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CENTURY

1 BAYESIAN BELIEFS

Bayesian theory now incorporates a vast body of mathematical, statistical and
computational techniques that are widely applied in a panoply of disciplines, from
artificial intelligence to zoology. Yet Bayesians rarely agree on the basics, even
on the question of what Bayesianism actually is. This book isabout the basics —
about the opportunities, questions and problems that face Bayesianism today.

So what is Bayesianism, roughly? Most Bayesians maintain that an individual’s
degrees of belief ought to obey the axioms of the probabilitycalculus. If, for
example, you believe to degree0.4 that you will be rained on tomorrow, then you
should also believe that you will not be rained on tomorrow todegree0.6. Most
Bayesians also maintain that an individual’s degrees of belief should take prior
knowledge and beliefs into account. According to theBayesian conditionalisation
principle, if you come to learn that you will be in Manchestertomorrow (m) then
your degree of belief in being rained on tomorrow (r) should be your previous
conditional belief onr givenm: pt+1(r) = pt(rjm). By Bayes’ theoremthis can
be rewrittenpt(mjr)pt(r)=pt(m).1

Although Bayesianism was founded in the eighteenth centuryby Thomas Bayes2

and developed in the nineteenth century by Laplace,3 it was not until well into the
twentieth century that Frank Ramsey4 and Bruno de Finetti5 provided credible jus-
tifications for the degree of belief interpretation of probability, in the shape of their
Dutch bookarguments. A Dutch book argument aims to show that if an agentbets
according to her degrees of belief and these degrees are not probabilities, then the
agent can be made to lose money whatever the outcome of the events on which she
is betting. Already by this stage we see disagreement as to the nature of Bayesian-
ism, centring on the issue ofobjectivity. De Finetti was astrict subjectivist: he
believed that probabilities only represent degrees of rational belief, and that an
agent’s belief function is rational just when it is a probability function — no fur-
ther constraints need to be satisfied.6 Ramsey, on the other hand, was apluralist
in that he also accepted objective frequencies. Further, headvocated a kind of
calibration between degrees of belief and frequencies:

1[Howson & Urbach, 1989; Earman, 1992] and[Gillies, 2000] are good introductions to Bayesian
thought.

2[Bayes, 1764].
3[Laplace, 1814].
4[Ramsey, 1926].
5[de Finetti, 1937].
6See Galavotti’s paper in this volume.
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Thus given a single opinion, we can only praise or blame it on the
ground of truth or falsity: given a habit of a certain form, wecan
praise or blame it accordingly as the degree of belief it produces is
near or far from the actual proportion in which the habit leads to truth.
We can then praise or blame opinions derivatively from our praise or
blame of the habits that produce them.7

Such a view may be calledempirical Bayesianism: degrees of belief should be
calibrated with objective frequencies, where they are known.8 Ramsey was cau-
tious of too close a connection because of the reference class problem: Bayesian
probabilities are single-case, defined over sentences or events, whereas frequen-
cies are general-case, defined over classes of outcomes, andthere may be no way
of ascertaining which frequency is to be calibrated with a given degree of belief.
The Principal Principle of[Lewis, 1980] aims to circumvent this problem by of-
fering an explicit connection between degrees of belief andobjectivesingle-case
probabilities. De Finetti shows that in certain circumstances, if degrees of belief
areexchangeablethen they will automatically calibrate to frequencies as Bayesian
conditionalisation takes place.9

John Maynard Keynes advocatedlogical Bayesianism: a probabilityp(bja) is the degree to whicha partially entailsb, and also the degree to which
a rational agent should believeb, if she knowsa.10 Thus for Keynes probability
is truly objective — there is no room for two agents with the same knowledge to
hold different belief functions yet remain perfectly rational. Moreover probability
is fixed not by empirical frequencies but by logical constraints like theprinciple of
indifference, which says that if there is no known reason for asserting oneout of
a number of alternatives, then all the alternatives must be given equal probability.
There are problems with the principle of indifference whichcrop up when there
is more than one way of choosing a suitable set of alternatives, but themaximum
entropy principle, ardently advocated by Edwin Jaynes,11 has been proposed as a
generalisation of the principle of indifference which is more coherently applicable.

Empirical and logical Bayesianism may be grouped together under the banner
of objective Bayesianism. Objective Bayesians may adopt a mixed approach: for
example Rudolf Carnap had a position which incorporated both empirical and logi-
cal constraints on rational belief.12 Objective
Bayesians disagree with a strict subjectivist like de Finetti, since they claim that it
is not sufficient that a belief function satisfies the axioms of probability — it must
satisfy further constraints before it can be called rational. But objective Bayesian-
ism harbours many views and proponents often disagree as to which extra con-
straints must be applied. Also, unlike Keynes many objective Bayesians accept

7[Ramsey, 1926] 51.
8See[Dawid, 1982].
9[de Finetti, 1937]. See also[Gaifman & Snir, 1982].

10[Keynes, 1921].
11[Jaynes, 1998].
12[Carnap, 1950], [Carnap & Jeffrey, 1971].
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Figure 1. Number of Bayesian articles by year.

that in some situations there may be more than one rational probability function
— two rational agents may have the same background knowledgebut different
belief functions.13

The question of objectivity remains an important issue for Bayesians today, and
one that will crop up in several papers in this book.

2 BAYESIANISM TODAY

The last decade of the twentieth century has witnessed a dramatic shift in the pro-
file of Bayesianism. Bayesianism has emerged from being thought of as a some-
what radical methodology — for enthusiasts rather than research scientists — into
a widely applied, practical discipline well-integrated into many of the sciences.
A search of the Web of Science database for articles whose subject contains the
word or prefix ‘Bayes’ shows a dramatic upturn in the number ofBayesian papers
in the 1990s — see Figure 1. A search for Bayesian books on the British library
catalogue tells a similar story, as do other searches,14 and the rise in the number
of Bayesian meetings and the success of new organisations like the International
Society for Bayesian Analysis15 provide further evidence.

13See[Williamson, 1999] and the paper of Paris and Vencovská in this volume.
14[Berger, 2000] x2.1.
15ISBA was established in 1992. See www.bayesian.org.
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This renaissance has occurred largely thanks to computational and sociologi-
cal considerations. The calculation of the posterior probability of a hypothesis
given data can require, via Bayes theorem, determining the values of integrals.
These integrals may often have to be solved using numerical approximation tech-
niques, and it is only recently that computers have become powerful enough,
and the algorithms efficient enough, to perform the integrations. The sociologi-
cal changes have been on two main fronts. First, scientific researchers, who are
usually taught to present their work as objectively as possible, were often dis-
couraged from applying Bayesian statistics because of the perceived irreducible
subjectivity of Bayesianism. This has changed as objectiveBayesian techniques
have become more popular. Second, Bayesian statistics has to a certain extent uni-
fied and absorbed classical techniques. Any religion worth its salt absorbs the gods
of its competitors, and ‘Bayesianity’ is no different:16 the diverse and seemingly
unrelated techniques of classical statistics have been viewed as special-case ap-
proximations to Bayesian techniques, and Bayesianism has been invoked to shed
light on the successes as well as the failures of classical statistics.17 Present-day
statistics is often a half-way house between the classical and Bayesian churches:
increasingly one finds that Bayesian techniques are used to select an appropriate
statistical model, while the probabilities within the model are tacitly treated as
being objective.

In the field of artificial intelligence (AI) Bayesianism has been hugely influ-
ential in the last decade. Expert systems have moved from a logical rule-based
methodology to probabilistic techniques, largely involving the use of Bayesian
networks.18 Statistical learning theory has helped integrate machine learning tech-
niques into a probabilistic framework,19 and Bayesian methods are often now used
to ascertain the parameters of machine learning models, andto determine the er-
ror between model and data.20 Applications in industry have followed quickly:
Bayesian networks are behind several recent expert systemsincluding the print
trouble-shooter of Microsoft’s Windows ’95 (and, alas, thepaperclip of Office
’97);21 Bayesian reasoning is widely implemented using neural networks, forming
the core of Autonomy’s software for dealing with unstructured information (which
made Autonomy’s director, Mike Lynch, Britain’s first dollar-billionaire);22 other
graphical models also form the basis of applications of Bayesian statistics to med-

16The almost religious fervour with which Bayesians pursue the cause of Reverend Bayes, and with
which non-Bayesians undergo the conversion to Bayesianism, has occasionally been noted. Jaynes
appears to have coined the term ‘Bayesianity’.

17[Jaynes, 1998].
18See[Pearl, 1988] and the website of the Association for Uncertainty in AI at www.auai.org.
19[Vapnik, 1995].
20See for example[Bishop, 1995], [Jordan, 1998] and Williams’ paper in this volume.
21See research.microsoft.com/dtas/ and[Horvitz et al., 1998].
22See the technology white paper at www.autonomy.com. Peter Williams reported at the conference

Bayesianism 2000 that neural network based Bayesian reasoning also proved successful (and lucrative!)
when applied to gold prospecting.
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ical expert systems23 and health technology assessment.24

These developments in AI and other sciences have stimulatedwork on more tra-
ditional philosophical issues. Bayesian networks integrate causality and probabil-
ity in a particular way, and the question naturally arises asto how exactly Bayesian
probability is related to causality, and whether techniques for learning Bayesian
networks from data can be applied to the problem of discovering causal structure.25

Probability logics and their AI implementations have prompted renewed investi-
gations into the relationship between Bayesian probability and logic.26 Objective
Bayesian methods, often involving the use of the maximum entropy principle, have
been successfully applied in physics,27 and this has led to debate about the validity
of objective Bayesianism28 and further applications of maximum entropy.29 Proba-
bilistic decision-theoretic techniques have now been widely adopted in economics,
and this has stimulated research in the foundations of Bayesian decision theory.30

On the other hand, the application of Bayesianism to scientific methodology may
lead to a corresponding application to mathematical methodology.31

In the context of this recent Bayesian upswell, it is all the more important to
avoid complacency: criticisms of Bayesianism must be givendue attention,32 and
the key messages of the early proponents of Bayesianism mustbe better under-
stood.33

3 PROSPECTS FOR BAYESIANISM

Judging by the papers in this book, the future of Bayesianismwill depend on
progress on the following foundational questions.� Is Bayesianism to be preferred over classical statistics?� If so, what type of Bayesianism should one adopt — strict subjectivism,

empirical objectivism or logical objectivism?� How does Bayesian reasoning cohere with causal, logical, scientific, math-
ematical and decision-theoretic reasoning?

23[Spiegelhalteret al., 1993].
24[Spiegelhalteret al., 2000].
25See[Spirteset al., 1993], [McKim & Turner, 1997], [Hausman & Woodward, 1999], [Hausman,

1999], [Glymour & Cooper, 1999], [Pearl, 2000] and Pearl’s, Dawid’s and Williamson’s papers in this
volume.

26See[Williamson, 2000] and the papers of Cussens, Gabbay, Howson, and Paris and Vencovská in
this volume.

27[Jaynes, 1998].
28See Howson’s and Paris and Vencovská’s papers.
29See Williamson’s paper.
30See the papers of Mongin, McClennen, Bradley and Albert in this volume.
31See Corfield’s paper in this volume.
32See the papers of Mayo and Kruse, Albert and Gillies.
33See Galavotti’s paper.
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These questions are, of course, intricately linked. The first two are well-worn but
extremely important: much progress has been made, but it would be foolhardy to
expect any conclusive answers in the near future. The last question is particularly
pressing, given the recent applications of Bayesian methods to AI. AI is now faced
with a confusing plethora of formalisms for automated reasoning, and unification
is high on the agenda. If Bayesianism can provide a frameworkinto which AI
techniques slot then its future is guaranteed.

4 THIS VOLUME

The fifteen chapters of this book have been arranged in four parts. The first of
these parts is entitled ‘Bayesianism, Causality and Networks’ and consists of four
chapters. What unites the authors of the first three contributions is an eagerness
to clarify the relationship between causal and probabilistic reasoning, two of them
by way of the use of directed acyclic graphs. The author of thefourth chapter,
on the other hand, reports on research on a different category of network — neu-
ral networks. In the opening chapter, Pearl proceeds from the fundamental idea
of Bayesianism that we should integrate our background knowledge with observa-
tional data when we reason. He then argues that our everyday and scientific knowl-
edge is largely couched in causal, rather than statistical,terms, and that as such it is
not readily expressible in probabilistic terms. Now, clearly it would preferable to
be able to feed background knowledge directly into our reasoning calculus, and so,
if possible, we should devise a new mathematical language inwhich we can repre-
sent causal information and reason about it. The article advertises Pearl’s exciting
new research programme, detailed in his book ‘Causality’, whose central aim is
the mathematisation of causality via directed graphs.34 The key questions to be
addressed then concern the benefits of adopting such a radically new language and
the safety of the reasoning it warrants. Pearl himself says that is possible to cast his
causal models in terms of probabilities using hypotheticalvariables, but then ar-
gues that the only purpose in doing so is to avoid confrontation with the consensus
position in the statistics community, which sees no limitations to the expressive-
ness of probability theory. Indeed, for Pearl, there is a definite disadvantage in a
choice of language which gives counterfactual propositions precedence over more
readily comprehensible causal ones.

So Pearl’s idea is that the previous failure to construct a mathematical system
capable of integrating background causal knowledge has ledto much of this most
important way of encoding our beliefs about the world being overlooked. As such
he has located a novel way in which we may take the Bayesian to be failing to act in
as rational as possible a manner. On the other hand, a long-standing complaint of
irrationality made against Bayesianism, one which will recur through the chapters
of this volume, alleges that a Bayesian’s tenets do not forceher to test whether her
degrees of belief are, in some sense or other, optimal. Thesetwo themes intertwine

34[Pearl, 2000].
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in Dawid’s article. Dawid is well known for his ‘Popperian’ Bayesianism which
aims to assess an agent’s degrees of belief by a process of calibration, where, for
example, weather reporters are to be congratulated if it rains on roughly 30 percent
of the occasions they give0.3 as the probability that it will rain. This concern with
testability recurs in Dawid’s contribution to the volume. While he agrees with
Pearl that statisticians have largely ignored causality and have been wrong to do
so, still he finds some elements of Pearl’s new thinking problematic. What is at
stake here is the Popperian belief that anything worthy of scientific consideration
is directly testable. For Dawid some of the counterfactual reasoning warranted
by Pearl’s calculus (and by statisticians adopting other schemes, such as Rubin’s
potential-outcome approach) just is untestable. An example illustrating this key
difference between Dawid and Pearl is their respective treatments of counterfactual
questions such as whether my last headache would have gone had I not taken an
aspirin, given that I did take one and it did go. How should knowledge of the effects
of aspirin on other headache incidents of mine bear on this question? Pearl says
that, without evidence to the contrary, we should presume that such knowledge
does have a bearing on the counterfactual statement. By contrast, Dawid claims
that singular counterfactual statements are untestable and therefore should not be
accepted by the scientifically minded.35 For Dawid what may be justifiably said
about counterfactuals does not involve their essential use.

As Dawid is a self-professed Popperian, a comparison that comes to mind is
to think of Pearl as a Lakatosian. While Popper’s philosophyallowed that meta-
physical principles might guide the generation of novel scientific theories, thereby
restoring some worth to them after the Logical Positivists had dismissed them as
‘meaningless’, still they accrued no further value even when those theories passed
severe tests. Where Lakatos went further than Popper was to allow metaphysics
to be an integral part of a research programme, which was to beassessed by its
theoretical and empirical success as a whole. Similarly, wecould say that Pearl
has devised a research programme with a powerful heuristic and a new mathemat-
ical language. There is a metaphysical belief on Pearl’s part in the regularity of
a world governed by causal mechanisms which is integrated into this programme,
hence his turn to structural equation models. Dawid, meanwhile, views the pre-
suppositions behind the use of these models as unwarranted —the world for him
is not so easily tamed.

In the third chapter Williamson questions the validity of the causal Markov
condition, an assumption which links probability to causality and on which the
theory of Bayesian networks and Pearl’s recent account of causality depends. He
argues that the causal Markov condition does not hold for an empirical account of
probability, or for a strict subjectivist Bayesian interpretation, but does hold for an
objective Bayesian interpretation, i.e., one using maximum entropy methods. If
it can be established that the causal Markov condition does not hold with respect

35See the comments and rejoinder to Dawid’s paper in the Journal of American Statistical Associa-
tion 95 (June 2000), pages 424-448.
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to a notion of empirical probability, this means that causalnetworks must be re-
structured if they are to be calibrated with frequency data.This leads Williamson
to propose a two-stage methodology for using Bayesian networks: first build the
causal network out of expert knowledge and then restructureit to fit observational
data more closely. The validity of stage1 of this methodology depends on the
validity of a maximum-entropy based objective Bayesian interpretation of prob-
ability and so would not appeal to subjectivists like de Finetti or Howson (see
below), while the validity of stage2 depends on acceptance of the idea that one
ought to calibrate Bayesian beliefs with empirical data.

Williams rounds out Part1 of the book by offering us an overview of research
carried out by the neural network community to provide a principled way of using
data to fashion an accurate network. All forms of machine learning must find a
way to reconcile the demands of accuracy and the risks of overfitting data. This
relates to a long-standing debate in the philosophy of science about the desirability
of choosing as simple as possible a model to represent empirical data. Now, some
Bayesians, including those working in the tradition of Harold Jeffreys, claim to
have found a principled way to effect this reconciliation byaccording a higher
prior probability to a model with fewer free parameters. Thepotential for increased
accuracy provided by an extra parameter will then be balanced by a lower prior
probability for the more complicated model. Neural networkresearchers are now
invoking these Bayesian notions to arrive at optimal network configurations and
settings of connection strengths.
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A frequently encountered point of disagreement between thedifferent approaches
to artificial intelligence concerns the need to represent data and inference in propo-
sitionally encoded form. Neural networks come in for criticism for acting like
black boxes. They may work well in many situations, the thought is, but we do not
really understand why. Thus, unlike in the case of Bayesian networks, they offer
no insight to the expert hoping to use them to support decision-making. Of course,
one might respond to this criticism by making the point that accuracy, not trans-
parency, is the most important quality of a decision-makingprocess, especially in
critical situations such as medical diagnosis. In the context of Williams’ chapter
the lack of transparency relates to the fact that the space ofweight configurations of
a network bears no straightforward relation to an expert’s qualitative understand-
ing of a domain. Thus background knowledge cannot be encodeddirectly into a
prior distribution over possible networks, but only through the mediation of real
or simulated data. Perhaps this difficulty is the reason thatwe find such a great
range of techniques employed by the neural network community, even though, in
the case of the ones described by Williams at least, Bayesianprinciples are guiding
them.

We turn next to the second part — Logic, Mathematics and Bayesianism. Here
the five authors wish to investigate the relationship between Bayesian probabilistic
reasoning and deductive logic. In two chapters (Howson, Paris & Vencovská) we
find probability theory presented as an extension of deductive logic, while in two
others (Galavotti, Corfield) it appears in the guise of realistic personalist degrees
of belief. Finally, Cussens discusses his use of stochasticlogic programming, an
artificial intelligence technique, to encode probabilistic reasoning.

Howson views Bayesianism as an extension of deductive logicin the sense that,
just as the use of deductive logic provides rules to ensure a consistent set of truth
values for the statements of language, so the probability theory axioms ensure con-
sistent degrees of belief. In doing so he rules out three widely held, yet disputed,
aspects of Bayesian reasoning: its inextricable link to utility theory; the principle
of indifference, along with any other notion of objective priors; and, conditionali-
sation. Justification of this logical core of Bayesianism isprovided by the idea of
probability as expected truth value, using the device of theindicator function of
a proposition, where a proposition is takenà la Carnap as the set of structures in
which a sentence is true. Howson’s belief that probability theory is a form of logic
sets him against decision theorists, such as Herman Rubin, who believe that ‘you
cannot separate probability from utility’.36 Thus he aims to provide a justification
for the probability axioms foregoing the use of Dutch Book arguments, thereby
avoiding reliance on the notion of the desirability of acquiring money.

Howson also rejects the strain of Bayesianism which hopes toarrive at some
values to enter into the probability calculus through the use of the principle of
indifference or of maximum entropy. More radically still, he continues by arguing
that conditionalisation has no place in a Bayesian logic, since it is a rule relating

36[Rubin, 1987].
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truth values held at different times. He illustrates this thesis in parallel deductive
terms: if you held ‘A impliesB’ to be true yesterday, then find out today thatA
is true, you are not now forced to acceptB, since you may no longer believe thatA impliesB. Similarly, if yesterday you havep(AjB) = x, and todayp0(B) = 1,
this does not mean you need havep0(A) = x. Here the reader might wonder about
the status of the commonly held notion that, unless you have good reason for this
change of heart, you should stick to your original beliefs. Is it just an extra-logical
rule of thumb thatp0(AjB) = p(AjB) unless there is good cause to change one’s
mind?

Galavotti has provided a largely historical piece on the Bayesianism of Bruno
de Finetti. De Finetti is famous for his assertion that ‘probability does not exist’,
preferring to see probabilities as subjective degrees of belief, rather than some-
thing inherent in the universe. But while he was keen to stress his disapproval of
an objectivism which sees probabilities as simply out therein the world, this did
not entail a disregard for objectivity. Empirical frequency data might be integrated
into one’s degrees of belief by the subjective judgement of the exchangeability of
the data sequence. Moreover, and this may be a surprise for readers who share
the commonly held impression that de Finetti was the arch-subjectivist Bayesian,
he had a considerable interest in scoring rules used to judgethe success of one’s
personal probability assignments. Comparisons of the accuracy of one’s own pre-
vious probability judgements with those of others were to beintegrated into one’s
current personal degrees of belief.

Corfield bases his paper on the ideas of the Hungarian mathematician George
Pólya, who in his description of plausible mathematical reasoning, which he inter-
preted by means of probabilistic degrees of belief, discerned what he took to be the
common patterns of everyday reasoning. Corfield argues thatno attempt to con-
strue mathematical reasoning in Bayesian terms can assume logical omniscience
— the requirement that rational agents accord the same degree of belief to any two
logically equivalent statements. In the absence of this principle, logical and math-
ematical learning become thinkable in Bayesian terms. The idea that Bayesians
should put logical and empirical learning on an equal footing goes back at least as
far as de Finetti, and would seem to set Corfield against Howson who frames his
Bayesian logic in such a way that logical omniscience comes already built in.

One could argue that a Bayesian reconstrual of mathematicalreasoning as it
occurs in practice is likely to be a largely empty exercise. Certainly, Bayesian
reconstructions of scientific reasoning have come in for this kind of criticism. One
may be able to explain why observing a white tennis shoe provides no support for
the law ‘all ravens are black’, despite being an instance of the logically equivalent
‘all non-black things are not ravens’, these critics say, but it offers very little by way
of insight into the rationality of decision making in science. However, one might
reply that it has led Corfield to consider the rationality of certain overlooked styles
of mathematical reasoning: use of analogy, choice of proof strategy, large scale
induction. Regarding the latter, for instance, to date verylittle attention has been
paid by philosophers of mathematics to the rationality of mathematicians raising
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their degrees of belief in conjectures due to confirmations.For example, should
the computer calculation which shows that the first1.5 billion nontrivial zeros of
the Riemann zeta function have real part equal to12 be thought to lend support to
the Riemann hypothesis, which claims that all of the infinitely many zeros lie on
this line in the complex plane?

Paris and Vencovská share Howson’s vision of probability theory as a logic, but
unlike him they seek to isolate and justify principles whichwill allow the agent to
select her priors rationally. In an earlier paper37 they showed that the probability
function which maximises entropy is the only choice if certain intuitively plausible
constraints on objective Bayesian reasoning are to be respected. This was a signif-
icant result, but with one drawback: in their framework background knowledge is
assumed to be encapsulated in a set of linear constraints. This rules out knowledge
of, say, independencies amongst variables. In this chapterParis and Vencovská
extend their result to deal with non-linear constraints in the agent’s background
knowledge. There is now some room for subjectivity since there may be more
than one most rational (i.e., maximum entropy) probabilityfunction. A point to
note is that the framework adopted here is in the propositional calculus. This may
be adequate for many AI applications, but it is not clear how it could be extended
to the predicate calculus. If different reasoning principles are required for predi-
cate reasoning, how does the resulting formalisation cohere with the propositional
approach given here?

As uncertainty is now treated probabilistically by the majority of AI practition-
ers, those adopting a logic based approach who wish to discuss uncertain reasoning
are faced with the thorny problem of integrating logic and probability. Philoso-
phers have worked hard on this problem for many years with no consensus emerg-
ing. The line of thought that takes Bayesianism to be an extension of deductive
logic would suggest that this should not be very problematicfor a degree of be-
lief interpretation of probability. However, this has not turned out to be the case
— a very large number of disparate techniques have proposed by the AI commu-
nity. Cussens bases his attempt to integrate probability theory and logic on what
are called ‘stochastic logic programs’. Stochastic logic programs (SLPs) origi-
nated in the inductive logic programming (ILP) paradigm of machine learning.38

When presented with data, an ILP program will attempt to generate a logic pro-
gram (essentially, a set of Horn clauses) which includes as successful goals as
many positive examples as possible, while excluding as manynegative examples.
In cases where only positive examples are available, a common situation in sci-
ence, to prevent overfitting, it was found necessary to generate a distribution over
all possible ground instances. Muggleton did this by labelling the clauses of a
proposed logic program with probabilities generated from the data. Elsewhere,
Cussens has extended this idea to apply it to natural language processing, where a
successful parsing of a sentence will be accorded a probability depending on the

37[Paris & Vencovská, 1990].
38[Muggleton & de Raedt, 1994].
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ways it may be generated by the grammar encoded by the logic program. In the
present article, he takes SLPs to be capable of representinga very wide range of
AI techniques, in particular showing how Bayesian networksmay be encoded in
its terms. He then compares his SLP approach to other techniques.

The reader might be interested to know of two other approaches to the inte-
gration of logic and Bayesian networks. Williamson develops ‘logical Bayesian
networks’ (as opposed to causal Bayesian networks) whose nodes are sentences
(rather than causes and effects) and whose arrows correspond to the logical im-
plication relation (rather than the causal relation).39 Meanwhile, Dov Gabbay is
working on a way of representing Bayesian networks in the framework of his la-
belled deductive systems. His results were not ready in timefor this volume, but
they will appear in the near future.

Turning now to the third part we find the contributions of three Bayesian deci-
sion theorists. Probabilistic decision theory has a long heritage, stretching back to
Pascal’s Wager, but there still rage many disputes over its fundamental principles.
Here, two of the contributors, Mongin and McClennen, scrutinise the acceptability
of particular axioms, while in the first chapter of this part Bradley discusses the
problem of the measurement of belief.

Bradley’s claim is that the resources for resolving the issue of how to assess the
strengths of beliefs and desires of an agent are to found in the writings of Ramsey
from the 1920s. While decision theorists have followed the lead of Savage, Ram-
sey has largely been overlooked. However, as Bradley pointsout, Savage relied on
the assumption of state-independent utility, where the desirability of an outcome
is independent of the state of the world in which it occurs. This assumption has
come in for a great deal of criticism, which has given rise to highly complex theo-
ries of state-dependent utility. Bradley argues that if we revive Ramsey’s notion of
‘ethically neutral events’, ones to whose outcome the agentis indifferent, we gain
a means to access the strength of an agent’s beliefs and desires without the need to
invoke these complex theories.

The Independence Principle, and the closely related Sure-Thing Principle, are
central to Bayesian decision theory. The independence principle states that if an
agent shows no preference between two gambles,P andP 0, then, for any0 <� � 1 and any gambleQ, she will also show no preference between the composite
gamblesR = �P +(1��)Q andR0 = �P 0+(1��)Q. While it appears to be a
highly plausible principle, McClennen investigates various arguments put forward
to support it, both directly and via the Sure-Thing Principle, and finds them all
wanting. One might have supposed that the independence principle holds, since
these composite gambles are disjunctive in the sense that inthe case ofR the final
outcome will either be the outcome ofP or the outcome ofQ but not both. Still,
McClennen argues, there may be an interactive effect makingthe agent preferR
to R0. This may occur, for instance, ifQ more closely resemblesP thanP 0 and

39[Williamson, 2001]. See also[Williamson, 2000] where these logical networks form the basis of a
proof theory of a probabilistic logic.
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the agent has a preference for a less varied composite gamble.
In the final chapter of Part3, Mongin takes on the task of examining the difficul-

ties created by the simultaneous assumption of Bayesian andParetian principles.
The latter refer to assumptions about preferences of outcomes in the light of group
consensus about preferences. For example, for a group of experts working with
different utilities or different probabilities in the framework of state-independent
utility theory, there will not in general be a way to select a utility function and
probabilities such that one outcome is preferred over another whenever all the
experts agree to this ordering. This result lends support tothe move towards state-
dependent utility theory mentioned above. However, a pure form of this theory
entails the undesirable consequence that subjective probabilities are not in gen-
eral uniquely determined. Mongin then proceeds to scrutinise a form of state-
dependence which entails unique probabilities. He shows, however, that the as-
sumptions of this theory still conflict with Paretian principles.

The fourth and final part consists of three contributors’ criticisms of Bayesian-
ism. As the chapters up to this point amply demonstrate, Bayesians disagree
amongst themselves about all manner of issues: the extent ofrationality con-
straints, the link to utility theory, the role of conditionalisation, etc. This being
so, the critic’s task is made harder. Whatever principle sheattacks, some Bayesian
may claim not to hold to it.

Albert’s criticism is aimed at the use of Bayesian principles by decision theo-
rists. Adopting a line reminiscent of Popper’s critical attitude towards psychoanal-
ysis, he claims that for the Bayesian ‘there is no such thing as irrational behavior’
— any set of actions can be construed as satisfying the constraints of Bayesian-
ism. Albert argues for this conclusion by discussing a situation involving a chaotic
clock which outputs a sequence of 0s and 1s. The agent must judge the likelihood
of these digits occurring, based on the sequence to date, to help him win as much
money as possible. What Albert shows is that, even with the agent’s utility func-
tion given, whatever he does one can reconstruct it as rational according to some
choice of prior distribution over the hypothesis space. Now, in response one may
argue that the chaotic clock situation does not resemble theeveryday conditions
met with in economic life, but Albert argues that his exampleis sufficiently generic
in this sense. Objective Bayesians may also claim that knowledge of the chaotic
clock set up provides the rational agent with an obvious unique choice of prior.
On the other hand, subjectivists might question whether theways of recording the
agent’s behaviour are sufficient to pick up fully his belief structure. For example,
the chaotic clock situation would not allow you to discover the incoherence of an
agent who is certain that0will appear next, but also certain that1 will appear next.

In his chapter, Gillies wants to argue that Bayesianism is appropriate only in a
restricted range of situations, indeed, ‘only if we are in a situation in which there is
a fixed and known theoretical framework which it is reasonable to suppose will not
be altered in the course of the investigation’. As soon as thereasoner departs from
the current theoretic framework, Bayesianism is of no assistance. In saying this,
Gillies appears to be aligning himself with one side of an argument heard before
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in the philosophy of science about the room for Bayesian principles to operate
when a new theory is proposed. Earman, for instance, who is very sympathetic to
Bayesianism, argues that changes of conceptual framework require the resetting of
priors, which occurs in a non-algorithmic fashion by plausibility arguments.40 He
also indicates that these exogenous redistributions of prior probabilities will occur
frequently, perhaps within the course of an everyday conversation. Now, Howson’s
Bayesianism might have no problem with this — after all it is not a diachronic
theory — but Bayesians of a different stripe, wishing to salvage a substantial role
for conditionalisation, might prefer to concede that the advent of novel ideas will
have their effects not through conditionalisation, but still look to ‘normal’ science
to see Bayes’ theorem at work. However, the two examples put forward by Gillies
could hardly be considered revolutionary changes. Rather they appear to involve
the kind of reasoning that any statistician will have to perform in the course of their
work, i.e., the assessment of the validity of the current model. The indication is
that where the error statistician is always eager to challenge the current model and
put it to severe tests, the Bayesian has neither the means northe incentive to look
beyond the current framework. It is true that Dutch Book arguments by themselves
do not require an agent to take the slightest trouble to make an observation or
to challenge a modelling assumption that would be beneficialto a bet they are
making. However, under reasonable assumptions, one can show that it is always
worth seeking cost-free information before making a decision. It is therefore not
surprising to find Bayesian statisticians engaging in what Box and Tiao call ‘model
criticism’.41 Readers may care to see how a Bayesian statistician works on avery
similar problem to Gillies’ second example in[Gelmanet al., 1995], 170-171.

In their article, Mayo and Kruse take on Bayesian statisticson the issue of
stopping rules. For the error statistician the conditions stipulated before the start of
an experiment as to when it will be deemed to have ended will usually be relevant
to the significance of the test. For instance, when testing for a proportion in some
population, even if the data turns out the same, it makes a difference whether
it has been generated by deciding to stop after a fixed number of positive cases
have been observed or whether it has been generated by deciding to stop after a
fixed number of trials. For most Bayesians (see[Box & Tiao, 1973], 44-46 for
an exception), on the other hand, acceptance of the likelihood principle entails
that such considerations should play no part in the calculation of their posterior
distributions. This marks a very significant difference between the schools.Pace
Gillies, as Mayo has said elsewhere, ‘one cannot be just a little bit Bayesian’. Most
Bayesians would agree.

The Bayesian position has a considerable plausibility to it. Should we condemn
an experimenter who intends to test 100 cases, finds half way through that the pro-
portion of positive cases is low, decides then to wait for 10 such cases to occur,
which duly happens after precisely 100 trials, and then writes up the experiment as

40[Earman, 1992].
41[Box & Tiao, 1973].
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originally planned? Are all experiments called off early because of funding prob-
lems worthless? There appears to be something magical occurring in that the ‘real’
intentions of the experimenter make a difference. On the other hand, as critics of
the Bayesian indifference to stopping rules, Mayo and Kruseneed only point out
the problematic consequences of operating with a single rule of their choosing.
What then if an experimenter in a binomial situation with, say, p = 0:2 is to con-
tinue testing until this value ofp becomes unlikely to a specified degree, putting
some upper limit on the number of trials to make it a proper rule? Here at least
the Bayesian can provide bounds for the likelihood of a test achieving this end.
But Mayo and Kruse go on to discuss an experimental situationwhere due to the
stopping rule the Bayesian statistician will necessarily reason to a foregone con-
clusion on the basis of the likelihood principle. This type of situation arises when
an improper prior, failing to satisfy countable additivity, is employed. One could,
of course, maintain that countable additivity be enforced,but improper priors are
commonplace in the Bayesian literature. Mayo and Kruse present several quota-
tions revealing that some Bayesian statisticians are struggling to come to terms
with this apparent paradox. Readers who wish to read more on this topic may
well enjoy the discussion of this phenomenon by the Bayesians Kadane, Schervish
and Seidenfeld.42 Not wishing to forego the use of improper priors, these authors
consider that further work is required to ascertain when their use is admissible.

King’s College, London.
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tropy. International Journal of Approximate Reasoning, 4, 181–223, 1990.

[Pearl, 1988] Judea Pearl.Probabilistic reasoning in intelligent systems: networksof plausible infer-
ence. Morgan Kaufmann, 1988.

[Pearl, 2000] Judea Pearl.Causality: models, reasoning, and inference. Cambridge University Press,
2000.

[Ramsey, 1926] Frank Plumpton Ramsey. Truth and probability. In[Kyburg & Smokler, 1964], 23–
52, 1926.

[Rubin, 1987] H. Rubin. A Weak System of Axioms for “Rational” Behavior andthe Nonseparability
of Utility from Prior. Statistics and Decisions, 5, 47–58, 1987.

[Spiegelhalteret al., 1993] David J. Spiegelhalter, A. Philip Dawid, Steffen L. Lauritzen & Robert G.
Cowell. Bayesian analysis in expert systems.Statistical Science, 8(3), 219–283, with discussion,
1993.

[Spiegelhalteret al., 2000] D.J. Spiegelhalter, J.P. Myles, D.R. Jones & K.R. Abrams. Bayesian meth-
ods in health technology assessment: a review.Health Technology Assessment, 4(38), 2000.

[Spirteset al., 1993] Peter Spirtes, Clark Glymour & Richard Scheines. Causation, Prediction, and
Search.Lecture Notes in Statistics, 81, Springer-Verlag, 1993.

[Vapnik, 1995] Vladimir N. Vapnik.The nature of statistical learning theory. Springer-Verlag, 1995.
Second edition 2000.

[Williamson, 1999] Jon Williamson. Countable additivity and subjective probability. British Journal
for the Philosophy of Science, 50(3), 401–416, 1999.

[Williamson, 2000] Jon Williamson. Probability logic. In Dov Gabbay, Ralph Johnson, Hans Juergen
Ohlbach & John Woods (eds.),Handbook of the Logic of Inference and Argument: The Turn Toward
the Practical, Elsevier, 393–419, 2000.

[Williamson, 2001] Jon Williamson. Bayesian networks for logical reasoning.Proceedings of the 8th
Workshop on Automated Reasoning, A. Voronkov (ed.), 55–56, 2001.


