology is the update of an agent’s degrees of belief in light of new evidence via Jeffrey updating. Leitgeb & Pettigrew (2010: An Objective Justification of Bayesianism I & II, Philosophy of Science, 201-272) explored a different updating rule. Roughly speaking: Jeffrey updating leaves proportions invariant, the L&P-update leaves differences invariant.

Leitgeb & Pettigrew show that epistemic agents maximising the accuracy of their degrees of belief, in a technically precise sense, are Bayesian agents which use their updating rule rather than Jeffrey updating. They do not tell us of how thusly interpreted degrees of belief can be used for rational decision making. Next, I argue that the proposed updating rule is not compatible with the standard interpretation of degrees of belief as rational betting odds.

Consider a Bayesian agent with prior probabilities, P, on $\Omega = \{\omega_1, \omega_2, \omega_3\}$ such that $P(\omega_1) = 0.6$, $P(\omega_2) = 0.4$, $P(\omega_3) = 0$. Updating in light of the new evidence $P(\omega_3) = 0.5$ the agent may perform a) a Jeffrey update to obtain posterior probabilities $P_J(\omega_1) = 0.5$, $P_J(\omega_2) = 0.5$, $P_J(\omega_3) = 0$ or b) an L&P-update to obtain posterior probabilities $P_{LP}(\omega_1) = 0.5$, $P_{LP}(\omega_2) = 0.45$, $P_{LP}(\omega_3) = 0.05$. Leitgeb & Pettigrew point out themselves that their updating procedure can raise a zero prior probability to a strictly positive posterior one – and vice versa. It is a feature of the updates that the posterior probabilities agree on the conditioned upon proposition.

According to the standard use of degrees of belief for rational decision making, the agent initially offers odds of 1 : 1,000,000 (and more!) that ω_3 does not obtain. After the L&P-update, the agent refuses to give greater odds than 1 : 20 – for the exact same eventuality. The new evidence received is nothing to write home about, it is business as usual for Bayesian agents. Such ordinary evidence does not justify such an extreme change in the agent’s betting behaviour, I claim. While updates change degrees of belief in a holistic way – and ought to change that way – an agent’s betting behaviour ought to change moderately in light of moderately persuade evidence. Note that no such problem arises via Jeffrey updating, the prior probability and the posterior probability of ω_3 are zero.

There seem to be only two solutions to this dilemma for a Bayesian agent, either i) give up on using degrees of belief as odds for rational decision making or ii) do not use L&P-updating. If one gives up the betting interpretation, then it is not clear (yet?) how exactly an agent ought to use her degrees of belief for rational decision making. The Leitgeb & Pettigrew proposal hence needs to be supplemented with a novel account of rational decision making, if it is to guide rational decision making.

Acknowledgements: Thanks to Hannes Leitgeb for helpful and controversial discussions and to the European Research Council (grant 639276) for funding this research.

JÜRGEN LANDES
MCMP, LMU Munich

NEWS

Hyperintensional Logics and Truthmaker Semantics, 15 December

On December 15, 2017, a workshop on Hyperintensional Logics and Truthmaker Semantics was organised by Frederik Van De Putte and Federico L.G. Faroldi at the Faculty of Arts and Philosophy in Ghent, Belgium, within the activities of the Centre of Logic and Philosophy of Science.

The day started with a talk by Kit Fine (New York University), the keynote speaker, on truthmaker semantics for conditional obligations. Starting from the idea that a conditional obligation can be detached when the antecedent is ‘given’, the talk explored some well-known problems (e.g. the Chisholm paradox) in dyadic deontic logic. Fine proposed some new technical ideas and argued that, using this version of truthmaker semantics, one is better equipped to deal with those problems than using standard possible worlds-semantics.

In the second talk, Albert Angelberger (Bayreuth) and Johannes Korbmacher (Utrecht) discussed Lou Goble’s conflict-tolerant deontic logic BDL. They proposed a (truthmaker) semantics for this logic, thus filling a significant gap left open by Goble. In addition, they argued against the problematic principle of disjunctive deontic syllogism that is valid in BDL, and hence in favor of a weaker system that has a more natural semantics in terms of exact truthmakers.

After the first coffee break, the domain of deontic logic was left and Levin Hornischer (ILLC, Amsterdam) gave a talk on logics of synonymy. Hornischer identified two different notions of synonymy: two sentences are synonymous if either (i) they are made true in the same imaginable scenarios or (ii) they have the same subject matter. He then proposed different logics satisfying one or both of these principles. Next up was another talk by Johannes Korbmacher in which he introduced a tableau system for the logic of exact entailment, in particular as explored recently by Fine and Jago. He argued that this system would lead to a better understanding of the logic both by novices and experts, and that it would help to bring the logic into the canon of non-classical logics.

After the lunch break, Michael Deigan (Yale) gave a talk questioning the primacy of exact truthmaker semantics over its inexact variant. He gave a couple of arguments to show that inexact truthmaking is more fundamental than exact truthmaking. These resulted in an interesting and lively discussion with the other participants. Stephan Kränner (Glasgow) talked about the hyperintensional logic of the operator T, where T stands for ‘it is the whole truth that’. He first argued that this operator is hyperintensional, then he sketched a semantics based on Kit Fine’s work.
The last talk of the day was given by Peter Verdée (Louvain-la-Neuve). This talk explored a novel concept of relevance called X-relevance and its relation with grounding and hyper-intensionality, thus concluding a busy but fruitful day of talks and discussions.

Federico L.G. Faroldi
Stef Fritters
Frederik Van De Putte
Ghent University

Calls for Papers

DEcision Theory and the Future of Artificial Intelligence: special issue of *Synthese*, deadline 15 February.

Defeasible and Ampliative Reasoning: special issue of *International Journal of Approximate Reasoning*, deadline 15 February.

Non-Classical Modal and Predicate Logics: special issue of *Logic Journal of the IGPL*, deadline 30 April.

Pluralistic Perspectives on Logic: special issue of *Synthese*, deadline 1 June.

Dissemination Corner

What is a program? Historical and Philosophical perspectives

What is a (computer) program? The History and Philosophy of Computing is, alongside with its object of investigation, a relatively young field of research, relying on a combined historiographic and conceptual methodology. Its aim is to unveil the depth and breadth of problems associated with the computing discipline: its mathematical foundation, the engineering aspects of implementation, the social, economical and political consequences of computing technologies. In recent years, the Commission for the History and Philosophy of Computing (www.hapoc.org) has been the major player in promoting a comprehensive research approach to the field, together with other academic and industry-based organisations focusing on specific aspects of the computing spectrum.

The French National Research Agency has now funded a four-years research project: “What is a program? Historical and Philosophical perspectives”. This core issue in computer science has no simple answer today, neither in academia nor in industry. The possible answers affect very real problems, like responsibility for software failure or formal, conceptual and practical methods to establish what is a software copy. A particular challenge is the diversity of existing approaches: a program can be seen as a piece of symbolic text which requires logico-mathematical analysis; or as a configuration of physical entities, like electrons and magnetic charges, residing in the digital circuits of a computer. The ontology of a program can be related to its algorithm, or taken as a self-standing object, with a “liminal” nature, bridging the formal and the abstract. Associated epistemological problems concern the explanation of such ontology, its meaning as execution (cf. operational semantics) or as input/output behavior (cf. denotational semantics). Properties of programs include the possibility to verify their correctness and the relation between code and specification. This variety of questions indicates the broad range of positions to be considered.

The aim of this project is to offer a more historical and philosophical angle. The project starts from a basic characterization of “program” along three different modalities:

1) Physical (program as stored and executed on a machine)
2) Formal (program as (formal) text)
3) Socio-technical (program as used and made by people).

Any program is rooted in these three modalities, within a certain ordered relation with respect to one another: the formal modality (mathematical, logical and linguistic time-independent properties) stands in between the physical and sociotechnical one (both temporally characterised). This project wants to develop the first coherent analysis and pluralistic understanding of “program” and its implications to theory and practice. The focus will be on models and the abstractions on which they are based. The only assumption made in this approach is that the model assumes a one or more of the modalities of reference and investigates how the relation with other theoretical or practice based aspects of “program” need to be understood.

The Principal Investigator of this Project is Liesbeth De Mol (CNRS/UMR 8163 STL, Université de Lille 3). The research unit is composed of more than 20 researchers in several different areas related to computing (history, philosophy, computer science, programming, media) from 7 different countries (both European and overseas). The project will hire a Doctoral Student and a Post-Doctoral Researcher to be based at the University of Lille as well as a contracted researcher to assist in the development of a searchable database which will be opened to the general public at the end of this project.

A pre-launch event for this project has taken place in Paris on October 20, 2017. On this occasion, several participants to the project have proposed their current topics of research in the larger frame of the project, with the aim of exploring initial and prospective connections: in an introductory talk, Liesbeth De Mol introduced the project, emphasizing the difference between algorithms and programs; Selmer Bringsjord (Rensselaer Polytechnic Institute) questioned the computation-as-procedure framework as opposed to the logic programming framework; Maarten Bullynck (Université de Paris 8) discussed three viewpoints on programs that developed historically from the 1940s until the 1960s and are still relevant today (program as a plan; programs not program and the significance of the user); Felice Cardone (Università degli Studi di Torino) talked about the (formal) meanings of programs; Edgar Daylight (Siegen University) critically analyzed Strachey’s version of the halting problem for programs; Marie-Jo Durand-Richard (Sphere, Paris) presented Douglas Hartree’s view on programs and the idea of programs as diagrams; Simone Martini (Università di Bologna) introduced a methodological approach whereby programs are interpreted as inscriptions; Elisabetta Mori (Middlesex University London) investigated program correctness in the historical practice of LEO computers; Pierre Mounier-Kuhn (CNRS) illustrated the concept of program in early technical texts and the controversies related to the patentability of programs; Camille Paloque-Berges (CNAM, Paris) talked about Unix and its user groups; Giuseppe Primiero (Middlesex University London) presented two strands (philosophical and formal) in the analysis of identity relations for programs; Franck Varenne (Université de Rouen) proposed an epistemological framework to discuss simulations in biology, including the epistemic impact of programming languages.

This first overview of current research topics has highlighted
common aspects for the project to focus on, including simulation; patentability; computational learning; identity, scalability between large and small programs. The official opening of the project is planned with a Workshop in Lille on February 07-08, 2018 at MESHS. The website of the project, currently under construction, can be found at www.progamme.hypotheses.org.

LIESBETH DE MOL
CNRS, Université de Lille 3
GIUSEPPE PRIMIERO
Middlesex University

The Logic of Conceivability

Recent work on aboutness and subject matter I here survey recent developments in the formal study of aboutness and subject matter, highlighting some contributions from the Logic of Conceivability project.

Descriptive language lets us assert and communicate truths about interesting topics, and so propagate true thoughts about interesting topics. These platitude point to three core semantic concepts: truth; aboutness; topic (i.e. subject matter).

Unsurprisingly then, the notions of aboutness and subject matter have exercised the minds of philosophers and cognitive scientists, and have found theoretical application by formal semanticists and philosophical logicians. Accounting for the intentionality of mental contents has vexed philosophers since Brentano’s Psychology From An Empirical Standpoint. On the logical side, the notion of aboutness plays a central role in situation theory and its treatment of information flow: situations are here understood to carry information about other situations (as when smoke signals fire). See, for instance, Barwise and Seligman’s Information Flow: The Logic of Distributed Systems. Further, the notion of subject matter provides a gloss for the relevant logician’s diagnosis of wayward classical inferences: the intuitive fault with an inference from, say, ‘Trump is both US president and not’ to ‘Obama is a space alien’ is that the subject matter of the former does not bear on the subject matter of the latter. See, for instance, Stephen Read’s Relevant Logic: A Philosophical Examination of Inference. Finally, linguists have attended to subtle distinctions connected to topicality: notably, theme versus rhyme, versus discourse topic. Craige Roberts provides a useful survey.

Nevertheless, until recently, the literature has bestowed neither sustained attention nor formal sophistication on theories of aboutness and, especially, subject matter - at least, not to a level comparable to that of truth conditions and the theory of truth. This neglect is explained by an apparently prevalent intuition that truth conditions are primary in the study of meaning: consider the opening lines of Heim and Kratzer’s seminal textbook Semantics in Generative Grammar: “To know the meaning of a sentence is to know its truth conditions”. Another seemingly widespread intuition is that aboutness and topic, qua discourse phenomena, are irredeemably vague, ambiguous and unsystematic. This perspective is articulated by Ryle and, as John Perry communicates, by Partee.

Such sentiments have receded, however, thanks largely to a line traced to David Lewis and substantially developed in Stephen Yablo’s Aboutness. Lewis highlights two key intuitions: first, that there is an apparent affinity between questions and subject matters; and, second, that the space of subject matters has a mereological structure. To the first point: notice it is extremely natural (if not obligatory) to fix a discourse topic by way of a question. If our conversation is about the 17th century, we can construe this as addressing the question: how are things with respect to the 17th century? To the second point: one topic can intuitively include another. For example, mathematics includes topology. Topics can also intuitively merely overlap, as when philosophy overlaps with logic.

These insights invite elegant formalisms. Suppose that one identifies the class of subject matters with the class of questions. In this case, a theory of subject matter can draw on a significant body of existing work in logic (e.g. Belnap and Steele on interrogative logic), formal semantics (e.g. Groenendijk, Roelofsen, Ciardelli et al. on inquisitive semantics) and formal pragmatics (e.g. Craige Roberts on questions under discussion). Lewis, for his part, models a subject matter as a partition on logical space (i.e. a mutually exclusive and exhaustive division of the space of possible worlds), evoking a classical approach to modeling question meaning. A natural mereological structure follows: a subject matter π_1 is said to include another π_2 just in case the partition π_1 refines the partition π_2. More abstractly, the standard mathematical tool for a theory of part-hood - lattice theory - may be deployed, as in recent work by Franz Berto on the logic of imagination and belief.

Complementing these intriguing mathematical developments is a growing awareness of the theoretical uses to which aboutness and topic can be put. For instance, subject matter informs a natural account of partial content and partial truth (as explored in, again, Lewis and Yablo). If one says that Jane is horrendously late, then it is part of what one says that Jane is late. If Jane is indeed late, but not horrendously late, then what one said is only partly true. A natural first proposal is that, in general, content A is part of content B just in case B entails A. But reflection casts doubt on this proposal: if I say that Jane is horrendously late, it does not seem that part of what I said is that either Jane is late or Jane is hiding under the desk. Generally, $A \lor B$ does not seem to part of the content A. Why? Intuitively, $A \lor B$ may involve subject matter that goes beyond that of A. Hence, a more promising account of content part-hood: A is a part of B just in case B entails A, and the subject matter of B includes that of A.

Another theoretical use for subject matter is in the theory of hyperintensionality. ‘Jill tumbled down the hill’ and ‘Jill tumbled down the hill and $2 + 2 = 4’$ are intentionally equivalent: they are true at exactly the same possible worlds. However, as John Perry observes, ‘Jack brought it about that Jill tumbled down the hill’ and ‘Jack brought it about that Jill tumbled down the hill and $2 + 2 = 4’$ are not intensionally equivalent. Thus, it might seem that the operator ‘Jack brought it about that’ induces a hyperintensional context for its operand, sensitive to aspects of meaning that go beyond truth conditions per se. But what aspect of meaning is that? An intuitive thought: ‘Jill tumbled down the hill’ and ‘Jill tumbled down the hill and $2 + 2 = 4’$ differ in subject matter.

Accounting for hyperintensionality in terms of subject matter stands in tension with various developments in the Lewis tradition. Yablo, for instance, develops an account according to which the subject matter of an utterance is determined by its
truth conditions: roughly, the subject matter of \(\phi \) is the set of its reductive truth makers and false makers, where the former are the minimal models that render \(\phi \) true, and the latter are the minimal models that render \(\phi \) false. On this account, classically equivalent utterances have the same subject matter. So much, then, for offering a comprehensive account of hyperintensionality. Recognizing this, Yablo offers a variation of his account - based on what he calls recursive truth/false making, developed by van Fraassen - that goes further in accommodating hyperintensionality. Arguably, it does not go far enough. In light of this, Peter Hawke’s “Theories of Aboutness” offers a theory of subject matter with a wide scope for accounting for hyperintensional phenomena, among other advantages.

Peter Hawke
ILLC, Amsterdam

What’s Hot in . . .

(Formal) Argumentation Theory

You may recall my review of Sperber and Mercur’s evolutionary account of how humans acquired a capacity for system 2 (explicit) reasoning, in my July 2017 column. To recap, reasoning evolved to support communication, enabling addressees to challenge and assess arguments for the information they receive so as to avoid being misled. Conversely, it is therefore in the interest of the senders of information to focus on finding and communicating arguments for, rather than against, their claims. The theory thus supports a wealth of experimental evidence to the effect that humans are disposed to seek reasons in support of their beliefs or decisions, and ignore arguments to the contrary (e.g. the confirmation bias). I then suggested that the filtering algorithms used to selectively filter news and opinion, resulting in the belief bubbles and echo chambers of social media, are digital (and hence significantly amplified) manifestations of our evolutionary dispositions. Elsewhere I have tentatively argued that computational argumentation based technologies should be deployed to counteract the polarising effect of these algorithms, for example by trawling the web to curate and present arguments, opinions and news that challenge the beliefs of bubble dwellers (see also my December 17 column on the topic of argument search engines). I say ‘tentatively’, because it is unlikely that this is what a ‘typical’ user would really want, given the evolutionary acquired instincts to seek confirmation and disregard challenges to one’s beliefs.

However, current research in cognitive psychology gives me more grounds for optimism. I recently attended a series of seminars by the eminent experimental psychologist Professor Cecilia Hayes, in which she reviewed her theory that rebalances the nature versus nurture scales in favour of the latter. She argues, with supporting evidence, that many distinctive human cognitive capacities are not, as received wisdom would have it, cognitive instincts that are ‘hard coded’ by evolution, but rather ‘cognitive gadgets’ that are installed in the course of childhood through social interaction. Cognitive gadgets (the title of a forthcoming book by Hayes) are products of cultural evolution, rather than genetic evolution. For example, she draws on experimental evidence to argue that ‘theory of mind’ – the ability to ascribe mental states to others – is acquired through early social interaction in contrast to the standard view that this capacity is encoded in our genes. The implications are potentially significant, since her theory suggests that our biased deployment of system 2 reasoning, while in part having evolved to support communication, may to a significant extent result from social factors operating from early childhood onwards, such as the need to feel a sense of belonging and identity that leads us to adopt and maintain the beliefs of our peer group (of course these social factors may have also played a role in the evolutionary account as well). If these dispositions to seek reasons in support of our beliefs, and disregard challenges to our beliefs, is primarily a cognitive gadget designed by cultural evolution rather than a cognitive instinct, then social interventions, supported by computational technologies, may indeed be effective in counteracting these tendencies. For example, implementations of computational models of argument and dialogue that mediate our interactions with information on the web and in formative education, such as the envisaged argument search engines referred to above, and as I’ve suggested elsewhere, learning technologies that engage and challenge students in dialogues implementing normative models of dialectical reasoning.

Sanjay Modgil
Informatics, King’s College London

Medieval Reasoning

[Continuing] As we have seen, the formality of a language does not seem to be a matter of quality but rather of degree. In other words, insofar as any language has a vocabulary, grammatical rules and a syntax, it has some degree of formality – how high of a degree depends on the restrictions and specifications in the vocabulary, grammar, and syntax. To formalise a given language is not simply to make it more formal (whatever that turns out to be, which is not obvious): rather, it is an operation of translation, typically by abstraction, desemantification and (eventually) symbolisation, while improving, extending or revising the vocabulary and the rules. While the output of a fully-fledged formalisation is the kind of symbolical logical language we are used to, there are intermediate stages in between, i.e. the languages that we usually call ‘regimented’. In a paper on “Formalization in Philosophy” (The Bulletin of Symbolic Logic, Volume 6, Number 2, June 2000, pp. 162-175), along with an analysis of formalization’s virtues and dangers, Sven Hansson offered a picture of formalisation as idealisation in two steps: “first from common language [stage-1] to a regimented philosophical language and then from regimented [stage-2] into mathematical or logical language [stage-3]” (p. 164). Since Medieval Logical Latin (MLL) is not a single language, but many – varying greatly over time in features, uses
Philosophy and Economics

So much of what we do as academics relates to reasoning: we think, read, discuss, and present. We write and re-write. What we also do, increasingly, is organise events small and large. The increased proliferation of events really is a trend of the past decade. I suppose part of the reasons for why this happened is that it has become cheaper and easier to travel. Grant agencies expecting events as part of ‘dissemination’ is probably another factor. What is more – and here we are on more familiar Reasoner-related grounds – reasoning is closely related to intersubjective and social processes. With excuses for getting heavy and serious all of a sudden, the symbols and structures with which we express reasoning, such as formulae, sentences, whole languages and so on, need intersubjective agreement. More practically speaking, conversing, discussing, and reacting to presentations are all helpful social practices of reasoning that events purport to facilitate.

So, how do things look in practice, then? In the philosophy and economics community, some of the largest conferences are the Biannual conferences of the International Network of Economic Method, and the annual conferences of the French Philosophy-Economics Network, and there are philosophy of economics-related panels at many of the big society conferences, such as the American Economic Association (ASSA), Philosophy of Science Associations (PSA in the US, EPSA in Europe, BSPS in the UK), as well as the European Network for the Philosophy of the Social Sciences. There are also longstanding events series such as Philosophy of Science in Practice, Models and Simulations, the Philosophy of Social Science Roundtable, or Formal Ethics, in all of which philosophy of economics plays an important role.

This already quite long list of event series does not even scratch the surface of how much there is going on even in this niche. It seems that the philosophy and economics community is prone to be perpetuating lots of events, as it is an inter-disciplinary community in which exchange between different kinds of philosophers and also between researchers in different disciplines needs to be facilitated. In that sense, it is quite similar to what we find in other Reasoner-related communities. Indeed, one could say that Reasoners have been helping establishing this trend towards more events, by installing conference and workshop series in which logicians, computer scientists, philosophers, economists, and researchers from many other disciplines mix (think of TARK and LOFT, for instance). Indeed, scientific communities related to Reasoner-topics have also been among the most innovative with regards to events. Here’s a story related to me by researchers from ILLC Amsterdam, who quote Peter van Emde Boas that in times of the Cold War, logicians from Communist countries often could not attend events in the West, and so researchers were giving their papers for them at various conferences. This, and similar stories, has inspired ‘paper-swap’ formats in which researchers present work of colleagues, thus giving a more radical twist...
to the ‘commentator’ format. Also familiar in Reasoner-driven events are ‘masterclasses’ (high-level introductions into a research area) replacing traditional keynotes, and various types of poster sessions.

It is fair to say, though, that the majority of large events that are organised these days – certainly in philosophy and economics – has found its equilibrium in a few keynote talks and 30 Minute slots in parallel sessions. Smaller conferences and workshops often see longer 40-60 Minutes slots. Most of these talks are driven by the speaker presenting a slideshow and some time for discussion at the end, often referred to as the ‘Q&A’. There is, given the large number of events, very little variation in the format. As Reasoners, we may be moved to ask this: What kind of reasoning gets done in these formats? And could other formats be more conducive to reasoning together?

I have come to think of the above equilibrium of received events formats as suboptimal. One aspect of the current default formats is that they require that presenters spend a large amount of time on perfecting talks and slideshows (alternatively, they require large amounts of patience in the audience if presenters did not prepare their talks well enough). Another aspect is, for me, that these slots of 30-45 Minutes feel mostly either too long or too short, but not often ‘about right’. Yet, if we were to replace such sessions with, say, short pitches of five Minutes and lots of time for discussion, many might feel dis-oriented. Or, if we were to install a regime in which full papers are not only mandatory to submit beforehand, but also insist on them being read (for instance, by adopting roundtable or reading group-style formats for parallel sessions), many might not only feel dis-oriented, but also over-burdened. Metheks this kind of dis-orientation or feeling of being asked a lot in relation to events might be conducive to making more out of the time that is spent together in one location than the current standard format. But it remains a hurdle.

Perhaps it is inevitable that, after a period of expanding event proliferation, there is now a settled format that is predictable, and thus incurs low costs of attending a conference, once participants get the hang of it. Moreover, a predictable format has many advantages in terms of facilitating exchanges. All this, however, does not mean that it is impossible to change such standard formats. Some formats like masterclasses, roundtable discussions, and poster sessions are gaining ground, albeit slowly, in some of the bigger events.

Perhaps we should ask more what goals we have in bringing scholars together in a particular event, and what kind of exchanges (and styles and formats of reasoning together) an event should facilitate, and then look for the right format to support these goals. As it has become easier to attend and organise events, that seem to me the right questions to ask.

Conrad Heilmann
Erasmus Institute for Philosophy and Economics (EIPE)
Erasmus University Rotterdam

Mathematical Philosophy

This report inaugurates a subsection within the “What’s Hot in Mathematical Philosophy” column, which will be devoted to the “Formal Epistemology of Medicine”. This new strand of research analyses issues arising in medical epistemology by examining the interaction of methodological, social and regulatory dimensions in medicine. The motivation for adopting a formal approach stems from its higher capability to describe the “rules of the game” and to provide an analytic explanatory account of the investigated phenomena. The idea emerges out of the ERC project “Philosophy of Pharmacology: Safety, Statistical Standards, and Evidence Amalgamation” hosted by the MCMP until June 2017, and now by the Unipv (Ancona, Italy) – with MCMP further remaining involved as additional beneficiary. The project consists in two main research strands: 1) developing a justificatory framework for probabilistic confirmation of causal hypotheses; 2) a game-theoretic approach to epistemic issues around (medical) evidence.

1. Formalisation of scientific inference within the Bayesian epistemology tradition has generally aimed at providing mathematical explanations of various inferential phenomena in the sciences: confirmatory support of coherent evidence, confirmatory role of explanatory power, the role of replication in assessing the reliability of evidence, the no-alternatives and the no-miracles arguments (see e.g. Crupi V. Chater N., & Ten-tori K. New axioms for probability and likelihood ratio measures. British Journal for the Philosophy of Science, 2013, 64(1), 189–204; Dawid R., Hartmann S., & Sprenger J. The No Alternatives Argument. British Journal for the Philosophy of Science, 2015, 66, 213–234; Fietelson B. A probabilistic theory of coherence. Analysis, 2003, 63(279), 194–199). We drew on this tradition in order to exploit the confirmatory support of heterogeneous sources of evidence, and to expand the justificatory toolset in such domains as drug risk management and policy-making (Landes J. Osimani B. Poellinger R. (2017) Epistemology of causal inference in pharmacology. Towards a framework for the assessment of harms. European Journal for Philosophy of Science). This also goes in the direction advocated by Gelman (Gelman A. Working through some issues. Significance 12.3 (2015): 33–35.) and Marsman et al. (A Bayesian bird’s eye view of ‘Replications of important results in social psychology’. R Soc Open Sci. 2017, 4(1): 160426) invoking a more comprehensive approach to evidence, in the aftermath of the “reproducibility crisis”. In analogy with Bogen and Woodward’s distinction between data and phenomena (Bogen J., Woodward J. Saving the Phenomena. The Philosophical Review, 1988, 97 (3): 303-52), our framework breaks down the inferential path from data to hypotheses into two steps: one from data to abstract causal indicators; the other one, from such indicators to the causal hypothesis itself. This also helps de-
press some crosstalk in the philosophical literature, generated by conflating ontological, epistemological, and methodological issues around causal inference.

2. The scientific ecosystem in which the above epistemic dynamics are embedded is characterised by the joint interaction of several features: 1) medical products are so called “credence products”, that is, products for which the consumer (medical community, patients, and the public health system) cannot evaluate the quality prior to (and often not even after) consumption; 2) information asymmetry affects epistemic interchange at various levels (patient vs. doctor, policy makers vs. scientific community, state-of-the-art-knowledge vs. Nature), and may be obviously exploited and lead to various phenomena such as suppliers’ induced demand, or disease mongering; 3) producers of medical knowledge often have vested interests in the research outputs and dissemination, leading them to engage in strategic behavior regarding evidence exhibition (whose features may also evolve in time: see Bennett Holman, The Fundamental Antagonism: Science and Commerce in Medical Epistemology. 2015, PhD Dissertation, University of California, Irvine). This strongly impacts on the processes and norms regarding the production, and evaluation of evidence and its use for decisions (see also Teira, D. On the normative foundations of pharmaceutical regulation. In: La Caze A., Osimani B. (2018) Uncertainty in Pharmacology: Epistemology, Methods and Decisions. Boston Series for the Philosophy and History of Science, Springer).

Various institutional instruments have been developed in order to address these issues: evidential standards (e.g. evidence hierarchies proposed within the EBM paradigm), decision-rules (e.g. the precautionary principle), and deontological norms. We started to investigate the joint interaction of such dimensions by developing a Bayesian model of hypothesis confirmation which takes into account both random and systematic error (Landes J. Osimani B., (2018) Varieties of Error and Varieties of Evidence in Scientific Inference, under review). In particular, we examined the interplay of coherence and consistency of evidence, with source(s) reliability. Our results partly confirm Bovens and Hartmann (Bovens, L., & Hartmann, S. (2003), Bayesian Epistemology. OUP) and Claveau (Claveau F. The Independence Condition in the Variety-of-Evidence Thesis. Philosophy of Science, 2013, 80, pp. 94–118), who investigate similar epistemic dynamics, but we realize that Bovens and Hartmann’s results concerning the failure of the variety of evidence thesis (VET), mainly rely on their randomizing instrument being so in a specific way: when its probability of delivering positive reports (no matter what the truth is) is higher than .5 the instrument tends to be a “yes-man”, whereas it is a “nay-sayer” if this probability drops below .5. In the former case, consistency of positive reports from the same instrument speaks in favour of it being a randomizer (and therefore weakens their confirmatory strength), whereas the opposite holds for the latter case, which explains VET failure there. In our model the VET fails too, but the area of failure is considerably smaller and depends on the ratio of false to true positives of the biased vs. reliable instrument affected by random error; the take-home message is that replication with the same instrument is favoured when the noise of the reliable instrument exceeds the systematic error of the biased one. We plan to further explore these results by modeling different sorts of replications and features of reliability in various scientific settings, and embed them in an extended framework, where more agents/groups are involved in strategic behaviour.

BARBARA OSIMANI
MCMP, LMU Munich

EVENTS

FEBRUARY

IASK: Imagination as a Source of Knowledge, University of Cologne, 2–3 February.
PRESDat: Presenting Data, London, 6 February.
BDAAI&CL: Big Data, Analytics, AI and Machine Learning, Ontario, Canada, 7 February.
WoMR: Workshop on Mathematical Reasoning, Stanford University, 9–10 February.
OnsBlF: Interdisciplinary Workshop on Belief, New York, 15–16 February.
MA&EM: Modern Axiomatics and Early Metatheory, University of Vienna, 22–23 February.

MARCH

RUAk: Relations, Unity, and Regress, University of Birmingham, 26–27 March.
BaCo: BAYESCOMP, Barcelona, Spain, 26–28 March.

APRIL

JT: Just Theorising: Working Towards Responsible Methodologies, University of Sheffield, 9–10 April.
MotM: Models of the Mind: Reasoning About Oneself and About Others, University of Edinburgh, 19 April.

COURSES AND PROGRAMMES

Courses

Programmes

APhIL: MA/PhD in Analytic Philosophy, University of Barcelona.
MASTER PROGRAMME: MA in Pure and Applied Logic, University of Barcelona.
DOCTORAL PROGRAMME IN PHILOSOPHY: Language, Mind and Practice, Department of Philosophy, University of Zurich, Switzerland.
DOCTORAL PROGRAMME IN PHILOSOPHY: Department of Philosophy, University of Milan, Italy.
HPSM: MA in the History and Philosophy of Science and Medicine, Durham University.
MASTER PROGRAMME: in Statistics, University College Dublin.
LoPhSc: Master in Logic, Philosophy of Science and Epistemology, Pantheon-Sorbonne University (Paris 1) and Paris-Sorbonne University (Paris 4).
MASTER PROGRAMME: in Artificial Intelligence, Radboud University Nijmegen, the Netherlands.
MASTER PROGRAMME: Philosophy and Economics, Institute of Philosophy, University of Bayreuth.
MA IN COGNITIVE SCIENCE: School of Politics, International Studies and Philosophy, Queen’s University Belfast.
MA IN LOGIC AND THE PHILOSOPHY OF MATHEMATICS: Department of Philosophy, University of Bristol.
MA PROGRAMMES: in Philosophy of Science, University of Leeds.
MA IN LOGIC AND PHILOSOPHY OF SCIENCE: Faculty of Philosophy, Philosophy of Science and Study of Religion, LMU Munich.
MA IN LOGIC AND THEORY OF SCIENCE: Department of Logic of the Eotvos Lorand University, Budapest, Hungary.
MA IN METAPHYSICS, LANGUAGE, AND MIND: Department of Philosophy, University of Liverpool.
MA IN PHILOSOPHY: by research, Tilburg University.
MA IN PHILOSOPHY, SCIENCE AND SOCIETY: TiLPS, Tilburg University.
MA IN PHILOSOPHY OF BIOLOGICAL AND COGNITIVE SCIENCES: Department of Philosophy, University of Bristol.
MA IN RHETORIC: School of Journalism, Media and Communication, University of Central Lancashire.
MA PROGRAMMES: in Philosophy of Language and Linguistics, and Philosophy of Mind and Psychology, University of Birmingham.
MRES IN METHODS AND PRACTICES OF PHILOSOPHICAL RESEARCH: Northern Institute of Philosophy, University of Aberdeen.
MSC IN APPLIED STATISTICS: Department of Economics, Mathematics and Statistics, Birkbeck, University of London.
MSC IN APPLIED STATISTICS AND DATA MINING: School of Mathematics and Statistics, University of St Andrews.
MSC IN ARTIFICIAL INTELLIGENCE: Faculty of Engineering, University of Edinburgh.
MSC IN COGNITIVE & DECISION SCIENCES: Psychology, University College London.

MA IN COGNITIVE SYSTEMS: Language, Learning, and Reasoning, University of Potsdam.
MSC IN COGNITIVE SCIENCE: University of Osnabrück, Germany.
MSC IN COGNITIVE PSYCHOLOGY/NEUROPSYCHOLOGY: School of Psychology, University of Kent.
MSC IN LOGIC: Institute for Logic, Language and Computation, University of Amsterdam.
MSC IN MIND, LANGUAGE & EMBODIED COGNITION: School of Philosophy, Psychology and Language Sciences, University of Edinburgh.
MSC IN PHILOSOPHY OF SCIENCE, TECHNOLOGY AND SOCIETY: University of Twente, The Netherlands.
OPEN MIND: International School of Advanced Studies in Cognitive Sciences, University of Bucharest.
RESEARCH MASTER IN PHILOSOPHY AND ECONOMICS: Erasmus University Rotterdam, The Netherlands.

JOBS AND STUDENTSHIPS

Jobs

ASSISTANT PROFESSOR: in Early-Modern History of Science, Ca’ Foscari University of Venice, deadline 19 February.
TENURE TRACK POSITION FOR WOMEN: in Logic and Computation, University of Amsterdam, deadline 19 March.

Studentships

PhD: in Philosophy of Science and/or Logic, University of Salzburg, Austria, deadline 7 February.
PhD: in Neurophilosophy, LMU Munich, deadline 15 February.