Basic Intuition — Dang! Modelling Building Mathematical Results Conclusions

Mechanisms, Drug Safety and Varied Evidence

Jürgen Landes

Mechanisms in Medicine

Canterbury 5 July 2017

- Acknowledgements.
- Please stop me.
- Please ask.
- This talk is in on formal Bayesian epistemology.
- Each equation included in a book halves its sales

- Acknowledgements.
- Please stop me.
- Please ask.
- This talk is in on formal Bayesian epistemology.
- Each equation included in a book halves its sales

- Acknowledgements.
- Please stop me.
- Please ask.
- This talk is in on formal Bayesian epistemology.
- Each equation included in a book halves its sales

- Acknowledgements.
- Please stop me.
- Please ask.
- This talk is in on formal Bayesian epistemology.
- Each equation included in a book halves its sales.

- Acknowledgements.
- Please stop me.
- Please ask.
- This talk is in on formal Bayesian epistemology.
- Each equation included in a book halves its sales.

Jürgen Landes

- Imagine you take your child to the family doctor.
- On six occasions, the family doctor says: "Paracetamol causes asthma".
- You get prescriptions for Ibuprofen.

- Imagine you take your child to the family doctor.
- On six occasions, the family doctor says: "Paracetamol causes asthma".
- You get prescriptions for Ibuprofen.

- Imagine you take your child to the family doctor.
- On six occasions, the family doctor says: "Paracetamol causes asthma".
- •
- You get prescriptions for Ibuprofen.

- Imagine you take your child to the family doctor.
- On six occasions, the family doctor says: "Paracetamol causes asthma".
- •
- You get prescriptions for Ibuprofen.

Me and my Kid

- Imagine my kid, which has all sorts of different conditions.
- I take it to six different doctors, which all tell me "Paracetamol causes asthma".
- I get prescriptions for Ibuprofen

- Imagine my kid, which has all sorts of different conditions.
- I take it to six different doctors, which all tell me: "Paracetamol causes asthma".
- I get prescriptions for Ibuprofen

- Imagine my kid, which has all sorts of different conditions.
- I take it to six different doctors, which all tell me: "Paracetamol causes asthma".
- •
- I get prescriptions for Ibuprofen.

- Imagine my kid, which has all sorts of different conditions.
- I take it to six different doctors, which all tell me: "Paracetamol causes asthma".
- •
- I get prescriptions for Ibuprofen.

- On the basis of only this information:
- who is more convinced that "Paracetamol causes asthma" is true?
- You or me?
- Show of hands: Who in this room thinks that s/he is more convinced than me?
- Very good.

- On the basis of only this information:
- who is more convinced that "Paracetamol causes asthma" is true?
- You or me?
- Show of hands: Who in this room thinks that s/he is more convinced than me?
- Very good.

- On the basis of only this information:
- who is more convinced that "Paracetamol causes asthma" is true?
- You or me?
- Show of hands: Who in this room thinks that s/he is more convinced than me?
- Very good.

- On the basis of only this information:
- who is more convinced that "Paracetamol causes asthma" is true?
- You or me?
- Show of hands: Who in this room thinks that s/he is more convinced than me?
- Very good.

- On the basis of only this information:
- who is more convinced that "Paracetamol causes asthma" is true?
- You or me?
- Show of hands: Who in this room thinks that s/he is more convinced than me?
- Very good.

Outline

- Basic Intuition Dang!
- Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- 4 Conclusions

- Strong shared intuition that "varied" ("diverse") evidence confirms more strongly than "narrow" evidence.
- Ceteris paribus
- In a vacuum.
- Literature agrees, [Hempel, 1966, Horwich, 1982, Earman, 1992
 Claveau, 2013] ...
- Variety of Evidence Thesis

- Strong shared intuition that "varied" ("diverse") evidence confirms more strongly than "narrow" evidence.
- Ceteris paribus.
- In a vacuum.
- Literature agrees, [Hempel, 1966, Horwich, 1982, Earman, 1992
 Claveau, 2013] ...
- Variety of Evidence Thesis:

- Strong shared intuition that "varied" ("diverse") evidence confirms more strongly than "narrow" evidence.
- Ceteris paribus.
- In a vacuum.
- Literature agrees, [Hempel, 1966, Horwich, 1982, Earman, 1992
 Claveau, 2013] ...
- Variety of Evidence Thesis:

- Strong shared intuition that "varied" ("diverse") evidence confirms more strongly than "narrow" evidence.
- Ceteris paribus.
- In a vacuum.
- Literature agrees, [Hempel, 1966, Horwich, 1982, Earman, 1992, Claveau, 2013] ...
- Variety of Evidence Thesis:

Varied evidence for a hypothesis confirms it more strongly than less varied evidence, ceteris paribus.

- Strong shared intuition that "varied" ("diverse") evidence confirms more strongly than "narrow" evidence.
- Ceteris paribus.
- In a vacuum.
- Literature agrees, [Hempel, 1966, Horwich, 1982, Earman, 1992, Claveau, 2013] ...
- Variety of Evidence Thesis:

Varied evidence for a hypothesis confirms it more strongly than less varied evidence, ceteris paribus.

- Strong shared intuition that "varied" ("diverse") evidence confirms more strongly than "narrow" evidence.
- Ceteris paribus.
- In a vacuum.
- Literature agrees, [Hempel, 1966, Horwich, 1982, Earman, 1992, Claveau, 20131 ...
- Variety of Evidence Thesis:

Varied evidence for a hypothesis confirms it more strongly than less varied evidence, ceteris paribus.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:

 Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:

 Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:

 Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:
 - [Fitelson, 1996] contra [Horwich, 1982]
 - [Bovens and Hartmann, 2003] contra [Earman, 1992]
 - [Claveau, 2013] contra [Earman, 1992]
- Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:
 - [Fitelson, 1996] contra [Horwich, 1982]
 - [Bovens and Hartmann, 2003] contra [Earman, 1992]
 - [Claveau, 2013] contra [Earman, 1992]
- Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:
 - [Fitelson, 1996] contra [Horwich, 1982]
 - [Bovens and Hartmann, 2003] contra [Earman, 1992]
 - [Claveau, 2013] contra [Earman, 1992]
- Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:
 - [Fitelson, 1996] contra [Horwich, 1982]
 - [Bovens and Hartmann, 2003] contra [Earman, 1992]
 - [Claveau, 2013] contra [Earman, 1992]
- Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

- Bayesian reasoning tracks rational scientific thought, therefore varied evidence confirms more strongly in all Bayesian frameworks.
- No!
- What do you mean "no"?
- I mean:
 - [Fitelson, 1996] contra [Horwich, 1982]
 - [Bovens and Hartmann, 2003] contra [Earman, 1992]
 - [Claveau, 2013] contra [Earman, 1992]
- Even worse: No convincing Bayesian analysis of the Variety of Evidence Thesis on the market.

Plan for Today

- Fix this!
- Model scientific inference within the Bovens & Hartmann approach.
- Explicate notion of varied evidence
- Explicate the Variety of Evidence Thesis.
- Prove it.
- Conclusions!

- Fix this!
- Model scientific inference within the Bovens & Hartmann approach.
- Explicate notion of varied evidence
- Explicate the Variety of Evidence Thesis
- Prove it.
- Conclusions!

- Fix this!
- Model scientific inference within the Bovens & Hartmann approach.
- Explicate notion of varied evidence.
- Explicate the Variety of Evidence Thesis.
- Prove it.
- Conclusions!

- Fix this!
- Model scientific inference within the Bovens & Hartmann approach.
- Explicate notion of varied evidence.
- Explicate the Variety of Evidence Thesis.
- Prove it.
- Conclusions!

- Fix this!
- Model scientific inference within the Bovens & Hartmann approach.
- Explicate notion of varied evidence.
- Explicate the Variety of Evidence Thesis.
- Prove it.
- Conclusions!

- Fix this!
- Model scientific inference within the Bovens & Hartmann approach.
- Explicate notion of varied evidence.
- Explicate the Variety of Evidence Thesis.
- Prove it.
- Conclusions!

Outline

- Basic Intuition Dang
- Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- 4 Conclusions

Outline

- Basic Intuition Dang
- Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- Conclusions

- Causal hypotheses cannot be tested directly,
- because they tend to be causal.
- All one can do is to test consequences of the hypotheses, in instances.
- For the hypothesis: "Paracetamol causes asthma":

- Causal hypotheses cannot be tested directly,
- because they tend to be causal.
- All one can do is to test consequences of the hypotheses, in instances.
- For the hypothesis: "Paracetamol causes asthma":

- Causal hypotheses cannot be tested directly,
- because they tend to be causal.
- All one can do is to test consequences of the hypotheses, in instances.
- For the hypothesis: "Paracetamol causes asthma":

LIMU NAXIHILIANS-UNIVERSITÄT NÜNCHRI

- Causal hypotheses cannot be tested directly,
- because they tend to be causal.
- All one can do is to test consequences of the hypotheses, in instances.
- For the hypothesis: "Paracetamol causes asthma":
 - test whether there is a probabilistic dependence betweer Paracetamol use and asthma in a population,
 - inquire whether there is a mechanism leading from Paracetamol use to asthma.

- Causal hypotheses cannot be tested directly,
- because they tend to be causal.
- All one can do is to test consequences of the hypotheses, in instances.
- For the hypothesis: "Paracetamol causes asthma":
 - test whether there is a probabilistic dependence between Paracetamol use and asthma in a population,
 - inquire whether there is a mechanism leading from Paracetamol use to asthma.

- Causal hypotheses cannot be tested directly,
- because they tend to be causal.
- All one can do is to test consequences of the hypotheses, in instances.
- For the hypothesis: "Paracetamol causes asthma":
 - test whether there is a probabilistic dependence between Paracetamol use and asthma in a population,
 - inquire whether there is a mechanism leading from Paracetamol use to asthma.

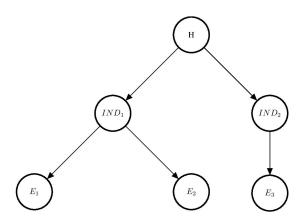
- Hypothesis variable H, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables E pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines
- We: BN for representing Bayesian belief in H.
- Not causal DAG's à la Pearl

- Hypothesis variable *H*, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables E pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines
- We: BN for representing Bayesian belief in H.
- Not causal DAG's à la Pearl

- Hypothesis variable *H*, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables *E* pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines.
- We: BN for representing Bayesian belief in H
- Not causal DAG's à la Pearl

- Hypothesis variable *H*, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables *E* pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines.
- We: BN for representing Bayesian belief in H
- Not causal DAG's à la Pearl

- Hypothesis variable *H*, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables E pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines.
- We: BN for representing Bayesian belief in H.
- Not causal DAG's à la Pearl


- Hypothesis variable *H*, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables E pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines.
- We: BN for representing Bayesian belief in H.
- Not causal DAG's à la Pearl.

- Hypothesis variable H, "Paracetamol causes asthma".
- Indicator variables IND, indicating truth of H.
- Evidence variables E pertaining to the indicators.
- Bayesian probabilities Bayesian network.
- [Landes et al., 2017] along Bradford Hill Guidelines.
- We: BN for representing Bayesian belief in H.
- Not causal DAG's à la Pearl.

Here it is

Outline

- Basic Intuition Dang
- Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- 4 Conclusions

- Let | *Ind* | denote the number of children of variable *IND*.
- Measure for Variety of Evidence

$$Var(\mathcal{E}) := -\sum_{i=1}^{n} |IND_i| \cdot \log(|IND_i|) . \tag{1}$$

- Shannon Entropy of $\langle |IND_1|, |IND_2|, \dots, |IND_n| \rangle$.
- This captures one natural sense of variety.
- Yes, there are other senses, too

- Let | *Ind* | denote the number of children of variable *IND*.
- Measure for Variety of Evidence

$$Var(\mathcal{E}) := -\sum_{i=1}^{n} |IND_i| \cdot \log(|IND_i|)$$
 (1)

- Shannon Entropy of $\langle |IND_1|, |IND_2|, \dots, |IND_n| \rangle$.
- This captures one natural sense of variety.
- Yes, there are other senses, too

- Let | *Ind* | denote the number of children of variable *IND*.
- Measure for Variety of Evidence

$$Var(\mathcal{E}) := -\sum_{i=1}^{n} |IND_i| \cdot \log(|IND_i|)$$
 (1)

- Shannon Entropy of $\langle |IND_1|, |IND_2|, \dots, |IND_n| \rangle$.
- This captures one natural sense of variety.
- Yes, there are other senses, too

- Let | *Ind* | denote the number of children of variable *IND*.
- Measure for Variety of Evidence

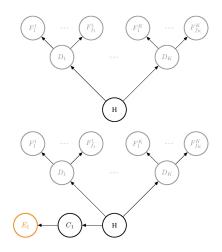
$$Var(\mathcal{E}) := -\sum_{i=1}^{n} |IND_i| \cdot \log(|IND_i|)$$
 (1)

- Shannon Entropy of $\langle |IND_1|, |IND_2|, \dots, |IND_n| \rangle$.
- This captures one natural sense of variety.
- Yes, there are other senses, too.

- Let | *Ind* | denote the number of children of variable *IND*.
- Measure for Variety of Evidence

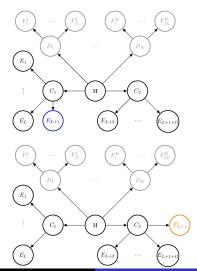
$$Var(\mathcal{E}) := -\sum_{i=1}^{n} |IND_i| \cdot \log(|IND_i|)$$
 (1)

- Shannon Entropy of $\langle |IND_1|, |IND_2|, \dots, |IND_n| \rangle$.
- This captures one natural sense of variety.
- Yes, there are other senses, too.



Outline

- Basic Intuition Dang
- Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- 4 Conclusions



Instance 1 – One Novel Item of Evidence

Instance 2 – Adoption

- Other reasonable measures of variety should also declare the bottom situations to be more varied.
- For reasonable priors and ceteris paribus conditions, it should hold that:

```
\bigcirc P_{\varepsilon}(H) < P_{\varepsilon'}(H), in Instance 1.1. \bigcirc P_{\varepsilon}(H) < P_{\varepsilon'}(H), in Instance 2.2.
```


- Other reasonable measures of variety should also declare the bottom situations to be more varied.
- For reasonable priors and ceteris paribus conditions, it should hold that:
 - $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 1.
 - $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 2.

- Other reasonable measures of variety should also declare the bottom situations to be more varied.
- For reasonable priors and ceteris paribus conditions, it should hold that:
 - $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 1.
 - $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 2.

- Other reasonable measures of variety should also declare the bottom situations to be more varied.
- For reasonable priors and ceteris paribus conditions, it should hold that:
 - $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H),$ in Instance 1.
 - $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 2.

Ceteris Paribus

- One of the plausible Ceteris Paribus Condition
- Indicators are equally likely, given hypothesis variable: $P(Ind_1|H) = P(Ind_2|H) \approx 1$ and $P(Ind_1|\bar{H}) = P(Ind_2|\bar{H})$
- For drug induced harms, we rarely have very good RCTs, so evidence for probabilistic dependence and mechanistic evidence become crucial.
- Ceteris Paribus Conditions plausible, I claim.

Ceteris Paribus

- One of the plausible Ceteris Paribus Condition
- Indicators are equally likely, given hypothesis variable: $P(Ind_1|H) = P(Ind_2|H) \approx 1$ and $P(Ind_1|\bar{H}) = P(Ind_2|\bar{H})$.
- For drug induced harms, we rarely have very good RCTs, so evidence for probabilistic dependence and mechanistic evidence become crucial.
- Ceteris Paribus Conditions plausible, I claim.

Ceteris Paribus

- One of the plausible Ceteris Paribus Condition
- Indicators are equally likely, given hypothesis variable: $P(Ind_1|H) = P(Ind_2|H) \approx 1$ and $P(Ind_1|\bar{H}) = P(Ind_2|\bar{H})$.
- For drug induced harms, we rarely have very good RCTs, so evidence for probabilistic dependence and mechanistic evidence become crucial.
- Ceteris Paribus Conditions plausible, I claim.

Ceteris Paribus

- One of the plausible Ceteris Paribus Condition
- Indicators are equally likely, given hypothesis variable: $P(Ind_1|H) = P(Ind_2|H) \approx 1$ and $P(Ind_1|\bar{H}) = P(Ind_2|\bar{H})$.
- For drug induced harms, we rarely have very good RCTs, so evidence for probabilistic dependence and mechanistic evidence become crucial.
- Ceteris Paribus Conditions plausible, I claim.

Outline

- Basic Intuition Dang!
- Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- 4 Conclusions

Instances of the Variety of Evidence Thesis

Theorem

 $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 1. $P_{\mathcal{E}}(H) < P_{\mathcal{E}'}(H)$, in Instance 2.

Upper Bound for Confirmation

Corollary

There comes a point in life when investigating the exact same consequence yet again cannot provide significant further confirmation for the hypothesis of interest.

If $E_1,\ldots,E_{|Ind|}$ are the children of Ind, then for all possible measurements $E_1=e_1,\ldots,E_{|Ind|}=e_{|Ind|}$

$$P(Hyp|e_1 \dots e_{|C_1|}\vec{f}) < P(Hyp|c_1\vec{f})$$

$$= \frac{1}{1 + \frac{P(H\bar{y}p) \cdot P(c_1|\bar{H}yp) \cdot P(\vec{f}|\bar{H}yp)}{P(Hyp) \cdot P(c_1|Hyp) \cdot P(\vec{f}|Hyp)}} < 1.$$

Outline

- Basic Intuition Dang!
- 2 Modelling Building
 - Inference
 - Variety
 - Two Instances of the Variety of Evidence Thesis
- Mathematical Results
- 4 Conclusions

Variety of Evidence Thesis

- Intuitions regarding the Variety of Evidence Thesis can be tracked in Bayesian models.
- Not all intuitions.
- That's just fine.

Variety of Evidence Thesis

- Intuitions regarding the Variety of Evidence Thesis can be tracked in Bayesian models.
- Not all intuitions.
- That's just fine.

Variety of Evidence Thesis

- Intuitions regarding the Variety of Evidence Thesis can be tracked in Bayesian models.
- Not all intuitions.
- That's just fine.

- According to the RWT: We need evidence for probabilistic dependence and a mechanism in order to establish a causal hypothesis.
- If(!) establishing means large enough Bayesian degree of belief [John agrees, what about Jon?],
- then this talk may help their cause

- According to the RWT: We need evidence for probabilistic dependence and a mechanism in order to establish a causal hypothesis.
- If(!) establishing means large enough Bayesian degree of belief [John agrees, what about Jon?],
- then this talk may help their cause:

- According to the RWT: We need evidence for probabilistic dependence and a mechanism in order to establish a causal hypothesis.
- If(!) establishing means large enough Bayesian degree of belief [John agrees, what about Jon?],
- then this talk may help their cause:
 - Large degrees of belief in the hypothesis are very difficult to obtain from evidence for probabilistic dependence, Corollary 2.
 - Evidence for probabilistic dependence and a mechanism confirms more strongly, Theorem 1.

- According to the RWT: We need evidence for probabilistic dependence and a mechanism in order to establish a causal hypothesis.
- If(!) establishing means large enough Bayesian degree of belief [John agrees, what about Jon?],
- then this talk may help their cause:
 - Large degrees of belief in the hypothesis are very difficult to obtain from evidence for probabilistic dependence, Corollary 2.
 - Evidence for probabilistic dependence and a mechanism confirms more strongly, Theorem 1.

- According to the RWT: We need evidence for probabilistic dependence and a mechanism in order to establish a causal hypothesis.
- If(!) establishing means large enough Bayesian degree of belief [John agrees, what about Jon?],
- then this talk may help their cause:
 - Large degrees of belief in the hypothesis are very difficult to obtain from evidence for probabilistic dependence, Corollary 2.
 - Evidence for probabilistic dependence and a mechanism confirms more strongly, Theorem 1.

- Opponents of the RWT may deny among other things the ceteris paribus condition on the prior.
- Indicators are equally likely, given hypothesis variable: $P(PD|H) = P(M|H) \approx 1$ and $P(PD|\bar{H}) = P(M|\bar{H})$.
- Problem of the prior.
- If only we could solve the problem of the prior...
- If only there was an epistemology which put forward stronge constraints on rational belief solving the problem of the prior.
- Good thing we are in Kent!

- Opponents of the RWT may deny among other things the ceteris paribus condition on the prior.
- Indicators are equally likely, given hypothesis variable: $P(PD|H) = P(M|H) \approx 1$ and $P(PD|\bar{H}) = P(M|\bar{H})$.
- Problem of the prior.
- If only we could solve the problem of the prior..
- If only there was an epistemology which put forward stronger constraints on rational belief solving the problem of the prior.
- Good thing we are in Kent!

- Opponents of the RWT may deny among other things the ceteris paribus condition on the prior.
- Indicators are equally likely, given hypothesis variable: $P(PD|H) = P(M|H) \approx 1$ and $P(PD|\bar{H}) = P(M|\bar{H})$.
- Problem of the prior.
- If only we could solve the problem of the prior..
- If only there was an epistemology which put forward stronger constraints on rational belief solving the problem of the prior.
- Good thing we are in Kent!

- Opponents of the RWT may deny among other things the ceteris paribus condition on the prior.
- Indicators are equally likely, given hypothesis variable: $P(PD|H) = P(M|H) \approx 1$ and $P(PD|\bar{H}) = P(M|\bar{H})$.
- Problem of the prior.
- If only we could solve the problem of the prior...
- If only there was an epistemology which put forward stronger constraints on rational belief solving the problem of the prior.
- Good thing we are in Kent

- Opponents of the RWT may deny among other things the ceteris paribus condition on the prior.
- Indicators are equally likely, given hypothesis variable: $P(PD|H) = P(M|H) \approx 1$ and $P(PD|\bar{H}) = P(M|\bar{H})$.
- Problem of the prior.
- If only we could solve the problem of the prior...
- If only there was an epistemology which put forward stronger constraints on rational belief solving the problem of the prior.
- Good thing we are in Kent!

- Opponents of the RWT may deny among other things the ceteris paribus condition on the prior.
- Indicators are equally likely, given hypothesis variable: $P(PD|H) = P(M|H) \approx 1$ and $P(PD|\bar{H}) = P(M|\bar{H})$.
- Problem of the prior.
- If only we could solve the problem of the prior...
- If only there was an epistemology which put forward stronger constraints on rational belief solving the problem of the prior.
- Good thing we are in Kent!

- Models also pronounce on discordant and dis-confirmatory evidence.
- Rightly, I argue.
- Use of paracetamol does probably not cause asthma
- The kids are fine.

- Models also pronounce on discordant and dis-confirmatory evidence.
- Rightly, I argue.
- Use of paracetamol does probably not cause asthma
- The kids are fine.

- Models also pronounce on discordant and dis-confirmatory evidence.
- Rightly, I argue.
- Use of paracetamol does probably not cause asthma.
- The kids are fine.

- Models also pronounce on discordant and dis-confirmatory evidence.
- Rightly, I argue.
- Use of paracetamol does probably not cause asthma.
- The kids are fine.

Ceteris Paribus Conditions

	Network Topology	Condition A	
	Confirmatory Evidence	$P(e_1 c_1) > P(e_1 \bar{c}_1)$	
	Network Topology	Condition B	
•	Confirmatory Evidence	$\frac{P(\mathbf{e}_{ C_1 } \mathbf{c}_1) > P(\mathbf{e}_{ C_1 } \bar{\mathbf{c}}_1)}{\prod_{l= C_2 +1}^{ C_1 -1} P(\mathbf{e}_{l} \mathbf{c}_1) > \prod_{l= C_2 +1}^{ C_1 -1} P(\mathbf{e}_{l} \bar{\mathbf{c}}_1)}{\chi_{11} \cdot \chi_{21} \ge \chi_{10} \cdot \chi_{20}}$	
	Ceteris Paribus	$P(e_{ C_1 } c_1) = P(e'_{ C_1 } c_2) P(e_{ C_1 } \bar{c}_1) = P(e'_{ C_1 } \bar{c}_2) P(c_1 \underline{h}) = P(c_2 \underline{h}) P(c_1 \bar{h}) = P(c_2 \bar{h})$	
	Paring Off	$\prod_{n=1}^{ C_2 } \frac{P(e_n c_1)}{P(e_n \bar{c}_1)} = \frac{\chi_{21}}{\chi_{20}}$	

$$\chi_{1s} := \prod_{n=1}^{|C_1|-1} P(e_n|c_1^s) \quad \text{ and } \quad \chi_{2s} := \prod_{g=1}^{|C_2|} P(e_{|C_1|+g}|c_2^s) \ .$$

References I

Bovens, L. and Hartmann, S. (2003).

Bayesian Epistemology.

Oxford University Press.

Claveau, F. (2013).

The Independence Condition in the Variety-of-Evidence Thesis.

Philosophy of Science, 80(1):94–118.

Earman, J. (1992).

Bayes or Bust?

MIT Press.

References II

Fitelson, B. (1996).
Wayne, Horwich, and Evidential Diversity.

Philosophy of Science, 63(4):652–660.

Hempel, C. (1966).

Philosophy of Natural Science.

Prentice Hall.

Horwich, P. (1982).

Probability and Evidence.

Cambridge University Press.

References III

Landes, J., Osimani, B., and Poellinger, R. (2017). Epistemology of Causal Inference in Pharmacology. *European Journal for Philosophy of Science*. 47 pages.

