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1 Classical Inductive Logic
Consider the following argument in propositional logic:

→ b
b


We can ask whether the argument is deductively valid:

→ b, b |= ?

We know the argument is invalid by considering its truth table:

 b → b b 
T T T T T
T F F F T
F T T T F
F F T F F

Hence this argument, affirming the consequent, is deemed fallacious: → b, b 6|= .



While the argument seems a poor one from a deductive point of view, we can ask:

Partial Entailment. To what extent is the conclusion plausible, given the premisses?

IE What level y of plausibility attaches to the conclusion, given the premisses?

→ b, b |≈ y.

Support. To what extent do one or more premisses make the conclusion more plausible
than it is in their absence?

IE To what extent do the those premisses support the conclusion?

EG Compare y and z where → b, b |≈ y and → b |≈ z.



Classical inductive logic. Degree of partial entailment is the proportion of those truth as-
signments which make the premisses true that also make the conclusion true (Wittgen-
stein, 1922, §5.15).

This proportion can be read off a standard truth table (Wittgenstein, 1922, §5.151):

 b → b b 
T T T T T
T F F F T
F T T T F
F F T F F

→ b, b |≈ 1/2.

Classical inductive logic follows naturally from the classical interpretation of probability:

The theory of chance consists in reducing all the events of the same kind to a cer-
tain number of cases equally possible, that is to say, to such as we may be equally
undecided about in regard to their existence, and in determining the number of
cases favorable to the event whose probability is sought. The ratio of this number
to that of all the cases possible is the measure of this probability, which is thus
simply a fraction whose numerator is the number of favorable cases and whose
denominator is the number of all the cases possible. (Laplace, 1814, pp. 6–7.)



With one premiss, → b, we have the following probability table:

 b → b 
T T T T
T F F T
F T T F
F F T F

Hence,
→ b |≈ 1/3.

∴ The degree to which b supports the conclusion , relative to → b, is 1/2 − 1/3 = 1/6.

Polya (1954, §12.1) calls this the fundamental inductive pattern:

• ‘the verification of a consequence renders a conjecture more credible.’



EG Consider the following variant:

(∧ c)→ b
b

∧ c

This has truth table:

 b c (∧ c)→ b b ∧ c
T T T T T T
T T F T T F
T F T F F T
T F F T F F
F T T T T F
F T F T T F
F F T T F F
F F F T F F

The truth table shows that:

• This is an invalid argument (lines 2,5,6).

• (∧ c)→ b, b |≈ ∧ c1/4 (lines 1,2,5,6).

• (∧ c)→ b |≈ ∧ c1/7 (lines 1,2,4,5,6,7,8).

∴ b supports ∧ c: 1/4 − 1/7 = 3/28.



Examining a Possible Ground
Polya (1954, §13.2) puts forward the following inference pattern:

 implied by b
b false

 less credible

 b b→  ¬b 
T T T F T
T F T T T
F T F F F
F F T T F

b→ ,¬b |≈ 1/2.

b→  |≈ 2/3.

So the premiss ¬b undermines the conclusion :

¬b↘25% [b→ ].



Analogy
Polya (1954, §13.9) proposes:

 analogous to b
b true

 more credible

Here ‘ is analogous to b’ is understood as there being some common ground g, such that
g→  and g→ b. I.e.,

g→ 
g→ b
b true

 more credible



Classical inductive logic validates such an inference:

g→ , g→ b, b |≈ 2/3.

g  b g→  g→ b b 
T T T T T T T
T T F T F F T
T F T F T T F
T F F F F F F
F T T T T T T
F T F T T F T
F F T T T T F
F F F T T F F

g→ , g→ b |≈ 3/5.

b↗16.6̇% [g→ , g→ b].

CIL also validates the inference if the first two premisses are not held fixed:

|≈ 1/2,

g→ , g→ b, b↗33.3̇%.



Why Inductive Logic?
Decision Making

Bayesian decision theory determines an act from a utility matrix and relevant probabilities:

r ¬r
chemotherapy +6 -2

radiotherapy +4 -1

Decision theory says that one should perform an act with maximum expected utility.

∴ Give chemotherapy if 6P(r) − 2P(¬r) > 4P(r) − 1P(¬r).

IE If P(r) > 1/3.

How do we get the relevant probabilities?

• Need to determine P(r) from available evidence.

EG m,m∧ b→ r

• m = metastasised, b = biological marker.

∴ We need inductive logic:
m,m∧ b→ r |≈ r?



m b r (m∧ b)→ r m r
T T T T T T
T T F F T F
T F T T T T
T F F T T F
F T T T F T
F T F T F F
F F T T F T
F F F T F F

m,m∧ b→ r |≈ r2/3.

∴ Giving chemotherapy maximises expected utility.

In general, decision theory requires probabilities and utilities in order to make a decision.

• We need inductive logic to determine the required probabilities from evidence.



Artificial intelligence

Something like Carnap’s theory [of inductive logic] would be required if an elec-
tronic reasoning machine is ever built. (Good, 1950, p. 48.)

∵ The concept of partial entailment is of very wide applicability in AI.



Consider a partial entailment relation of the form φ1, . . . , φk |≈ ψy.

Medical Decision Support. E.g., cancer treatment example above.

EG A doctor may need to decide whether to prescribe you statins.
• ψ = the hypothesis that you will otherwise develop cardiovascular disease.
• φ1, . . . , φk = background information about the drug and its effects, and features of

you, such as your cholesterol levels and your blood pressure.
EG MYCIN, an expert system for the diagnosis and treatment of infections, was one of

the earliest medical systems to incorporate numerical ‘certainty factors’.

Robotics. ψ = the hypothesis that the robot is in a certain location.

• φ1, . . . , φk = background information about its environment and observations from
its sensory apparatus.

Financial Decision Support. A bank system may need to decide to provide whether to
give you a loan.

• ψ = the hypothesis that you will be able to pay the money back.
• φ1, . . . , φk = general bank rules and your banking history.

Bioinformatics. ψ = a hypothesis about genetic linkage in the fruit fly Drosophila.

• φ1, . . . , φk = DNA data.

Natural Language Processing. ψ = the hypothesis that a word has a certain meaning.

• φ1, . . . , φk = information about the language and the preceding words.



The Quest for the Grail
The prospect of a viable inductive logic is extremely attractive.

The search for a viable inductive logic is the quest for a general, reasonable, applicable
inductive logic, or grail for short.

General. It should be able to generate the full variety of inductive inferences.

Reasonable. It should be well-motivated and should yield rational inferences.

Applicable. E.g., to decision making and AI.

Inductive. It should handle non-deductive inferences.

Logic. Inferences should be based on argument and sentence structure.

Classical inductive logic appears promising in certain respects:

3 It yields several inferences that are reasonable in that they accord with intuition.

3 The truth-table method suggests that it should be easily applicable, at least to small
problems.

7 Unfortunately, though, classical inductive logic is not sufficiently general, as we shall
see next.

The grail is not so easily obtained.



Learning from experience
Carnap (1945, p. 81): classical inductive logic fails to allow learning from experience.

|≈ Br1/2101

Br101
T
F

That seems reasonable. But
Br1, . . . , Br100 |≈ Br1/2101

since Br1, . . . , Br100 are logically independent of Br101.

Br1 Br2 . . . Br100 Br101
T T . . . T T
T T . . . T F
T T . . . F T
T T . . . F F
. . . . . . . . . . . . . . .

∴ Degree of support = 0.

IE This represents an inability to learn from experience.

NB This observation had previously been made by George Boole and Wittgenstein.



An inductive logic needs to capture:

Inductive Entailment. The degree to which an observed sample of ravens makes plausible
the proposition that the next raven is black.

• An ampliative concept that can link logically independent propositions.

• CIL fails to capture this concept.

• Carnap (1945) abandoned the classical notion of partial entailment to try to capture
learning from experience.

Logical Entailment. The degree to which, e.g., A∨ B makes plausible proposition A.

• A non-ampliative concept, attributable to logical dependence.

• CIL is required to capture this concept (Wittgenstein, Kemeny and Oppenheim).

• Kemeny and Oppenheim (1952) focused on classical partial entailment to the ex-
clusion of learning from experience.



Salmon argued that it is not possible to capture both phenomena in a single inductive logic:

if degree of confirmation is to be identified with partial [logical] entailment, then
c† [i.e., CIL] is the proper confirmation function after all, for it yields the result that
p is probabilistically irrelevant to q whenever p and q are completely independent
and there is no partial [logical] entailment between them. . . . Unfortunately for
induction, statements strictly about the future (unobserved) are completely inde-
pendent of statements strictly about the past (observed). Not only are they deduc-
tively independent of each other, but also they fail to exhibit any partial [logical]
entailment. The force of Hume’s insight that the future is logically independent
of the past is very great indeed. It rules out both full entailment and partial [logi-
cal] entailment. If [logical] entailment were the fundamental concept of inductive
logic, then it would in fact be impossible to learn from experience. (Salmon, 1967,
pp. 731–2.)



2 Carnap’s Programme

Conditionalising on a Blank Slate

• Premisses φ1, . . . , φk are categorical sentences of a monadic predicate language L.

• Let φ
df
= φ1 ∧ · · ·∧ φk.

• The atoms α() have the form ±U1()∧ · · ·∧ ±Um().
• The n-states Ωn = {α1(t1)∧ · · ·∧ αn(tn)}.

Probabilism. φ1, . . . , φk |≈ ψy if and only if Pφ(ψ) = y for some suitable probability function
Pφ which best fits the premisses.

Conditionalisation. Identify Pφ(ψ) = P∅(ψ|φ).

Blank slate. Find an appropriate P∅ that corresponds to the situation in which there is no
information available.

The obvious choice of blank slate is the equivocator on L:

P∅(ω) = P=(ω)
df
=

1

|Ωn|
for all ω ∈ Ωn.

∴ φ1, . . . , φk |≈ ψy if and only if P=(ψ|φ) = y.

NB This is essentially classical inductive logic.



Carnap tried to capture inductive entailment by finding different blank slate functions.

• This led him to the Johnson-Carnap continuum of inductive methods:

IE P∅(ψ) = cλ(ψ), where cλ is defined by:

cλ(α+1(t+1)|α1(t1)∧ · · ·∧ α(t)) =
#α+1 + λ/2m

 + λ
.

• #α+1 is the number of occurrences of α+1 in α1, . . . , α.

So
φ1, . . . , φk |≈λψY iff cλ(ψ|φ) ∈ Y.
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Figure 1: Carnap’s inductive methods for λ ∈ [0,50], m = 1 and  = 10.



If L has more than one unary predicate then the cλ can be characterised as the only proba-
bility functions satisfying the following conditions (see, e.g., Paris, 1994, pp. 189–197):

Permutation. P is invariant under permutations of the constant symbols t: P(θ(t1 , . . . , ts)) =
P(θ(tj1 , . . . , tjs)) for any open formula θ(1, . . . , s).

Sufficientness. P(α+1(t+1)|α1(t1)∧ · · ·∧ α(t)) depends only on  and the number #α+1
of occurrences of α+1 in α1, . . . , α.



2.1 Difficulties for Carnap’s Programme

7 In practice we never have zero information.

7 We can think of an uninterpreted language (pure inductive logic).

In applied IL, we give an interpretation of the language. We say generally that
the individuals are, for example, the inhabitants of a certain town or the throws of
a certain die, or the states of the weather in Los Angeles at noon on the days of
one year. . . .

In contrast, in pure IL, we describe a language system in an abstract way, with-
out giving an interpretation of the nonlogical constants (individual and predicate
constants). (Carnap, 1971, pp. 69–70.)



7 Some of the information we have is hard or impossible to make explicit as a
set of propositions that can be conditionalised upon.

EG Information to do with the interpretation of the language.

EG Contextual or background information such as U1t30.9.

7 One can enrich the language.

7 That may make the logic much more complicated and inference less tractable.
7 Problems can remain if the information imposes multiple constraints:

EG U1t0.93 imposes the constraints P(U1t3) = 0.9 and P(U1t30.9) = 1.

∴ One would need P(U1t3|U1t30.9) = 0.9.
• This is a further substantive condition, analogous to the Principal Principle.



7 Conditionalisation requires that all evidence have non-zero probability.

• But, e.g., most plausibly P∅(U1t30.9) = 0.

7 One could apply Jeffrey conditionalisation or minimum-cross entropy updating.
7 This won’t handle more complex statements like U1t3.9 ∨ U1t2[ .7,.8] .
7 This does not help in the case of categorical statements with zero probability.

EG Plausibly, universal generalisations.

• The premisses may be inconsistent with background information.



7 The permutation postulate / exchangeability is only appropriate in some cir-
cumstances.

• Popper (1983, pp. 303–305); Good (1965, pp. 13–14) and Gillies (2000, pp. 77–83):
exchangeable probabilities are only appropriate when the events are objectively inde-
pendent:

EG A fair coin is tossed and 700 heads and 2 tails are observed. cλ(Ht703 | Ht1∧· · ·∧Ht700∧
¬Ht701 ∧ ¬Ht702) =

700+λ/2
702+λ . If λ = 2, i.e., Laplace’s rule of succession, then we have

that cλ(Ht703 | Ht1 ∧ · · ·∧ Ht700 ∧¬Ht701 ∧¬Ht702) = 701/704 ≈ 0.996, which seems
quite reasonable.

• Consider a case of dependence: the game of red or blue. A fair coin is tossed, changing
a score s to s + 1 if heads or s − 1 if tails. If s≥0 the result of the toss is blue, if s < 0
the result is red.

• Note that while the tosses of the coin are independent, the outcomes red and blue are
highly dependent.

• Suppose we get a sequence of 700 blues then two reds.

• We can deduce that now s = −2 so objectively P(Bt703 | Bt1 ∧ · · · ∧ Bt700 ∧ ¬Bt701 ∧
¬Bt702) = 0.

• But if probabilities satisfy exchangeability then one will get a positive probability for
blue.

EG Applying Laplace’s rule of succession, P(Bt703 | Bt1∧· · ·∧Bt700∧¬Bt701∧¬Bt702) =
701/704 ≈ 0.996.



7 No unproblematic way to choose the parameter λ.

• Carnap (1952, §18): λ will depend on empirical performance, simplicity and formal
elegance.

7 No clear indication as to how to balance these considerations.
7 Blank slate: there is no evidence of empirical performance.
• c0 and c∞ are surely the simplest and most elegant.
• Arguably one should reject c0 because is leads to absurd commitments.
• But then we are left with c∞ and classical inductive logic.

• Good (1980): treat parameters like λ as meta-inductive parameters—attach a probabil-
ity distribution and update.

? What are these probabilities of?
? That λ is the ‘true’ value of the parameter? Hard to make sense of such a claim.
? That λ offers the best balance between empirical performance, simplicity and

formal elegance? It is hard to find objective standards here.
7 Prone to a regress problem.

• Carnap (1952, §§19–24) and Kuipers (1986): take an arbitrary initial value of λ and
change that as evidence E is gathered in order to minimise the distance between the
probability function PE and the frequency function P∗.

3 No regress problem.
7 λ varies so we get a confirmation function not in the continuum.
∴ Inadequate on Carnap’s own account.



2.2 The Principle of Indifference
The Permutation Postulate can be thought of as an application of the Principle of Indifference:

The principle of indifference asserts that if there is no known reason for pred-
icating of our subject one rather than another of several alternatives, then rel-
atively to such knowledge the assertions of each of these alternatives have an
equal probability. (Keynes, 1921, p. 45.)

• In particular, all sequences of  outcomes with the same number of positive outcomes
have the same probability.

For example,

P∅(Ut1 ∧ Ut2 ∧¬Ut3) = P∅(Ut1 ∧¬Ut2 ∧ Ut3) = P∅(¬Ut1 ∧ Ut2 ∧ Ut3)

P∅(Ut1 ∧¬Ut2 ∧¬Ut3) = P∅(¬Ut1 ∧ Ut2 ∧¬Ut3) = P∅(¬Ut1 ∧¬Ut2 ∧ Ut3)



POI has been widely criticised as giving inconsistent recommendations when applied to dif-
ferent partitions.

EG {red, not red} vs {red, blue, green, yellow}.

Keynes resolved this problem by insisting that we need to apply POI to the finest partition of
alternatives:

it is a necessary condition for the application of the principle, that these should
be, relatively to the evidence, indivisible alternatives. . .

The principle of indifference is not applicable to a pair of alternatives, if we
know that either of them is capable of being further split up into a pair of possible
but incompatible alternatives of the same form as the original pair. (Keynes, 1921,
pp. 65–66.)



• In propositional logic, the finest partition is the partition of states corresponding to lines
in a truth table.

• In predicate logic, there is a finest partition of n-states for each n.

So to apply the Principle of Indifference coherently, we should have:

State Exchangeability. For any n, P∅ should give the same probability to each n-state
ω ∈ Ωn.

P∅(Ut1 ∧ Ut2 ∧¬Ut3) = P∅(Ut1 ∧¬Ut2 ∧ Ut3)
= P∅(¬Ut1 ∧ Ut2 ∧ Ut3)
= P∅(Ut1 ∧¬Ut2 ∧¬Ut3)
= P∅(¬Ut1 ∧ Ut2 ∧¬Ut3)
= P∅(¬Ut1 ∧¬Ut2 ∧ Ut3)
= P∅(Ut1 ∧ Ut2 ∧ Ut3)
= P∅(¬Ut1 ∧¬Ut2 ∧¬Ut3)

∴ P∅(ω) = P=(ω) = 1/ |Ωn| for all ω ∈ Ωn.

Thus this consideration motivates P= and Classical Inductive Logic.

NB The only member of Carnap’s continuum that satisfies State Exchangeability is c∞.



Note that Keynes’ resolution restricts the application of POI to discrete partitions.

Paris (2015) advocates an alternative resolution to problems arising from the application of
POI to continuous partitions.

• This involves restricting POI to those symmetries that can be represented by automor-
phisms of the language.

3 This restriction of POI still yields the Permutation Postulate.

3 It this avoids certain paradoxes on continuous domains.

7 It does not help Carnap’s programme, because it isolates c0 as uniquely rational (Paris
and Vencovská, 2011).

• This function gives probability 0 to the possibility that any of a sequence of out-
comes will differ from the first outcome.

EG c0(L(t2)∧ L(t3)∧¬L(t4)|L(t1)) = 0, where vehicles are observed at a road junc-
tion to see whether or not they turn left (L).

• Paris and Vencovská (2011) and Paris and Vencovská (2015, Chapter 23) rightly
regard this conclusion as a reductio of the automorphism approach on unary lan-
guages.



2.3 Which Continuum of Inductive Methods?
Where there are at least two relation symbols, the Nix-Paris δ-continuum is the only set
of probability functions satisfying the following conditions (Nix, 2005; Nix and Paris, 2006):

Permutation. P is invariant under permutations of the constant symbols t: P(θ(t1 , . . . , ts)) =
P(θ(tj1 , . . . , tjs)) for any open formula θ(1, . . . , s).

Regularity. For quantifier-free θ, P(θ) = 0 iff |= ¬θ.

Generalised Principle of Instantial Relevance. If θ() |= φ() and φ(t+1)∧ ψ(t1, . . . , t)
is consistent then an extra instance of φ should not undermine θ(t+2), P(θ(t+2)|φ(t+1)∧
ψ(t1, . . . , t)) ≥ P(θ(t+2)|ψ(t1, . . . , t)).
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Figure 2: The Nix-Paris inductive methods for δ ∈ [0,1), a single unary predicate and  = 10.



? Which continuum should we endorse?

• The desiderata seem equally plausible.

∴ If we advocate any of them, we should advocate all of them.

But the equivocator P= is the only function satisfying:

Permutation. P is invariant under permutations of the constant symbols t: P(θ(t1 , . . . , ts)) =
P(θ(tj1 , . . . , tjs)) for any open formula θ(1, . . . , s).

Sufficientness. P(α+1(t+1)|α1(t1)∧ · · ·∧ α(t)) depends only on  and the number #α+1
of occurrences of α+1 in α1, . . . , α.

Regularity. For quantifier-free θ, P(θ) = 0 iff |= ¬θ.

Generalised Principle of Instantial Relevance. If θ() |= φ() and φ(t+1)∧ ψ(t1, . . . , t)
is consistent then an extra instance of φ should not undermine θ(t+2), P(θ(t+2)|φ(t+1)∧
ψ(t1, . . . , t)) ≥ P(θ(t+2)|ψ(t1, . . . , t)).

This leaves us with P= (aka c†, c∞,0)—i.e., Classical inductive logic.



2.4 Capturing Logical Entailment
Recall Salmon:

if degree of confirmation is to be identified with [logical] entailment, then c†

[i.e., classical inductive logic] is the proper confirmation function after all, for it
yields the result that p is probabilistically irrelevant to q whenever p and q are com-
pletely independent and there is no [logical] entailment between them. (Salmon,
1967, p. 731.)

Arguably, if P is to capture logical entailment then it should render logically disjoint proposi-
tions probabilistically independent:

Weak Irrelevance. If quantifier-free θ,φ have no relation or constant symbols in common
then P(θ|φ) = P(θ).

But c0 and c∞ are the only members of the Johnson-Carnap continuum that satisfy Weak
Irrelevance (Paris and Vencovská, 2015, Chapter 20).

NB c0 leads to absurd commitments.

So Salmon was right: in the framework of Carnap’s programme, an inductive logic can’t
capture both logical entailment and inductive entailment.



3 Objective Bayesian Inductive Logic

Objective Bayesian Epistemology
An agent should apportion the strengths of her beliefs according to three norms:

Probability. Her belief function PE should be a probability function, PE ∈ P.

Calibration. Her belief function should be compatible with her evidence, PE ∈ E ⊆ P.

• PE ∈ E = 〈P∗〉.

Equivocation. Her belief function should equivocate between basic possibilities.

• PE ∈mxentE = {P ∈ E : entropy H(P)
df
=
∑

ω P(ω) logP(ω) is maximal}.

NB No updating rule required: if E changes to E′ then PE changes to PE′.

3 Controls worst-case expected loss (Landes and Williamson, 2013).

(Williamson, J. (2010). In defence of objective Bayesianism. Oxford University Press, Oxford.)



Objective Bayesian inductive logic

φX11 , . . . , φXkk |≈
◦ ψY

iff
P(ψ) ∈ Y,

for any P satisfying the norms of OBE,

IE For any P ∈mxent〈{P∗ : P∗(φ1) ∈ X1, . . . , P∗(φk) ∈ Xk}〉.



3.1 Capturing Logical Entailment
Objective Bayesian inductive logic preserves classical inductive logic:

Probability. Measure inductive plausibility by probability.

We can augment each line of a truth table with the probability that the atomic propositions
take the truth values specified on that line:

P  b → b b 
1 T T T T T
2 T F F F T
3 F T T T F
4 F F T F F

Calibration. These probabilities should fit the premisses.

EG States where one or more premisses turn out false should have zero probability.

P  b → b b 
1 T T T T T
0 T F F F T
3 F T T T F
0 F F T F F



Equivocation. If the premisses fail to distinguish between two possible truth assignments,
then they are equally plausible.

P  b → b b 
1
2 T T T T T
0 T F F F T
1
2 F T T T F
0 F F T F F

We find then that probability 1
2 attaches to the conclusion:

P  b → b b 
1
2 T T T T T

0 T F F F T
1
2 F T T T F
0 F F T F F

So,
→ b, b |≈ 1/2.

∴ OBIL captures logical entailment.



3.2 Capturing Inductive Entailment

EG Observing ravens r1, . . . , r101 to see if they are black B.

• P∅(Br101) = 1/2 = P∅(Br101 | Br1 ∧ · · ·∧ Br100)

NB We need PE(Br101), where Br1, . . . , Br100 ∈ E.

• Suppose the agent grants that Br1, . . . , Br100 and that outcomes are iid.

• Suppose .99 is the minimum degree to which she would need to believe P∗R (B)≥
for her to grant it.

• Frequentist statistics can determine δ such that P∗S (|ƒS − P
∗
R (B)| ≤ δ) = .99.

• Calibration: PE(1 − P∗R (B)≤δ) = .99.

• The agent grants that P∗R (B)≥1 − δ.

• Calibration: PE′(Br101)≥1 − δ.
• Equivocation: PE′(Br101) = 1 − δ.

∴ , Br1 ∧ · · ·∧ Br100 |≈◦ Br1−δ101 .

IE Learning from experience is possible.

NB Statistical theory is playing a crucial role here.

• Inductive entailment is captured by statistical theory and Calibration.

• Logical entailment is captured by Equivocation.



Summary

• Partial entailment is an overloaded relation:

• Logical entailment is captured by classical inductive logic.

• Inductive entailment can’t be captured by CIL.

• Carnap tried to capture inductive entailment by relaxing the blank slate.

7 All roads lead to P= as the natural blank slate—i.e., CIL.

• Statistical theory is best equipped to capture inductive entailment.

• Objective Bayesian inductive logic employs statistical theory.

• OBIL captures logical entailment by preserving CIL.

Links

Project. From objective Bayesian epistemology to inductive logic, AHRC 2012–15.

See http://blogs.kent.ac.uk/jonw

http://blogs.kent.ac.uk/jonw
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