Why metrics can (and should?) be applied

in the Social Sciences

Anne-Wil Harzing,
Middlesex University, London
www.harzing.com
@AWHarzing

Quick Intro: Anne-Wil Harzing

- My name?...., Yes Anne-Wil is one name and not part of my family name
- Started at Middlesex in July 2014
 - previously University of Melbourne (PhD director 2004-2009, Associate Dean RHD, 2009-2010, Associate Dean Research, 2010-2013)
 - 1991-2001: Bradford (UK), Maastricht, Tilburg & Heerlen (Netherlands)
- Active researcher & research mentor.
 - 81 international journal articles since 1995 (160+ publications in total)
 - >12,500 Google Scholar citations, h-index 51, ISI citations: >4,700, top 1% most cited world-wide in Economics & Business
 - Active blog on all things academia, incl. Academia Behind the Scenes and Academic Etiquette and Publish or Perish tips, http://www.harzing.com/blog/.toc
- Service to the academic community
 - Editorial board membership of a dozen journals
 - Personal website online since 1999, 1000-1500 visitors/day, many free resources
 - Journal Quality List since 2000, 59th edition
 - Publish or Perish since 2006, version 5 launched late October 2016

Metrics vs. peer review: an increasing audit culture

- Increasing "audit culture" in academia, where universities, departments and individuals are constantly monitored and ranked
 - National research assessment exercises, such as the ERA (Australia) and the REF (UK), are becoming increasingly important
- Publications in these national exercises are normally assessed by peer review for Social Sciences and Humanities
 - Citations metrics are now used in the Life Sciences, Sciences and Engineering as additional input for decision-making
 - The argument for not using citation metrics in SSH is that coverage for these disciplines is deemed insufficient in WoS and Scopus

What is the danger of peer review? (1)

- Peer review might lead to harsher verdicts than bibliometric evidence
 - especially for disciplines that do not have unified paradigms, such as the Social Sciences and Humanities
- In Australia (ERA 2010) the average rating for the Social Sciences was only about 60% of that of the Sciences and Life Sciences
 - This is despite the fact that on a citations per paper basis Australia's worldwide rank is similar in all disciplines
- The low ERA-ranking led to widespread popular commentary that government funding for the Social Sciences should be reduced or removed altogether
 - Similarly negative assessment of the credibility of SSH can be found in the UK (and no doubt in many other countries)

What is the danger of peer review? (2)

- More generally, peer review might lead to what I have called "promise over proof"
 - Harzing, A.W.; Mijnhardt, W. (2015) Proof over promise: Towards a more inclusive ranking of Dutch academics in Economics & Business, Scientometrics, vol. 102, no. 1, pp. 727-749
- Assessment of the quality of a publication might be (subconsciously) influenced by the "promise" of:
 - the journal in which it is published,
 - the reputation of the author's affiliation,
 - the sub-discipline (theoretical/modeling vs. applied, hard vs. soft),
 - (or even) the gender and ethnicity of the author
- Promise vs. proof: 4 vs. 1000?
 - [Promise] Publication in a "triple-A" or "4* journal" initially means that 3-4 academics thought your paper was a worthwhile contribution to the field. But what if this paper is hardly ever cited?
 - [Proof] Publication in a "C-journal" or "1* journal" with 1,000+ citations means that 1,000 academics thought your paper was a worthwhile contribution to the field

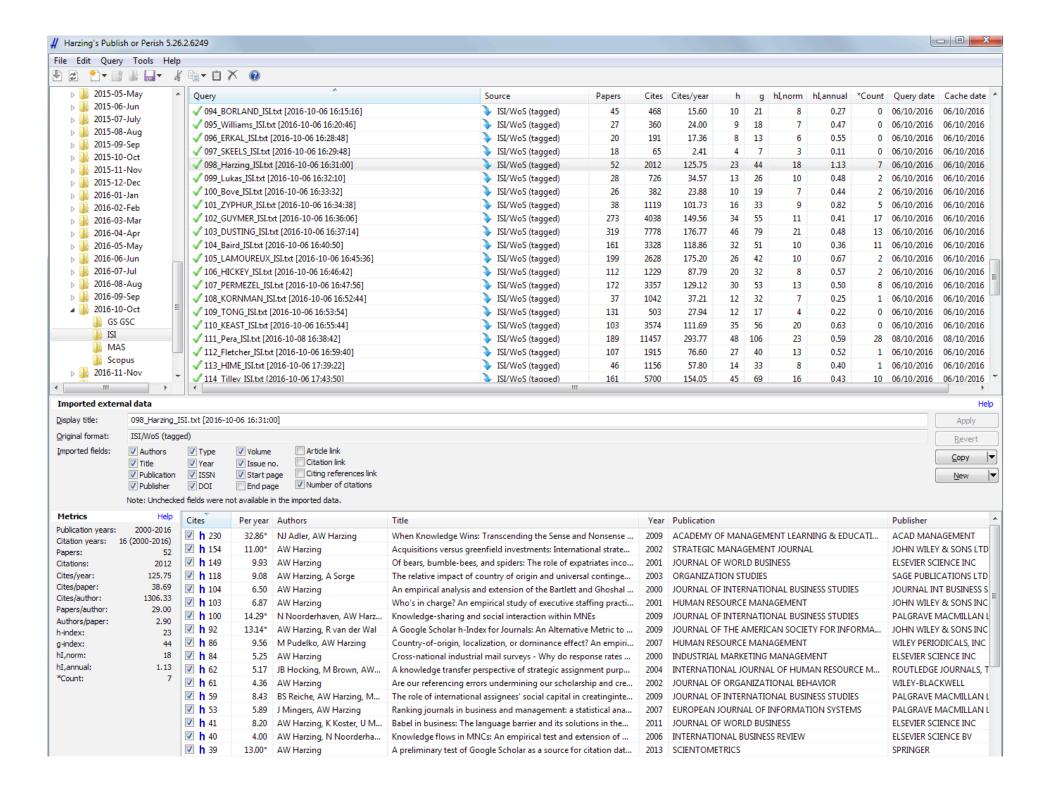
What can we do?

- Be critical about the increasing audit culture
 - But: be realistic, we are unlikely to see a reversal of this trend. Hence in order to "emancipate" the Social Sciences and Humanities, an inclusion of citation metrics might help
- Raise awareness about
 - Alternative data sources for citation analysis that are more inclusive (e.g. including books, local and regional journals, reports, working papers)
 - Difficulty of comparing metrics across disciplines because of different publication and citation practices
 - (Life) Science academics in particular write more (and shorter) papers with more authors; 10-15 authors not unusual, some >1000 authors
- Investigate alternative data sources and metrics
 - Google Scholar, Microsoft Academic, or even Scopus instead of WoS/ISI
 - hla (Individual annualised h-index), i.e. h-index corrected for career length and number of co-authors
 - measures the average number of single-author equivalent impactful publications an academic publishes a year (usually well below 1.0)

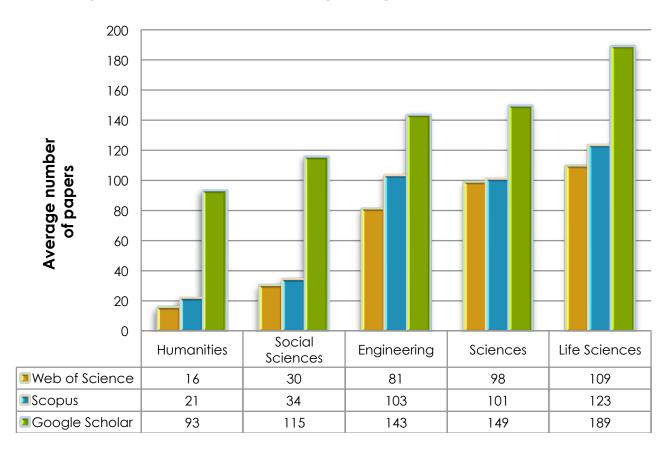
Investigate alternative data sources and metrics

- Need comprehensive empirical work to assess alternatives
- Dozens of studies compared two or even three databases. However they:
 - Focused on a single or small groups of journals or a small group of academics
 - Only covered a small number of disciplines
 - Typically focused on one or two metrics
- Hence our study provides:
 - Cross-disciplinary comparison across all major disciplinary areas
 - Comparison of 4 different metrics:
 - publications, citations, h-index
 - hl,annual (h-index corrected for career length and number of co-authors)

The bibliometric study (1): The basics

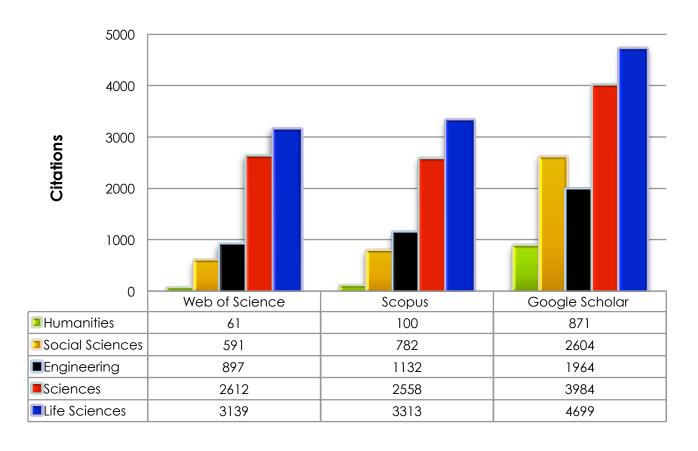

- Sample of 146 Associate and Full Professors at the University of Melbourne
 - All main disciplines (Humanities, Social Sciences, Engineering, Sciences, Life Sciences) were represented, 37 sub-disciplines
 - Two full professors (1 male, 1 female) and two associate professors (1 male, 1 female) in each sub-discipline (e.g. management, marketing, accounting, economics)
- Citation metrics in WoS/ISI, Scopus and Google Scholar
 - Collected citation data every 3 months for 2 years
 - Google Scholar data collected with Publish or Perish (http://www.harzing.com/resources/publish-or-perish)
 - WoS/ISI and Scopus collected in the respective databases and imported into Publish or Perish to calculate metrics
- The overall conclusion: with appropriate metrics and data sources, citation metrics **can** be applied in the Social Sciences
 - ISI H-index: Life Sciences mean 200% above Social Sciences mean
 - GS hla index: Life Sciences mean 1.5% below Social Sciences mean

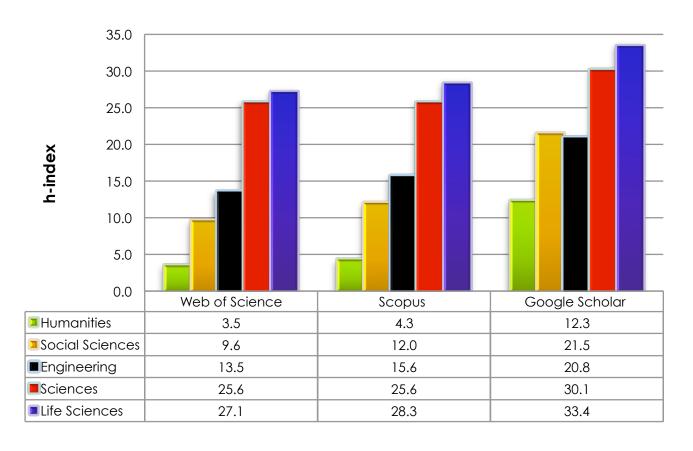
The bibliometric study (2): Details on the sample

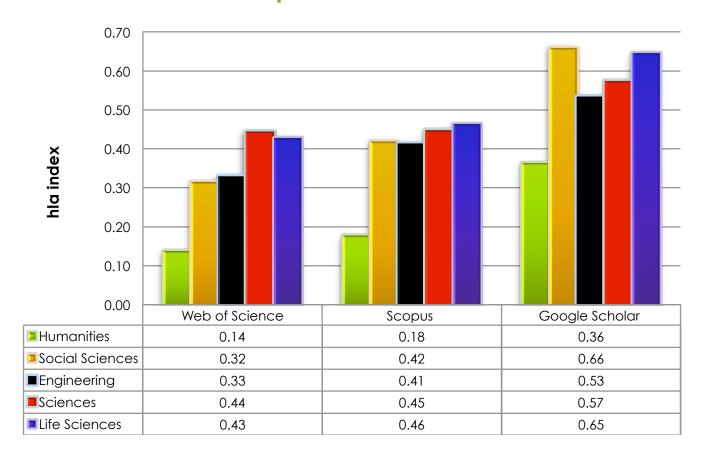

- Sample: 37 disciplines were subsequently grouped into five major disciplinary fields:
 - Humanities: Architecture, Building & Planning; Culture & Communication, History; Languages & Linguistics, Law (19 observations),
 - Social Sciences: Accounting & Finance; Economics; Education; Management & Marketing; Psychology; Social & Political Sciences (24 observations),
 - **Engineering**: Chemical & Biomolecular Engineering; Computing & Information Systems; Electrical & Electronic Engineering, Infrastructure Engineering, Mechanical Engineering (20 observations),
 - **Sciences**: Botany; Chemistry, Earth Sciences; Genetics; Land & Environment; Mathematics; Optometry; Physics; Veterinary Sciences; Zoology (44 observations),
 - Life Sciences: Anatomy & Neurosciece; Audiology; Biochemistry & Molecular Biology; Dentistry; Obstetrics & Gynaecology; Ophthalmology; Microbiology; Pathology; Physiology; Population Health (39 observations).

The bibliometric study (3): Descriptive statistics


	N	Minimum	Maximum	Mean	Std. Deviation
WoS Years active	146	3	47	23.84	9.016
Scopus Years active	146	5	46	23.69	8.969
GS Years active	146	8	46	25.64	8.086
WoS Total # of papers	146	3	309	77.25	64.346
Scopus Total # of papers	146	3	309	86.37	68.304
GS Total # of papers	146	22	519	147.46	97.799
WoS Total # of citations	146	0	11287	1871.68	2238.092
Scopus Total # of citations	146	0	11740	1978.27	2179.222
GS Total # of citations	146	58	16507	3290.88	3122.853
WoS h-index	146	0	54	18.91	13.188
Scopus h-index	146	0	48	16.92	10.920
GS h-index	146	3	65	26.06	13.185
WoS hla index	146	.00	1.07	.3623	.18991
Scopus hla index	146	.00	1.11	.4075	.19075
GS hla index	146	.05	1.75	.5757	.26238
Valid N (listwise)	146				


Different data-sources across disciplines: # of papers


Different data-sources across disciplines: # of citations


Different data-sources across disciplines: # of citations

Different data-sources across disciplines: h-index

Different data-sources across disciplines: hla index

hla: h-index corrected for academic age (to accommodate differences in career length) and number of co-authors (to remove discipline bias)

Comparing WoS h-index with Scopus or GS hla

Discipline	Web of Science h-index	Life Sciences = 100	Scopus hla	Life Sciences = 100	Google Scholar hla	Life Sciences = 100
Humanities	3.5	13	0.18	38	0.36	56
Social Sciences	9.6	36	0.42	91	0.66	102
Engineering	13.5	50	0.41	89	0.53	82
Sciences	25.6	95	0.45	96	0.57	89
Life Sciences	27.1	100	0.46	100	0.65	100

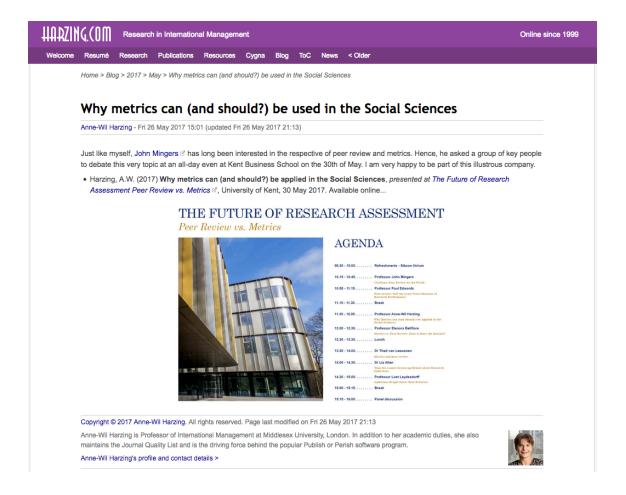
Different data-sources between disciplines: Statistics

- For the ISI h-index gender, rank and discipline differences explain nearly 60% of the variance
- For GS hla, the explained variance is only 14%
 - Reduction of differences across levels of appointment
 - Reduction of differences across disciplines

	ISI h-	index	Google Scholar hla		
	Stand. Beta	Significance	Stand. Beta	Significance	
Gender = Female	-0.066	0.222	-0.017	0.822	
Rank Professor	0.361	0.000	0.217	0.006	
Humanities	-0.591	0.000	-0.356	0.000	
Social Sciences	-0.491	0.000	0.020	0.816	
Engineering	-0.357	0.000	-0.149	0.087	
Sciences	-0.045	0.468	-0.123	0.178	
Adjusted R-square	0.5	91	0.139		

Quick comparison across disciplines

- H-index ISI data
 - Life Sciences vs. Humanities: 27 vs. 3.5
 - i.e. **nearly 8 times** as high
 - Life Sciences vs. Social Sciences: 27 vs. 9.5
 - i.e. **nearly 3 times** as high
- hla-index GS data
 - Life Sciences vs. Humanities: 0.65 vs. 0.34
 - i.e. **nearly 2 times** as high
 - Life Sciences vs. Social Sciences: 0.65 vs. 0.66
 - i.e. **nearly identical** (1.5% lower)


Individual comparisons for the three databases

	number of a					
	Higher	< 5%	5%-10%	10%-25%	>25%	Affected
	than WoS	Lower	Lower	Lower	Lower	academics
GS publications	143	2	0	0	1	None; differences are
GS citations	145	0	0	1	0	caused by Web of
GS h-index	145	1	0	0	0	Science errors + one mega-authored paper
GS hla	146	0	0	0	0	mega damorea paper
Scopus publications	133	3	5	4	1	Older academics
Scopus citations	110	6	7	15	8	Social Sciences 13%*
Scopus h-index	115	9	8	11	3	Humanities 21% Life Sciences 28%
Scopus hla	113	3	10	17	3	Sciences 43%

Conclusion

- Will the use of citation metrics disadvantage the Social Sciences and Humanities?
 - Not, if you use a database that includes publications important in those disciplines (e.g. books, national journals)
 - Not, if you correct for differences in co-authorships
- Is peer review better than metrics in the Social Sciences and Humanities?
 - Yes, in a way.... The ideal version of peer review (informed, dedicated, and unbiased experts) is better than a reductionist version of metrics (ISI h-index or citations)
 - However, the inclusive version of metrics (GS hla) is probably better than the likely reality of peer review (hurried semi-experts, potentially influenced by journal outlet and affiliation)
- In research evaluation at any level use a combination of peer review and metrics wherever possible, but:
 - If reviewers are not experts, metrics might be a better alternative
 - If metrics are used, use an inclusive database (GS, Microsoft Academic, or Scopus) and career and discipline adjusted metrics

Slides are available here

Want to know more?

- Harzing, A.W.; Alakangas, S. (2016) Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison, Scientometrics, 106(2): 787-804
- For more details see:
 - http://www.harzing.com/blog/2016/09/citationanalysis-for-the-social-sciences-metrics-anddatasources
 - http://www.harzing.com/blog/2017/03/bibliometricsin-the-arts-humanities-and-social-sciences
 - http://www.harzing.com/research/quality-andimpact-of-academic-research
- Any questions?

Further reading on Google Scholar as a source for citation data

- Harzing, A.W.; Wal, R. van der (2008) Google Scholar as a new source for citation analysis?, Ethics in Science and Environmental Politics, 8(1): 62-71
- Harzing, A.W.; Wal, R. van der (2009) A Google Scholar hindex for Journals: An alternative metric to measure journal impact in Economics & Business?, Journal of the American Society for Information Science and Technology, 60(1): 41-46
- Harzing, A.W. (2013) A preliminary test of Google Scholar as a source for citation data: A longitudinal study of Nobel Prize winners, Scientometrics, 93(3): 1057-1075
- Harzing, A.W. (2014) A longitudinal study of Google Scholar coverage between 2012 and 2013, Scientometrics, 98(1): 565-575
- Harzing, A.W.; Alakangas, S. (2016) Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison, Scientometrics, 106(2): 787-804

Further reading on problems with the Web of Science and new metrics

- Harzing, A.W. (2013) Document categories in the ISI Web of Knowledge: Misunderstanding the Social Sciences?, Scientometrics, 93(1): 23-34
- Harzing, A.W.; Alakangas, S.; Adams, D. (2014) hla: An individual annual h-index to accommodate disciplinary and career length differences, Scientometrics, 99(3): 811-821
- Harzing, A.W.; Mijnhardt, W. (2015) Proof over promise: Towards a more inclusive ranking of Dutch academics in Economics & Business, Scientometrics, 102(1): 727-749
- Harzing, A.W. (2015) Health warning: Might contain multiple personalities. The problem of homonyms in Thomson Reuters Essential Science Indicators, Scientometrics, 105(3): 2259-2270
- Harzing, A.W. (2016) Microsoft Academic (Search): a Phoenix arisen from the ashes?, Scientometrics, 108(3):1637-1647
- Harzing, A.W.; Alakangas, S. (2017) Microsoft Academic: Is the Phoenix getting wings?, Scientometrics, vol. 110, no. 1, pp. 371-383