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Countable Additivity and
Subjective Probability

Jon Williamson

ABSTRACT

While there are several arguments on either side, it is far from clear as to whether or not
countable additivity is an acceptable axiom of subjective probability. | focus here on de
Finetti's central argument against countable additivity and provide a new Dutch book
proof of the principle, to argue that if we accept the Dutch book foundations of
subjective probability, countable additivity is an unavoidable constraint.
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7 Summary

Largely due to Kolmogorov’s influence ([1933]), axiomatizations of the
mathematical theory of probability now include the principle of countable
additivity, or an equivalent principle, as standard. But de Finetti, one of the
pioneers of the subjective interpretation of probability, argued against its
acceptance (de Finetti [1970]). | shall give a brief overview of some of the
central arguments for and against the adoption of countable additivity for
subjective probability, and | will argue that they are inconclusive. | will then go
on to look more closely at de Finetti’s view, before presenting a simple Dutch
book argument in favour of the principle, which will mean that we cannot
reject countable additivity without abandoning the simplest and most intuitive
foundations for subjective probability: the betting set-up and the ensuing
Dutch book argument. Ironically from de Finetti's point of view, accepting
countable additivity ensures that the interpretation retains its subjective
flavour, for the principle prevents subjective probability being bolstered into
a logical interpretation.

1 Guess the number

I am thinking of a particular natural number. For any natural nurmp&iow
confident are you that it is the one | am thinking of?
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A distinctive feature of this scenario is that the alternatives about which | am
asking you to form beliefs constitute a countably infinite partition. There is no
great conceptual difficulty in dealing with the infinite here—perhaps you do
not assign any credence to the event that | am thinking, dbér any n, or
perhaps you are more confident that | am thinking of a small number than a
large one, the point is that it is easy enough to form such beliefs. As a
consequence, any adequate model of rational belief should be able to model
beliefs over a countably infinite partition such as the one above.

2 The betting set-up

The subjective probability framework provides one approach to a normative
model of belief. The principal idea is that one can measure the degree to which
an agent believes an evenwill occur (or has occurred) by the kind of betan

she will find acceptable. We can encapsulate this relation between belief and
betting in the following definitiort:

bek(a) = x (X's degree of belief ira at time 7 is x) iff at time 7, our agent
X—Xenelda, say—is willing to betA® on eventa occurring, with return
A® if adoes occur, whera® is an unknown stake (either monetary or in
terms of some measure of utility) which may dependef}(a), ® € R-,
being the magnitude aml = *1 the direction of the stake; and

bek(alb) = x (X's degree of belief im given b at time 7 is X) iff she is
prepared to betA® onaoccurring, with returmA® if both aandb occur but
with the bet being called off ib fails to occur.

Ramsey ([1926]) and de Finetti ([1937]) provided the normative element—
we can deenX's belief functionbel; to be coherentif no stake-maker can
choose stakes which makdose money whatever happens—and according to
them, coherence provides a criterion of rationality. By their Dutch book
argument (Ramsey [1926]; de Finetti [L93Rgk is coherent if and only if
it is a probability function. Here, a probability function is any functhos that
satisfies the following axioms of probability:

P1:if ais the certain evenbel(a) = 1;
P2: if aandb are mutually exclusivehela d b) = bel(a) + belb)
P3: bel(b) # 0= belalb) = bela n b)/belb).

Now any probability function in this sense is finitely additive, in thaAif
is a finite set of mutually exclusive eventsel(JA) = X cabela). Given

1 This definition is based on that of de Finetti ([1937]).
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countable contexts like ‘guess the number’, the question naturally arises as to
whethercountable additivityalso holds:

CA: if Ais a countable set of mutually exclusive evebhe}[1A) = E,-abel(a).

3 Consequences versus foundations

There are two ways of arguing for (or against) countable additivity. One can
argue that if we adopt countable additivity, our model of belief is better (or
worse) off thanks to favourable (or unfavourable) effects of countable
additivity in the model. Thus we accept (or reject) the principle according to
how we judge its consequences. Alternatively one can appeal to the founda-
tions of subjective probability and argue that countable additivity is a natural
(or unnatural) constraint in the context of the betting set-up.

To date, the bulk of the debate about countable additivity has involved
arguments from its consequences. My plan is to give a brief flavour of these
arguments and the resulting impasse, before presenting a foundational argu-
ment for the principle. The benefit of appealing to foundations is threefold.
Firstly, arguments from consequences have shown that while an acceptance of
countable additivity leads to a noticeably different model of rational belief to
that without the axiom, and while both the resulting models appear to have
advantages and disadvantages, neither is blatantly inadequate, so neither can
be dismissed on these grounds alone. Thus, at least at the moment, an appeal to
foundations may be our only hope of resolving the issue. Secondly, | believe |
can make a strong argument in favour of countable additivity by appealing to
foundations, in which case the principle can only sensibly be denied if the
foundations are rejected too, and there is currently little hope of providing
such plausible foundations that will discriminate against an adoption of the
axiom.

Furthermore, even if one accepts arguments about the mathematical con-
venience of countable additivity, one may deny that this provides enough
grounds to accept the principle itself, given the demands that might be placed
on subjective probability as a model of belief. Kelly adopts such a position
when he gives an argument for scientific realism which relies on countable
additivity. Does meta-scientific convenience lend any weight? As he notes,

If probabilistic convergence theorems are to serve as a philosophical
antidote to the logical reliabilist's concerns about local underdetermina-
tion and inductive demons, then countable additivity is elevated from the
status of a mere technical convenience to that of a central epistemological
axiom favoring scientific realism. Such an axiom should be subject to the
highest degree of philosophical scrutiny. Mere technical convenience
cannot justify it. Neither can appeal to its ‘fruits,” insofar as they include
precisely the convergence theorems at issue (Kelly [1996], p. 323).
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The idea is that if one considers subjective probability to have foundations
(such as the betting and Dutch book foundations) then presumably even if one
accepts or rejects countable additivity on the grounds of its consequences, the
question remains as to whether it is a valid constraint according to the
foundations. Thus, in a sense, arguments from the consequences of countable
additivity are irrelevant to whether countable additivity is an appropriate
axiom for subjective probability. At most they can tell us what one can do
with subjective probability and how applicable itis.

There is a broad range of countable additivity arguments from its con-
sequences. Some (see for example de Finetti [1972], pp. 98-100, and
Kadaneet al. [1986], section 6) are directed at other principles—continuity,
countable disintegrability and countable conglomerability—which are equiva-
lent (Hill and Lane [1986]; Dubins [1975]; de Finetti [1972], p. 99) to
countable additivity in the presence of the other probability axioms. More
arguments proceed from a decision-theoretic viewpoint, where non-conglom-
erability leads to a violation of admissibility, a useful principle in decision
theory (Seidenfeld and Schervish [1983]; Heath and Sudderth [1978]). Two
other arguments from consequences have been particularly influential, yet
remain inconclusive, as we shall see now and in the next section.

A popular attitude has been that countable additivity should be adopted as an
axiom of probability because it leads to a stronger theory, and thus extra
mathematical power can be applied to deriving probability theorems—for
instance, it is required for the proof of the strong law of large numbers.
Kolmogorov adopted countable additivity for his influential work on the
mathematical theory of probability because of its success:

We limit ourselves, arbitrarily, to only those models which satisfy
[countable additivity]. This limitation has been found expedient in
researches of the most diverse sort (Kolmogorov [1933], p. 15).

Likewise Fishburn:

The present wisdom seems to be that countable additivity can keep one out
of trouble that might arise in its absence even if it is arbitrary, or at best
uncompelling, as a principle of rational choice. My own attitude towards
the principle is pragmatic. Much like the Axiom of Choice in set theory, if

| can go without countable additivity to get where | want to go, so much
the better. But | will not hesitate to invoke it when its denial would create
mathematical complexities of little interest to the topic at hand (Fishburn
[1983], p. 358).

2 Of course, one may reject foundations for subjective probability, in which case one will find
arguments from consequences more convincing than foundational arguments. But my line of
argument here is thiftone accepts the Dutch book foundations for subjective probability, then
one will have to accept that subjective probability is countably additive.
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And Sudderth, in his comments on the above, concurs:

The requirement of coherence does not imply countable additivity as de
Finetti has often emphasizdd..] in general | agree with Kolmogorov
([1933]) that the assumption of countable additivity, although expedient,
is arbitrary (Fishburn [1983], p. 358).

But this type of argument becomes more important when we extend it from
a mathematical to a physical setting—mathematical expediency can be
bolstered to scientific indispensability. Van Fraassen ([1980], Ch. 6) argues
that the mathematical power provided by countable additivity is indispensable
for science, so there are physical reasons for adopting the principle.

In fact, however, Chen ([1977]) shows that more can be derived from finite
additivity than is normally thought—he gives versions of the strong laws for
example—so the argument from mathematical convenience is questionable.
Atthe very least more work needs to be done before we can be sure whether the
apparent strength of countable additivity is real or theorems can be proved
using finite additivity which are as useful as those requiring countable
additivity. There are further avenues for doubting the convenience argument:
de Finetti ([1972], sections 5.21-5.23) claims that countable additivity is
mathematically inelegant, in that some mathematical event spaces do not
admit of countably additive probability distributions unless perfect addifivity
also holds, and that countably additive distributions do not form a closed set.
He also notes that a set of admissible probability distributions is convex, and
claims that it is inappropriate that some individual cannot have a limit point of
this set as an admissible probability distribution, which is a consequence of
adopting countable additivity.

Thus there are arguments on both sides which rely on mathematical
considerations. In my view, none of these can really be considered to be
knockdown.

De Finetti himself has been the main proponent against assuming countable
additivity across the board, and he has an argument from consequences which
is particularly interesting, so we shall take a closer look at his views before |
give a foundational justification of countable additivity.

4 Uniform distributions

De Finetti argues that in a ‘guess the number’ scenario, one may have no
information favouring one number over another and so should assign each
number the same degree of belggfNow g cannot be positive for otherwise

3 Adistribution is perfectly additive if countably additive and is zero on all but a countable subset
of any uncountable partition.
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one would be obliged to assign degree of belief greater than one that the
number is within any finite set whose cardinality is greater thay Which
contradicts probability axioms P1-2. Thgsnust be zero. But then countable
additivity cannot hold, for the sum of countably many zeros is zero, so
1 = beld24i) # i~ 1beki) = 0 (wherei represents the event that | am think-
ing of numbei). In summary, de Finetti would argue, one should be able to bet
according to a uniform distribution in the ‘guess the number example, in
which case countable additivity cannot possibly hold. This is an example of an
argument against countable additivity involving an appeal to its (supposedly
counterintuitive) consequences.

It will prove useful to distinguish two types of position one can take here.
Suppose an agerx is quite indifferent as to which element of a partition
occurs. For instance, she does not favour any number over any other in the
guess the number scenario. Then the positions are as follows. In the subjective
probability model of belief,

Weak uniformity it is quite consistent thaX assigns a uniform belief
distribution over the partition,

Strong uniformity X shouldassign a uniform belief distribution over the
partition.

If one accepts either position then one will have to abandon countable addi-
tivity as a constraint of subjective probability, but the second position is itself a
strong constraint, while the first is not. In our discussion of the uniformity
argument we shall first look at, and reject, an objection to de Finetti's position,
before focusing on his reasoning. We shall see that the case for uniformity is
not as strong as de Finetti makes out, by showing that both strong uniformity
and weak uniformity only apply in exceptional circumstances. However, |
shall maintain, de Finetti still has a case for us to answer, which motivates the
Dutch book result of the next section.

Unfortunately, the example de Finetti ([1972], section 5.17) actually used to
make his point revolved around guessing some nunchesen at random
rather than guessing the number | am thinking of. This led Spielman ([1977],
section 4) to doubt the possibility of being able to choose a number at random
in the sense that each number has the same (zero) objective probability of being
chosen. Spielman maintains that any way of explicating ‘choose a number at
random’ yields an asymmetric distribution: ‘I will be entirely unmoved by it
until someone shows me a precisely defined non-metaphorical gedanken
experiment which selects integers “at random”’ (Spielman [1977], p. 255).

4 See Kadane and O’Hagen ([1995]) for some possible interpretations of ‘random natural number’
such that each natural number is equally possible. They do not show, however, that there is any
physical mechanism for generating such random numbers.
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| claim that this misses the point—we are interested in determining whether
subjective not objective probability satisfies countable additivity. Besides, it
is easy enough to see that an objective, frequency, notion of probability must
admit uniform distributions over countable partitions (‘attribute spaces’) and
hence fail to satisfy countable additivity—just take any countable attribute
space whose elements can only be instantiated a finite number of times. For
example, if we examine engine numbers from a certain make of car that, we
assume, never stops producing cars, then the frequency of any particular
engine number occurring is zero, while the frequency of the cars having
someengine number is one. One needs a great deal more than this to argue
that one may be rational to believe to deg@ethat a particular car will have
engine numben.

The point at issue is not the viability of some objective mechanism but rather
an agent’s epistemic state. The agent may have no idea as to which number will
crop up and so be predisposed to a uniform distribution. The agent may even
believe that no mechanism for picking a number according to an objective
uniform distribution exists and that the number is practically certain to be in
some finite subset, but not know which subset, and so again be predisposed to
place bets according to a uniform distribution. Hence Spielman’s argument has
no force against de Finetti's claim in favour of uniform distributions.

De Finetti notes that countably additive distributions are skewed rather than
uniform:

By taking the sum of probabilities to be 1[...], one necessarily has an
inequality such that for ang > 0, however small, a finite number of
eventd. . .] together have probability 1 — &, and the infinity of the others
together have probability . (In such circumstances, | am tempted to say
that the events ‘are not countably infinite’ but ‘a finite number—up to
trifles’) [.. ]

From a mathematical standpoint this is obvious. What is strange is
simply that a formal axiom, instead of beimgutral with respect to the
evaluations (or, for those who believe in them, with respect to the
objective reasons), and only imposing formal conditions of coherence,
on the contrary, imposes constraints of the above kind without even
bothering about examining the possibility of there being a case against
doing so (de Finetti [1970], p. 122).

If this lack of symmetry does not reflect the actual judgement of the
subject, perhaps because he is indifferent toward all the possible out-
comes, how could we then include in the definition of consistency (in a
purely formal sense) a condition which does not allow him to assign equal
probabilitiesp,? Should we force him, against his own judgement, to
assign practically the entire probability to some finite set of events,
perhaps chosen arbitrarily? Such limitations on the choice of the
probabilities are altogether extraneous to the essence of the consistency
condition (de Finetti [1972], pp. 91-2).
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Suppose someone chooses his subjective probability distribution over a
countable partition:

Someone tells him that in order to be coherent he can choose the Pi in any
way he likes, so long as the suni (it is the same thing as in the finite
case, anyway!).

The same thing?!!! You must be joking, the other will answer. In the
finite case, this condition allowed me to choose the probabilities to be all
equal, or slightly different, or very different; in short, | could express any
opinion whatsoever. Here, on the other hand, ¢betentof my judge-
ments enter the picture: | am allowed to express them only if they are
unbalanced to the extent illustrated [above]. Otherwise, even if | think
they are equally probable..] | am obliged to pick ‘at random’ a con-
vergent series which, however | choose it, is in absolute contrast to what |
think. If not, you call meincoherent In leaving the finite domain, is it |
who has ceased to understand anything, or is it you who has gone mad? (de
Finetti [1970], p. 123)

Note that in the previous quotes de Finetti argues for weak uniformity, i.e. that
uniform distributions are quite reasonable, but in this last quote he seems to
making a case for strong uniformity—that adopting a skewed belief distribu-
tion is less rational than adopting a uniform distribution. Thus there are two
claims to answer.

At first sight de Finetti’s position seems to be quite watertight: it appears to
be incongruous to just override a strong intuition about rational belief like
uniformity. But there are various reasons why this position is not as strong as at
first sight.

Let us tackle strong uniformity first. It is well known that a principled
application of uniform distributions can lead to problems analogous to para-
doxes of the ‘principle of indifference’ such as Bertrand’s paradox (Bertrand
[1888], pp. 4—5) and von Mises’ water—wine paradox (von Mises [1964], p.
161). The trouble is that in some situations there is more than one partition over
which one can ascribe a uniform (zero) belief distribution, and different
solutions arise according to which partition is chosen. Moreover, there appears
to be no general way of choosing a best partition and disregarding the others, so
this is really a problem for those who advocate uniform distributfons.

Yet these paradoxes are not as far-reaching as to dispose of strong uni-
formity altogether. The proponent of uniform distributions may well agree that
they lead to difficulties in some cases, but go on to argue for their use in
situations where there is a unique partition worthy of a uniform distribution.
The problem with such a move is that it often takes considerable analysis to
determine whether an application of a uniform distribution is problematic or

5 Jaynes ([1973]) suggests a solution to Bertrand’s paradox but acknowledges that many similar
paradoxes cannot be solved.
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not. But while strong uniformity becomes a rather unattractive position, its
die-hard proponent can maintain that still countable additivity cannot be
adopted for fear these harmless applications of uniform distributions would
be prevented.

Alternatively, the proponent of uniformity can abandon strong uniformity in
favour of the weaker version. But even weak uniformity suffers from a lack of
applicability, as we shall now see.

One criticism of intuitions towards uniformity might go: a uniform prior is
adopted for simplicity, and does not correspond to anyone’s beliefs, since
people are practically certain that the outcome in question lies in an interval.
For instance you may believe | am thinking of a smaller rather than a larger
number, and practically certain that | am not thinking of any number greater
than 16°°.

But while complete indifference is no doubt an over-simplification in most
cases, itis not always, and even if the outcome is practically certain to lie in an
interval, one may not know which interval itis likely to lie in. De Finetti puts it
thus:

Initially, X has a uniform distribution over the real numbers betwand
1[...

[If o]ne thought of actually interpreting the problem geometrically, one
might perhaps doubt the judgement of all the rationals as equally probable,
considering as ‘rather special’ the end points, mid-point, fractions with
small denominator, decimal fractions with only a few figures, etc.

This effect is lessened if one thinks of taking the ‘distance between two
points chosen at randornt'. .]

It disappears altogether if one thinks in terms of a circle obtained by

rolling up the segment without indicating which is the ‘zero’ point (de
Finetti [1970], p. 121).

De Finetti’s position is somewhat weakened because it becomes clear that
one has to come up with quite contrived examples before one can find complete
indifference over a countable partition. However, his point still goes through:
while perhaps in most cases one will be practically certain the outcome lies in
some interval, and know which that interval is, there are some cases where one
may be faced with complete indifference and still want to set uniform beliefs,
so the uniform distribution problem does not entirely vanish.

Other criticisms of uniform distributions revolve around claims that para-
doxes arise from their use (see Stone [1976]). However, these paradoxes have
been contested (Hill [1980]). It is important to note that paradoxes are often
formulated in the Bayesian statistics framework where Bayesian conditiona-
lization is the only way to change rational belief. Thus any paradoxes may be
due to other parts of the framework rather than just the component of finite
additivity. One way of obtaining a ‘paradox’ is by showing that a finitely
additive Bayesian statistical solution to a problem gives a different answer to a
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more conventional countably additive statistical solution. But this disagree-
ment may be attributed to the strict adherence to Bayesian conditionalization,
rather than finite additivity, because even if countable additivity holds in the
Bayesian framework, the Bayesian solution to a problem can differ from the
classical statistical solution. For instance an agent’s subjective probability may
differ from a known frequency, since betweeandr + 1 agenX may come to
know freq(R(x)) = q, but bel;*l(R(a)) = bel(R(a)|freq(R(X)) = g) may not
equalg, the observed frequency.

In sum, it is clear that both strong and weak uniformity are less applicable
than might at first be thought, but they are not completely paradoxical
positions, so a case still needs to be made for countable additivity.

Note that while it is incongruous to deny uniform beliefs, it is not so very
outrageous, if one has good reason to do so. It must be remembered that the
subjective interpretation of probability is @ormativeaccount of belief. It
modelsrational belief, and is not intended to be an accurate description of
human belief (it is quite clear that people do not associate each conceivable
event with a real number, capturing their degree of belief in that event; nor are
they logically omniscient; nor would they in any case be able to ensure their
degrees of belief strictly adhere to the axioms of probability at each point in
time). Thus even supposing people regularly have the same degree of belief in
each event in a denumerable partition, they may well be some clear reason
showing why they are wrong to do so, and thus why subjective probability
should not allow uniform distributions over denumerable partitions.

Indeed, | claim that there is such a clear reason, motivated by the founda-
tions of subjective probability. Given my Dutch book justification of the next
section, a predisposition to a uniform distribution over a denumerable partition
is irrational because the corresponding bets will lead to certain loss, and thus it
is more rational for an agent to bet according to an arbitrary countably additive
distribution in such a situation.

We have seen that de Finetti’s criticism of countable additivity is based on
his idea that uniform distributions are reasonable, yet incompatible with
countable additivity. While uniform distributions may be descriptively accu-
rate in a few situations, they are defeasible in the presence of a normative
argument for countable additivity.

5 A Dutch book argument

On balance it is fair to say that the question of countable additivity is far
from decided. As de Finetti claimed, ‘No-one has given a real justification
of countable additivity (other than just taking it as a “natural extension” of
finite additivity)’ (de Finetti [1970], p. 119). Of course, he was opposed to
countable additivity, but we have seen that his own arguments against the
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principle, while making the issue of a real justification more pressing, do not
preclude the possibility of a decisive justification.

Spielman ([1977]) claimed that a Dutch book argument for countable
additivity might be possible, though it appears that Adams ([1964]) first
gave such an argument. While | maintain that there are meaningful situations
where one must form beliefs over countable partitions, and that the issue of
countable additivity is of practical importance even for non-mathematicians,
Adams’ interest in countable additivity stems solely from mathematical
curiosity: he thinks the principle is applicable only to ‘extremely unrealistic’
(Adams [1964], p. 8) infinite systems. His paper chiefly concerns the possibi-
lity of giving Dutch book arguments for the axioms in a framework where the
direction of the bet, what | have calley is fixed to be positive in advance.
Consequently the proofs are rather more involved than de Finetti's original
Dutch book proofs. It appears that these complications and remarks as to the
inapplicability of countable additivity have disguised the clarity and appeal of
the conclusion, so that the question of countable additivity is still unresolved
for most people interested in the issue.

As von Plato says in his recent book,

De Finetti seems to think that denumerable additivity would be an optional

property. It would then be a question of the accuracy of our probabilistic

vision to see whether denumerable additivity holds in a given case. Is de
Finetti's attitude eclectic, or is there some principle, so far not found, that

will go deeper into infinitary events and their probabilities, so as to decide

in which cases measure theory's simple-minded extrapolation from the
finite to the infinite is justified? At present it seems that the foundations of

the topic remain as open as ever (von Plato [1994], p. 278).

Here | shall generalize de Finetti's proof of the finite case (de Finetti [1937])
to demonstrate that countable additivity is as obvious a constraint as the other
axioms. | naturally assume only a finite amount of money can change hands
after the truth value of any sentence on which a betis placed is observed, for the
betting situation would be quite meaningless if this were denied. Then we have
the following:

belis coherent if and only if it satisfies countable additivity.

Proof Suppose A= {ag,a;,a,,...} is a set of mutually exclusive and
exhaustive sentences.

Let g, = bel(a) and A;®;, whereA; = =1, ©; € R.y be the stakes corre-
sponding to the betting quotients fori =0,1,2....

Then the loss X would incur oa, having been found to be truelig = i~ o
A 09; — AO,. A finite amount of money changing hands is equivalent to the
condition|Ly| < o for each natural numbés, which in turn is equivalent to
conditionC: |Z{2 50 A 0] < .

We need to provel, < 0 for somek & L2 oq = 1.
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[=] Supposei” oq; < 1 (it cannot be greater than one by the first probability
axiom). Then for each € N let A;®;, = A®, a constant, whereA = =1,

0 € R,

Now C is satisfied becausE;” oGiA ;| = |AB||Zi2 o0 = OLZ o0 < O < oo,
and so we havey, = I ;g AO — AO = AO(E7oq — 1).

So settingA = —1, we get that,, > 0 for allk € N.

[<] Conversely suppose: oq, = 1.

Then o o l o

doali=> a|> a0, — A6,
i=0 i—0 |j=0
= Z Gi
i=0

=0 i=0

But g; = 0 andgq, > 0 for somek € N, soL, = 0 for somek € N, as required.

Note that the assumption that only a finite amount of money changes hands
is a restriction on the stake-maker rather than the agent Xenelda, because by
P1,2,Z2,0; = 1 so the stakes would have to be very awkward for C to fail.
When thought of in utility terms it amounts to the empirically well-confirmed
fact that however rational your beliefs are about the possible outcomes of a
single event, they will never gain you an infinite amount of utility when the
actual outcome of that event is decided.

Countable additivity should be accepted because otherwise bets would lead
to certain loss. Further, this crucial point can override intuitions about adopting
uniform distributions. There is an analogy to be found in the game of roulette.
One would be foolish to place the same stake on every number on a roulette
wheel because one will lose whatever happens. The smart thing to do, if one
has to play at all, is to adopt a skewed distribution and quit if and when one is
ahead’ Thus, whether a uniform distribution is appropriate depends primarily
on the betting situation rather than general intuitions about uniform beliefs
in the face of ignorance of outcome. In ‘think of a number’ the set-up is such
that if one does not want to lose money whatever happens, one cannot hold a
countably additive uniform distribution, and the smart thing to do is to adopt a
(countably additive) skewed distribution, even if one is indifferent as to which
way to skew it.

<) 00

0;40; — > G40 (since C holds)
0 i=0

6 Of course, the rules of roulette are formulated so that a player will tend to lose money in the long
run, however wise her bets. But this difference makes the analogy closer in the short term,
because a uniform distribution over the finite number of options on the roulette wheel will lead to
certain loss just as a uniform distribution over a denumerable partition in the subjective
probability betting set-up does.
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6 Subjectivity ensured

We shall now see that adopting countable additivity ensures that the subjective
interpretation of probability remains truly subjective.

A complaint against the subjective interpretation of probability is precisely
that it is subjective. In some areas of reasoning, such as medical diagnosis, we
need the objectivity provided by the frequency interpretation (where we can
presume there is a frequency of patients with certain symptoms having a
certain disease) together with the wide applicability of the subjective approach
(due to lack of data, reliable estimates of these frequencies may be unavailable,
S0 guesses may have to be made to complete a diagnosis). Even in areas where
there are no repeatable experiments (such as the prediction of the performance
of stocks and shares), and thus where frequencies might not be assumed to exist
and any guesses cannot be interpreted as estimates of frequencies, it is not
implausible that one might make a guess that is best in the sense that it
maximizes possible gain for minimum possible loss in a betting situation. In
our search for objective probabilities in such situations we might naturally ask
whethebel, might be further constrained to a unigoigjectivelymost rational
belief function—perhapsek(a) could be constrained by some syntactic
‘principle of indifference’ which gives a best degree of beliefarin the
face of insufficient information about any frequency that may be associated
with it. If the function was unique then room for subjectivity would be
precluded in X’s belief function. It would provide an objective interpretation
of probability, analogous to Keynes’ logical interpretation (Keynes [1921]).

However, the principle of countable additivity implies that an objective
best-belief interpretation is unattainable using syntactic constraining
principles. Suppose we have a countable set of mutually exclusive events
A = {g]|i € N}. Then as we have sedrel can not be uniform ovek. So there
must be amg,, and ana, such thatbel(a,,) > bel(a,). But what determines
which event is to receive greater belief? If the valubeifs,) is determined by
i we can just permuté to change the distribution—but clearly any rational
constraining principle should be independent of the order of the events to be
constrained. So maybe there are other syntactic features of the events that
determine the ‘best’ distribution fobel. But there need be no syntactic
differences between the events other than an arbitrary index. So any discrimi-
nation between the events will have to have a semantic basis which may not
always be available, ruling out the goal of the logical interpretation, a unique
‘most rational’bel. Subjectivity is here to stay.

Ironically, although de Finettiis considered to be champion of the subjective
interpretation of probability his arguments regarding countable additivity
bring an objective logical interpretation one step closer, while my acceptance
of countable additivity gives rise to a strong argument in favour of his
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subjective standpoint. De Finetti’s arguments do this in two ways. Firstly, his
rejection of countable additivity means that his concept of subjective prob-
ability can be bolstered to a logical theory, whereas this is not possible on my
account. Secondly, he argued against countable additivity by claiming that
when faced with total indifference one should adopt a uniform distribution.
While no doubt he was striving for a weak position in which uniform distribu-
tions are merely consistent with subjective probability, his arguments also
motivate strong uniformity. If this principle were to be accepted then there may
indeed be hope for an objective best-belief interpretation.

7 Summary

There is no shortage of arguments for and against countable additivity,
especially those focusing on the consequences of the principle. But by and
large they are rather inconclusive, and in any case there is some demand for
foundational rather than consequential arguments. A Dutch book argument, |
claim, fulfils this role and is as compelling as the arguments for the other, rarely
disputed, axioms of probability.

I may have disagreed with de Finetti over countable additivity, but itis only
through adopting his clear betting approach and Dutch book methods that |
have been able to present a firm argument in favour of the principle. | have also
backed de Finetti's aim of subjectivity, and through examples like ‘think of a
number’, agree that the issues involved, far from being esoteric talk of infinity,
must be confronted. As his conclusion notes:

I would like to have succeeded in convincing the reader in one thing; that
we are dealing with a complex of problems, connected and meaningful,
concerning which there are many things to be discussed under various
headings: the conceptual, the mathematical, the practical. It is not just, as
might seem logical at first sight, a question of arbitrary conventions for the
subtleties involved, having no connection with real problems (de Finetti
[1970], p. 127).
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