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MODELS IN MEDICINE

Michael Wilde and Jon Williamson

1. Introduction

The major goals of medicine include predicting disease, controlling disease, and explaining
disease. The main way of achieving these goals proceeds by modelling. In this chapter, we
provide an introduction to the use of models in achieving the goals of medicine. To begin
with, we introduce the notion of a model in medicine and distinguish experimental models
from theoretical models. Then we provide an overview of the extensive array of these models
by giving an account of animal models, which are a kind of experimental model, as well as
association models, causal models, and mechanistic models, which are kinds of theoretical
models. Next, we argue that in order to achieve the goals of medicine we need all of the latter
three kinds of theoretical model—none are redundant. We go on to provide a framework for
systematizing the production of theoretical models. Lastly, we present an example involving
benzene and leukemia to illustrate the approach of this chapter.

2. Models in Medicine

The use of models is an important feature of scientific practice. Accordingly, scientific models
have received a good deal of attention from philosophers of science. This attention has tended
to focus on general problems such as the nature of models, how models are related to scientific
theories, and how scientists can learn about the world by using models (Frigg and Hartmann,
2005). The scope of this chapter is much narrower, concerning only models in medicine.
Given this, we shall set aside a number of important general issues in order to focus on those
matters most pertinent to medicine.

Broadly speaking, we take a model to be a structure that represents some target system and
that is used as a means of drawing conclusions about that target system. It is difficult to draw
conclusions directly about a target system where that target system is inaccessible or very
complicated. Usually, in such cases, it is more straightforward to reason instead about a model,
since the model may involve considerable simplifications. The utility of models lies in the
fact that conclusions drawn from the model can carry over to the target system, as long as the
model is a sufficiently good representation of that target system.

As far as models in medicine are concerned, the target system is typically an individual or
population of biomedical interest. The aim is to draw conclusions about such an individual or
population. The conclusions that are relevant to medicine include claims about associations
and causal relationships between exposures and diseases, as well as claims about biological
mechanisms. On the one hand, it is important to establish associations and causal relation-
ships in medicine, since the goals of medicine include predicting and controlling disease,
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and it is not possible to achieve these goals without information about associations or causal
relationships (Russo and Williamson, 2007). On the other hand, it is also important to find
out about biological mechanisms, since another of the goals of medicine is to explain disease,
and it seems that explanations are best given by appealing to mechanisms (Williamson, 2013).

There have been a number of attempts to classify the different types of model in science,
but none of them seems entirely satisfactory (Miki, 2001). However, for our purposes, models
in medicine can be usefully classified into two types, experimental models and theoretical
models.

An experimental model is typically a concrete object that is experimented upon in order
to draw conclusions about the model. This experimentation also licenses conclusions about
a target system, insofar as the experimental model adequately represents the target system.
The experimentation is intended to gather brand-new information about the target system. A
theoretical model is a more abstract construct that systematizes information that has already
been gathered about the target system. This systematization allows further conclusions to be
drawn from that information more straightforwardly than would be possible if the information
were not systematized in a model.

We shall shortly fill in the details of this classification by presenting animal models as
examples of experimental models, and then presenting association models, causal models,
and mechanistic models as examples of theoretical models. The aim is to show exactly how
all of these models help achieve the major goals of medicine, i.e., predicting and explaining
the occurrence of diseases, as well as providing recommendations about the control of such
diseases.

3. Animal Models

One kind of model is an animal model, e.g., an experimental organism. An experimental organ-
ism, at least as far as medicine is concerned, is a non-human organism that is experimented
upon in order to gather information relevant to the prediction, explanation, and control of
disease in humans. A particular experimental organism is typically chosen on the grounds of
its tractability to experimentation and its suitability to the biomedical phenomenon under
investigation. Often, practical considerations, such as the availability of the organism for
investigation, also inform the selection of experimental organism (Kohler, 1994).

An experimental organism is a means of gathering biomedical information about humans
in cases where it is not possible to gather this information by directly conducting experiments
involving human subjects, e.g., where such experiments would be unethical or difficult to
carry out. As long as the experimental organism is representative of humans in the appropri-
ate respects, conclusions arrived at by experimenting upon the organism also license further
conclusions about humans. The conclusions may include claims about associations between
exposures and disease, as well as claims about biological mechanisms.

A famous example of a model from the history of experimental physiology is the frog, which
was studied in order to learn about the biological mechanisms of muscle contraction in humans
and mammals more generally (Holmes,1993). In this case, it was difficult to learn about muscle
contraction in humans directly, since it was not possible to carry out the relevant experiments
on humans. Instead, the frog was experimented upon as a representative model of the mecha-
nisms of human muscle contraction. The conclusions drawn about muscle contraction in frogs
were taken to apply also to muscle contraction in humans, insofar as the frog was appropriately
representative of human muscle contraction.

A further example is the use of experimental organisms in preclinical animal trials for toxi-
cology testing. Such tests are often conducted using mice or rats in order to assess the safety
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or efficacy of a drug before comparative clinical trials in humans are attempted. A compara-
tive clinical trial in humans is carried out only if it has been established that the drug is not
associated with adverse outcomes in the experimental organism. This is because establishing
the safety of the drug in the experimental organism is taken to support the conclusion that the
drug is safe also in humans, to a sufficient extent that it is deemed safe for comparative clinical
trials in humans to proceed.

As these examples make clear, the use of experimental organisms can help with all of the main
goals of medicine. First, experimental organism research can help with explanation because it
allow claims about biological mechanisms in humans to be established (as long as the experi-
mental organisms are appropriately representative). Second, it can help with predicting and
controlling disease since it enables claims about associations and causal relationships between
exposures and disease to be established (again, as long as the organisms are representative).

There have been a number of debates about experimental organism research. Claude
Bernard (1865) believed that the results of animal experiments were straightforwardly appli-
cable to humans, since the differences between animals and humans were only a matter of
degree. However, Hugh LaFollette and Niall Shanks (1996) have argued that evolutionary
theory casts doubt on the claim that it is justified to extrapolate from experimental organ-
isms to humans, and that this makes experimental organism research morally questionable.
Recently, it has been argued that significant findings in preclinical animal trials rarely lead to
successful treatments in humans (Djulbegovic et al., 2014). Some have suggested that this may
be because many animal trials are poorly conducted (Hirst et al., 2014).

Rachel Ankeny and Sabina Leonelli (2011) have argued that model organisms should be dis-
tinguished from the broader class of experimental organisms. Some examples of model organisms
include the fruit fly, the nematode worm, and certain strains of mouse. Among other things,
Ankeny and Leonelli argue that model organism research is unlike experimental organism
research in that it aims to provide a detailed account of the model as a whole organism, in terms
of its genetics, physiology, evolution, and so on. Arnon Levy and Adrian Currie (2015) have
argued that model organisms are not models in the traditional sense. In traditional modelling,
conclusions about the target system are supported by assessing whether the model is sufficiently
analogous to the target system. In model organism research, they argue, the models are not
analogues of some target system but instead are samples from a broader class of organisms. They
maintain that the conclusions drawn from model organisms are the result of empirical extrapo-
lation mediated by indirect evidence concerning the similarity of members of a broader class,
where this broader class includes both the model organism and its target system. This indirect
evidence might be that the broader class of organisms have a shared evolutionary ancestry or
shared phylogeny. Marcel Weber (2005) argues that extrapolations from model organisms to
humans can be reasonably sound, as long as they are based on known phylogenetic relationships.

This concludes our discussion of animal models. Now we survey the principal kinds of theo-
retical model: association models, causal models, and mechanistic models.

4. Association Models

One simple kind of theoretical model employed in medicine is an association model. This
charts the main correlations among variables measured in a data set, so that one can use the
observed values of certain measured variables to predict the value of an unmeasured variable
in a new patient.

When applied to diagnosis, for example, an association model might be used to determine the
probabilities of a range of possible diseases, given a particular combination of symptoms observed
in a particular patient. These probabilities can then be used to motivate a particular treatment
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decision. An association model for prognosis, on the other hand, will usually be used to predict
severity of disease, given observed clinical features of the patient and any observed biomarkers of
the disease in question. Either way, the main use of the association model is prediction.

By way of example, we shall present two kinds of association model: a Markov network
model and a Bayesian network model.

From a qualitative point of view, an association model can typically be represented by an
undirected graph, sometimes called a Markov network , with nodes corresponding to variables
and edges corresponding to the significant associations:

®
o

Separation in the graph can be used to denote probabilistic independence. In the above graph,
B separates A from C and D, in the sense that all paths from A to C or D proceed via B. This
separation relationship can be used to signify that A is probabilistically independent of C and
D, conditional on B. (A is probabilistically independent of C and D, conditional on B, written
A L C, D|B, just whenP(a|bcd) =P(a|b) for all valuesa, b, ¢, d, of A, B, C, D respectively.)
Thus, if one wants to predict A and one can observe B, it would make no sense to also observe
C and D, because these would provide no further information about A. For example, suppose
that a blockage in the main coronary artery (A) raises the probability of a heart attack (B),
which in turn raises the probability of particular electrocardiogram results (C and D), in such a
way that can be charted by the above association model. Then, to predict that the patient has
had a blockage in the main coronary artery, one need only observe that the patient has had a
heart attack, since learning in addition that the patient had certain electrocardiogram results
provides no more information about the blockage.

From a quantitative point of view, in order to determine the probability of any variable
conditional on any given combination of values of the other variables, one needs to specify the
joint probability distribution, defined over all the variables of interest. In the above example,
one would need to specify P(abcd) for each combination of values a, b, ¢, d, of A, B, C, D,
respectively. In a Markov network this is achieved by specifying the probability distribution
over variables in each clique of the graph. A clique is a maximal subset of nodes of the graph
such that each pair of variables in the subset is connected by an edge. The cliques in the above
graph are {A, B/, {B, C, D}, so one would need to specify P(ab) and P(bcd) for all combinations
of values a, b, ¢, d, of A, B, C, D, respectively.

Alternatively, one can use a Bayesian network model to represent the joint probability distri-
bution. A Bayesian network has a qualitative and a quantitative component. The qualitative
component of a Bayesian network consists of a directed acyclic graph, i.e., a graph with arrows
such that there is no path in the direction of those arrows from a node to itself. In our example,
one possible directed acyclic graph would be:

®
o 30

The directed acyclic graph needs to be constructed in such a way that each variable is proba-
bilistically independent of its non-descendants, conditional on its parents. (A non-descendant
of a variable is any node that cannot be reached by a directed path from the variable in
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question. A parent of a variable is any node from which there is an arrow to the variable in
question. For example, in the graph below, A is a parent of B, and B is a parent of C and D.
This means that C and D are descendants of B, and so B is a non-descendent of both C and D.)
The quantitative component of a Bayesian network consists of the probability distribution of
each variable conditional on its parents. The probability of a particular combination of values
of variables is then a product of specified conditional probabilities:

P(abed) = P(a) P(b|a) P(c|b) P(d|ch).

There are a wide range of algorithms for producing a Bayesian network that represents the
observed probability distribution of a set of variables measured in a data set (see, e.g., Neapoli-
tan, 2004). There are also many algorithms for drawing predictions from a Bayesian network
(see, e.g., Darwiche, 2009). Note that the directions of the arrows in the Bayesian network do
not represent causal relationships in this sort of association model—the arrows are merely a
technical device for representing certain probabilistic independencies.

Another kind of association model, called a classifier, is often used when it is only necessary
to predict the value of a single variable, such as severity of disease. Many such models have
been devised in the fields of machine learning and statistics (see, e.g., Alpaydin, 2010).

5. Causal Models

A second kind of theoretical model widely used in medicine is a causal model. A causal model
seeks to chart the causal connections between the variables of interest. Such a model has three
uses: prediction, explanation, and control. Like an association model, a causal model can be used
for prediction, since it can be used to infer the probability of one variable conditional on others
taking certain observed values. [t can also be used to construct rudimentary explanations, since
one can explain the fact that a particular variable takes the value that it does in terms of the
causes of the variable in question taking certain values. Most importantly, perhaps, it can be used
for control: it can be used to predict the effects of interventions and so can be used to decide how
best to intervene in order to control the disease or symptoms of a particular patient.

A causal model can represent causal connections qualitatively by means of a directed acyclic
graph. For example:

®

In contrast to the arrows of the directed acyclic graph presented in the previous section,
which featured in an association model, in a causal model the arrows have significance in that
they represent direct causal connections. For example, the above graph says that A is a cause
of C, but only via a single pathway that proceeds through B.

A causal Bayesian network or causal network is a Bayesian network model built around a
causal graph such as the above. Formally, it is a Bayesian network, but now the arrows in the
graph have causal significance. Because it is a Bayesian network, it can be used to define a
joint probability distribution over the variables in the graph, and thus can be used for pre-
diction. But because the arrows have causal significance, it can also be used to predict the
effects of interventions, as follows (see Pearl, 2000). When an intervention is performed to
fix a variable to a certain specific value, one modifies the Bayesian network by deleting all
arrows into this variable in the graph and updating the conditional probability distribution
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of each variable conditional on its parents in the graph to take into account the new value
of the intervened-upon variable. Then this modified network can be used to infer changes
to the probabilities of variables of interest, given the intervention. For example, intervening
to fix the variable C to a specific value ¢ will lead to a modified network in which the arrow
from B to C is deleted:

There are other sorts of causal model besides causal Bayesian networks (Illari et al., 2011);
such models tend to portray causal processes in a similarly schematic way, representable by
means of a directed acyclic graph. The explanations offered by such models can be superficial
in that they only pick out key variables—milestones on the causal pathways to the effect in
question—rather than the detailed structure of the underlying mechanisms that are respon-
sible for the phenomena to be explained.

6. Mechanistic Models

Mechanistic models are used to generate explanations that are less superficial than the expla-
nations yielded by causal models, in that they tend to include a richer set of explanatory
features. There are two principal sorts of mechanism. A complex-systems mechanism consists of
entities and activities organized in such a way that they are responsible for some phenomenon
of interest (Machamer et al., 2000; Illari and Williamson, 2012 ). Examples include the mecha-
nism for the circulation of the blood (which includes the features responsible for operation of
the heart as well as the organization of the other components of the cardiovascular system) and
the mechanism in an artificial pacemaker for producing electrical impulses to stimulate the
heart (which includes its power source, clock, sensors and pulse generator, and the features of
their arrangement that ensure its correct operation). On the other hand, what one might call a
mechanistic process is a spatio-temporally contiguous process along which a signal is propagated
(Reichenbach, 1956; Salmon, 1998). Examples include the process of an artificial pacemaker’s
electrical signal being transmitted along a lead from the pacemaker itself to the appropriate
part of the heart, and the process by which an airborne environmental pollutant reaches the
lining of the lung. While complex-systems mechanisms are often multi-level—e.g., involving
coordinated activity at the levels of the organism, the organ, the cell, and the gene—mechanistic
processes usually take place at a single level. Furthermore, whereas complex-systems mecha-
nisms typically operate in a regular way, repeatedly producing the phenomenon of interest,
mechanistic processes are often one-off, transmitting a single signal on a single occasion. In
either case, however, the mechanism’s structure and its organization—particularly its spatio-
temporal organization—tends to be crucial to its operation.

A mechanistic explanation will often appeal to both sorts of mechanism. An explanation
of the circulation of the blood in a particular individual may appeal to the complex-systems
mechanism by which the heart pumps the blood, as well as the complex-systems mechanism
of the individual’s pacemaker and the mechanistic process linking the two. An explanation of
a failure of blood to circulate may appeal to the same mechanisms, any faults of these mecha-
nisms, and any pathophysiological mechanistic processes that these faults give rise to.

Mechanistic models are used to model the salient features of mechanisms in order to explain
phenomena of interest. They differ from causal models in that they appeal to a richer set of
features—entities, activities, organization, hierarchical structure, processes, etc.—instead of
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simply variables or events. Some of these features cannot be easily incorporated into a causal
model: spatio-temporal organization and hierarchical structure, for example, are not naturally
represented using the nodes and arrows that typically characterize causal models. However,
these features are often essential components of an adequate explanation. Only in cases where
these features are not essential to the explanation will an explanation generated from a causal
model be adequate, in the sense that it picks out all the main features of an adequate mecha-
nistic explanation (Williamson, 2013).

We noted above that a single mechanistic model may seek to represent two kinds of mech-
anism: complex-systems mechanisms and mechanistic processes. In addition, mechanistic
models can be classified into two kinds: qualitative and quantitative.

Qualitative mechanistic models fill textbooks and research papers in medicine. They usually
take the form of diagrams that highlight the main features of the mechanism. For example, Fig-
ure 25.1 portrays a part of the mechanism for apoptosis (cell death). Increasingly, animations
are employed as qualitative mechanistic models, in order to portray activities and processes
developing over time. Agent-based models are another kind of qualitative mechanistic model.
Such a model represents a target system, e.g., a human population, in terms of a large numbers
of similar individuals that interact in a restricted set of ways, e.g., colored cells in a grid that
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influence the colors of their neighbours. Computer simulations are used to determine the typi-
cal behaviour of such a system. To the extent that this simulated behavior tallies with some
observed phenomenon, such as the spread of a contagious disease, the agent-based model can
be used to explain the occurrence of phenomenon.

Qualitative mechanistic models can be used to point to the underlying structure of reality
that is responsible for producing the phenomenon to be explained, but normally cannot, on
their own, explain why certain quantities within the mechanism take the values that they do,
or explain the probability of a certain phenomenon. For this sort of explanation, a quantita-
tive mechanistic model is required. A quantitative mechanistic model might, for example,
consist of a diagram that portrays the qualitative structure of the mechanism, together with
differential equations that can be used to model the changes in certain quantities over time.
Another example of a quantitative mechanistic model is a recursive Bayesian network, which
can represent a hierarchically structured mechanism by means of a collection of causal Bayes-
ian networks, and which can be used to infer the probability of variables in the mechanism,
given the observed values of other variables (Casini et al., 2011; Clarke et al., 2014b).

7. Combinations of Theoretical Models

Given this extensive array of theoretical models—association, causal, and mechanistic—two
questions arise. Do we really need all these kinds of model in medicine? If so, is there any way
of systematizing and unifying the production of these models? We will argue in this section that
both of these questions should be answered affirmatively.

Do we need all these models? As we hope to have made clear in the above discussion, differ-
ent kinds of theoretical model are put to different uses. Association models are for prediction;
causal models are for prediction, explanation, and control; mechanistic models are primarily
for explanation. One might think, then, that in medicine we should strive to produce good
causal models, which can be put to the widest variety of uses, and we should avoid association
and mechanistic models. There are three main reasons why this is not a sensible suggestion.

First, as we have mentioned, causal models generate more impoverished explanations than
do mechanistic models. Causal models abstract away from the details of mechanistic struc-
ture, generating explanations that invoke only variables and the “thin” causing relation, i.e.,
explanations that invoke only claims of the form X causes Y. Mechanistic models, on the other
hand, invoke entities, “thick” activities such as dilating and osmosing (i.e., a rich variety of
kinds of causing), organizational features such as the structure and location of the cell wall,
constitutive relations between components at different levels of a hierarchical mechanism,
and spatio-temporally contiguous processes. Therefore, mechanistic models are far from redun-
dant in situations in which a detailed explanation is required.

Second, causal and mechanistic models tend to be less reliable than association models.
[t is relatively easy to build an association model from some given data: one merely needs
to model the joint probability distribution that generates the data. Often, in cases in which
there are ample, good-quality data and no reason to suspect bias in the way the data were
sampled, one simply models the joint distribution of the data and treats that data distribu-
tion as an approximation to the data-generating distribution. In a causal model, however,
one needs to model not only the associations in the data but also the causal relationships
among all the measured variables. Determining causal relationships is a harder problem
than determining associations, so a causal model will normally be more speculative than
an association model. Harder still is the task of establishing the details of the underlying
mechanisms. This has long been the primary goal of biomedical science, and while great
progress has been made, many mechanistic models are either very speculative or “gappy,”
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with important features missing. This is less the case with a causal model: one needs to
establish causal connections between those variables that are in the model, but there is no
requirement to include in the model every variable that represents a component of one of
the pertinent mechanisms. A causal model that omits some salient variables can still gener-
ate useful inferences for prediction and control, and capture some explanatory factors. In
sum, there is a sense in which association models are normally less speculative than causal
models, which are in turn normally less speculative than mechanistic models. Association
models, in particular, retain an important place in medical research.

Third, association and mechanistic models are epistemically prior to causal models. This is
a consequence of the following epistemological thesis, put forward by Russo and Williamson
(2007). In order to establish a causal claim in medicine, one normally needs to establish two
things: (1) that the putative cause and putative effect are appropriately correlated; and (2) that
there is some underlying mechanism that links the cause to the effect in an appropriate way
and that explains this correlation.

Some points of clarification are needed. First, the latter two claims are existence claims: in
order to establish causality, one normally needs to establish the existence of a correlation and
the existence of a mechanism, not the precise extent of the correlation nor all the details of
the mechanism (Darby and Williamson, 2011, 2). Second, the mechanism involved might
be a complex-systems mechanism, or a mechanistic process, or a combination of the two—
whatever connects the putative cause to the putative effect in such a way that can explain
occurrences of the latter. Third, this thesis concerns the evidence required to establish a causal
claim, i.e., to settle the question according to the standards of the community, in such a way
that warrants a high degree of confidence that the causal claim will not be overturned by any
new evidence.

This epistemological thesis is plausible for the following reason. Recall that in medicine,
causal claims are used for prediction, explanation, and control. If the putative cause and puta-
tive effect were not appropriately correlated, one would not be predictive of the other and
one would not be able to intervene upon the cause to control the effect. Moreover, if there
were not some mechanism that links the cause to the effect in an appropriate way, one would
not be able to invoke the cause to explain the effect. Why is establishing a correlation not
normally sufficient on its own for establishing causality? This is because many correlations are
best explained by relationships other than causal connection—such as semantic, logical, or
mathematical relationships—or by confounding, bias, or chance. Mechanistic evidence steers
the causal discovery process toward those connections that are genuinely causal (Clarke et al.,
2014a). Investigations of cases of causal discovery that provide further evidence in favor of the
epistemological thesis include Clarke (2011), Darby and Williamson (2011), Gillies (2011),
and Russo and Williamson (2011, 2012).

This epistemological thesis applies to each causal claim in a causal model. One therefore
normally needs to establish the pattern of correlations, as represented by an association model,
as well as the pattern of mechanistic connections, as represented by a mechanistic model, in
order to establish the qualitative causal connections posited by the causal model. Association
and mechanistic models are epistemically prior to causal models, since one needs to establish
features of the former two kinds of model in order to establish the claims made by the latter
kind. (Since the epistemological thesis merely requires one to establish existence of a correla-
tion and a mechanism for each causal connection, in order to determine the pattern of causal
relationships one only needs to establish the pattern of correlations and the pattern of mecha-
nisms, not other features of association and mechanistic models.)

For these three reasons, one should not seek to abandon association and mechanistic models
in favor of causal models.
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How can the production of models be systematized? The third of the above three reasons
suggests one way of systematizing and unifying the production of these models. First, consider
an idealized case in which the available evidence is so extensive and of such high quality that
it allows one to establish the full pattern of associations posited by an association model and
the full pattern of mechanisms posited by a qualitative mechanistic model. Then one is in a
position to establish the full pattern of causal claims made by a causal model, as well as the
quantitative component of the causal model, which determines the joint probability distribu-
tion over the variables in the model. Having specified the quantitative component of a causal
model, one is then in a better position to augment a qualitative mechanistic model by adding
quantitative information.

Of course, in practice it is almost never the case that evidence is so plentiful and of such
high quality as to establish every association and every mechanistic connection. In prac-
tice, evidence is often inconsistent, some data sets are extensive, others not, and items of
evidence are of very varying quality. Thus some intermediate steps are needed to evaluate
the relative merits of the items of evidence, and to determine which claims of association
and mechanism can be considered established and which others are merely plausible or
conjectural. [t is possible, then, to establish some causal claims on the basis of what can be
established in an association model and a mechanistic model. Other causal claims in the
causal model will be more tentative, in proportion to the uncertainty of the corresponding
association and mechanism claims.

This epistemological picture is depicted in Figure 25.2. Evidence of correlation (of which
data sets are key) needs to be evaluated and graded with regard to the support it provides for
associations. For example, data sets arising from larger numbers of observations will normally
be more highly graded, and experimental studies will normally be favored over observational
studies. Evidence of mechanisms informs this evaluation process because such evidence is
crucial to determining whether trials are well-designed and their results correctly interpreted
(Clarke et al., 2014a). This will lead to an association model. On the other hand, evidence
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of mechanisms (which can also be gained from basic lab research, imaging, autopsy, etc.) will
need to be evaluated in order to construct a qualitative mechanistic model. Here, evidence of
correlation is important in identifying the most salient components in the mechanisms and in
determining the net effect of several interacting mechanisms or components of a mechanism.
With an association model and a qualitative mechanistic model in place, one is in a position
to construct a causal model and to determine whether each claim made by the model can be
considered established or more conjectural. The quantitative causal model will go on to inform
a quantitative mechanistic model.

The Bayesian network family of models can be used as a unifying formal framework that
dovetails with this epistemological picture. As discussed above, a standard Bayesian network
can be used as an association model. One way of constructing a Bayesian network from a
range of data sets is provided by the objective Bayesian network approach: an objective Bayesian
network represents the probability distribution that best fits the range of data available, where
this optimal distribution is determined by the principles of objective Bayesianism (William-
son, 2005; Nagl et al., 2008). Next, a causal Bayesian network can be constructed from the
Bayesian network association model and a qualitative mechanistic model. Finally, a recursive
Bayesian network might be employed as a quantitative mechanistic model.

We should conclude this section by noting that the unified account presented above is not
the standard way to approach the problem. Where causal Bayesian networks are advocated,
it is usually in the context of a data mining approach: the idea is to learn a causal Bayesian
network directly from data, in a similar way to the way in which association models are often
constructed directly from data (e.g., Spirtes et al., 1993). In contrast, we advocate develop-
ing a qualitative mechanistic model on the way to producing a causal model. This is because
we hold that causal relationships track mechanistic connections as well as associations, and
because one needs to establish that a posited causal connection does indeed track these two
things before one can consider the causal claim to be established.

8. An Example: Benzene and Leukemia

One example that illustrates the approach of this chapter concerns benzene and leukemia.
Benzene is a clear and highly flammable liquid. Among other things, benzene is added to
gasoline in order to reduce engine knocking, and it is also used in the manufacture of organic
chemicals. A number of studies established a relationship between benzene exposure and leu-
kemia in humans (Infante et al., 1977; Rinsky et al., 1981). These results are corroborated by
studies in mice and other rodents (Goldstein et al., 1982; Cronkite et al., 1984). The associa-
tion between benzene exposure and leukemia can be charted in an association model, which
can be used to predict the disease given the environmental exposure. The relationship may
even be charted in a causal model, e.g., a causal Bayesian network, insofar as the relationship
is causal. But such a causal model could not yet provide anything other than an impoverished
explanation, since it claims only that there exists a mechanism linking benzene exposure and
leukemia, rather than providing the details of that mechanism.

This is an example of a more general problem in epidemiology, which is the study of health
and disease in defined populations. A key working hypothesis in epidemiology is that dis-
eases are often the result of environmental exposures. However, despite much epidemiological
research, the biological processes linking many environmental exposures and diseases remain
unknown. This is the case despite the technological advances in measuring certain biomarkers,
i.e., biological markers of events at the molecular and physiological levels. Unfortunately, the
details of these biological processes are required in order to provide less-impoverished explana-
tions of the occurrence of disease.
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Molecular epidemiology is a response to this state of affairs (Schulte and Perera, 1993).
Molecular epidemiology is a branch of epidemiology that uses advances in biomarker tech-
nology in order to elucidate the biological mechanisms between environmental exposures
and diseases. An important methodology in molecular epidemiology involves utilizing com-
plementary studies in order to validate biomarkers that mediate between environmental
exposures and disease outcomes (Vineis and Perera, 2007). For example, some studies may
provide information associating a certain biomarker to a particular environmental exposure.
Other studies may provide information relating a disease outcome to the same biomarker. By
bringing together the results of these studies, the disease may be associated with the environ-
mental exposure while providing some insight into the biological processes responsible for this
association by highlighting the intermediate biomarkers (Russo and Williamson, 2012).

In the case of benzene and leukemia, studies revealed that certain chromosome aberrations
were predictive of cancer in humans (Bonassi et al., 2000). In other case-control studies, those
same chromosome aberrations were seen to be more frequently present in leukemia patients
who had been exposed to benzene (Zhang et al., 2007). These results are corroborated by
animal models (see, e.g., Eastmond et al., 2001). Not only, then, was a chain of associations
established between benzene and leukemia, but also some insight was provided into the bio-
logical mechanism underlying this chain, i.e., the role of chromosomal aberrations; Vineis and
Perera, 2007. These insights can be represented in a mechanistic model, and the model may be
used to provide a less-impoverished explanation of leukemia in terms of exposure to benzene.
Furthermore, details of the mechanism underlying the association between benzene exposure
and leukemia, along with the details of the association, can all be charted in a quantitative
mechanistic model.
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