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Tin Can Toss

Let X be a random variable with possible values X = {h, s, t}.

h

s

t

� 1

I The probability simplex includes all the
probability mass functions.

I Example: the center point is the uniform
distribution, p1 = ( 1

3 ,
1
3 ,

1
3 ).

I An easy way to think about an imprecise
probability model is as a closed convex
set P of probability mass functions. . .
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Tin Can Toss

Let X be a random variable with possible values X = {h, s, t}.

h

s

t

1

2

3 4

5

What is the probability of X = s?

P(Is) = 3
5

P(Is) = 1
3

Any point in the red credal set is
a candidate model for the proba-

bility of s. But, in this set there
is a lower possible value and

an upper possible value. The
same holds for the probabil-

ities of h and t.

P(It)P(It)

P(Ih)

P(Ih)
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Example: Tin Can Toss
Given (Ω,A,P) with Ω = {h, s, t}, and Ih, Is , It ∈ A

h

s

t

�
1

2

3 4

5
P(S) = 3

5

P(S) = 1
3

P(T )P(T )

P(H)

P(H)

PP(f ) := min{Pp(f ) : p ∈ P}
Lower prevision (expectation)

PP(f ) := max{Pp(f ) : p ∈ P}
Upper prevision (expectation)

P(−f ) = −P(f )
Conjugacy

Set of probabilities: P

Convex closure of P: co(P)

Lower envelope of the convex hull of co(P): P( · )
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Lower Envelope and Lower Previsions

Theorem (Walley 1991)
A real functional P is a lower prevision if and only if it is the lower
envelope of some credal set P.
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Many credal sets to one lower envelope

Two different credal sets, in red, that have the same lower and
upper probabilities to all events.

c

a

b c

a

b

Moral: The language of events (propositions) is not expressive
enough for the theory of lower previsions.
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Issues with “imprecise” probabilities
I What do these probabilities represent?

◦ Incomplete evidence?
◦ Knightian uncertainty (vs risk)?
◦ A person’s “credal committee”?
◦ A group of Bayes agents?
◦ . . .

I Is IP too complicated?
◦ Conditional lower previsions?
◦ Plurality of symmetry and independence properties
◦ Unrealistic representation of belief / evidence
◦ Too many numbers / functionals
◦ . . .

I Is IP too problematic?
◦ Dilation & discounting cost-free information
◦ No IP strictly proper scoring rules
◦ Conditioning on sets of zero probabilities?
◦ . . .
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Outline for this tutorial

Three goals
1. Get rid of probabilities, credal sets, and lower previsions

◦ Sets of Acceptable/Desirable Gambles
Williams 1977; Walley 1991, 2000; De Cooman and Troffaes 2014

◦ Sets of probabilities used as a mathematical convenience

2. Propose a benchmark for evaluating a model of belief
◦ Operationalizable: how beliefs are elicited or measured
◦ Inference: closure, marginalization, and conditionalization
◦ Unification: unify different uncertainty models

3. Address with some alleged problems
◦ Dilation
◦ Violations of Good’s Principle
◦ No Strictly Proper IP Scoring Rules
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What is basic?

A set of outcomes X .

A set of (bounded) gambles.
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Bounded Gambles

A bounded gamble on the set X is a bounded real-valued map
f : X 7→ R.

I Interpreted as a gain (+/−) that is a function of x ∈ X
I The gain is expressed in units of a linear utility scale.
I A bounded gamble is a real-valued random variable.
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Example: Acceptable Bounded Gamble

You accept f when You agree to the following transaction:

I The value x of X is determined, and
I You receive the amount f (x).

Note:

I When f (x) ≥ 0, Your total utility will increase by |f (x)|;
I When f (x) < 0, Your total utility will decrease by |f (x)|.

Gregory Wheeler 31



Example: Acceptable Bounded Gamble
A gamble f : X → R is an uncertain reward whose value is f (X ).
Suppose X is a coin toss, X = {h, t}, and You find f an
acceptable gamble: You receive e1.50 if h and −e0.50 if t.

h

t

1

1−1

−1

f (h)

f (t)

f
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Elicitation

Elicitation: So, tell me some number of gambles that You accept.

I The gambles that You accept appear as points in an
n-dimensional space.

I This is Your uncertainty model.

I Your uncertainty model is no longer going to be a prevision, or
an expectation, or a probability, or a set of probabilities, or a
convex closed set of probabilities.

I A coherent model is a set of gambles that You find no worse
than status quo.

Set of Acceptable Gambles:

D ⊆ B is a set of gambles whose reward is no worse than zero.
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Sets of Coherent Acceptable Bounded Gambles

A set of acceptable gambles D is coherent if

A1. Avoid Partial Loss - If f < 0, then f 6∈ D.
Never accept when you cannot win

A2. Accept Partial Gain - If f ≥ 0, then f ∈ D.
Always accept when you cannot lose

A3. Scale Invariance - If f ∈ D, then λf ∈ D (∀λ ∈ R.λ > 0)
If a gamble is acceptable, a fraction of it is acceptable too

A4. Combination - If f ∈ D and g ∈ D, then f + g ∈ D.
If each is acceptable alone, they are acceptable together

Gregory Wheeler 40



Coherence for Sets of Acceptable Gambles
A set of acceptable gambles D is coherent

A1. Avoid Partial Loss - If f < 0, then f 6∈ D.

A2. Accept Partial Gain - If f ≥ 0, then f ∈ D.

A3. Scale Invariance - If f ∈ D, then λf ∈ D (∀λ ∈ R.λ > 0)

A4. Combination - If f ∈ D and g ∈ D, then f + g ∈ D.

h

t

1

1
−1

−1

1

1
−1

−1

Smallest (in)coherent sets
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Example: Tin Can Toss

The gambles that You accept appear as points in an n-dimensional space.

t
s

h

1

−1

(a)

t
s

h

f

(b)

t
s

h

f

(c)

Figure: Sets of Acceptable Gambles for outcomes heads, side, and tails
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Connecting Acceptable Gambles to Lower Previsions

P(f ) = sup{α ∈ R : f − α ∈ D}
supremum buying price for f .

I You get uncertain f
I You give a constant α
I The result of the transaction

f − α is acceptable to You
I The highest price α whereby

f − α remains acceptable to
You is Your supremum
buying price for f .

I This is your lower prevision
for f .

ω

ω

1

−1

P(f )

f

f − P(f )
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Connecting Acceptable Gambles to Lower Previsions
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I Sets of desirable gambles are
more informative than lower
previsions
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Connecting Acceptable Gambles to Lower Previsions

P(f ) = sup{α ∈ R : f − α ∈ D}
supremum buying price for f .

I Sets of desirable gambles are
more informative than lower
previsions

I This border behavior does
not affect the supremum

I So, there are no problems
with conditioning on sets of
probability zero, as this
occurs precisely on the
border condition.

ω

ω

1

−1

P(f )

f

f − P(f )
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Three goals
1. Get rid of probabilities, credal sets, and lower previsions

X Sets of Acceptable Gambles
Williams 1977; Walley 1991, 2000; De Cooman and Troffaes 2014

2. Propose a benchmark for evaluating a model of belief
X Operationalizable
◦ Inference: closure, marginalization, and conditionalization
X Unification: unify different uncertainty models

3. Address with some alleged problems
◦ Dilation
◦ Violations of Good’s Principle
◦ No Strictly Proper IP Scoring Rules
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Inference

Probabilistic inference involves three basic components:
I Closure or “natural extension” (Walley)
I Marginalization
I Conditioning
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Closure: The Natural Extension

A set of acceptable gambles D is coherent

A1. Avoid Partial Loss - If f < 0, then f 6∈ D.

A2. Accept Partial Gain - If f ≥ 0, then f ∈ D.

A3. Scale Invariance - If f ∈ D, then λf ∈ D (∀λ ∈ R.λ > 0)

A4. Combination - If f ∈ D and g ∈ D, then f + g ∈ D.

These axioms are viewed as production rules.
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Inference through natural extension

Suppose You have three gambles that are acceptable to You:

ω

ω

1

1
−1

−1

�

�
�

Question: What is the smallest, most conservative, coherent model
that corresponds to Your dispositions?
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Inference through natural extension

Suppose You have three gambles that are acceptable to You:

ω

ω

1

1
−1

−1

�

�
�

B≥0

Question: What is the smallest, most conservative, coherent model
that corresponds to Your dispositions?
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Inference through natural extension

The natural extension EA of Your elicited set of accepted gambles A
wrt X is

EA :=
{ n∑

k=1
λk fk : fk ∈ A ∪ B≥0, λk ≥ 0, n > 0

}

ω

ω

1

1
−1

−1

�

�
�
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Conditional Lower Previsions

Let’s introduce conditional lower previsions for unbounded
random variables defined over

R∗ := R ∪ {−∞,+∞}.

Let ℘+(X ) be the powerset of X excluding the empty set.

Now consider a set of acceptable unbounded gambles D ⊆ G.
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Conditional Lower Previsions

Define for D ⊆ G two functionals on G× ℘+:

The conditional lower prevision lpr(D)(| ·) : G× ℘+ → R∗:

lpr(D)(f | E ) := {α ∈ R∗ : (f − α)IE ∈ D}

The conditional upper prevision upr(D)(· | ·) : G× ℘+ → R∗:

upr(D)(f | E ) := {α ∈ R∗ : (α− f )IE ∈ D}

for any gamble f on X and any event E ∈ ℘+.
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Properties of conditional lower previsions on gambles

Theorem (Williams 1975, Troffaes and De Cooman 2014)
Let lpr(D)(· | ·) be the conditional lower prevision on D. Then, for
all gambles f , g , all non-negative real numbers λ, all real numbers
α, and all non-empty events A and B such that A ⊆ B, we have

clp1. Bounds: inf(f | A) ≤ lpr(D)(f | A).

clp2. Super-additivity:
lpr(D)(f + g | A) ≥ lpr(D)(f | A) + lpr(D)(g | A)
whenever the right-hand side is well defined

clp3. Non-negative homogeneity:
lpr(D)(λf | A) = λlpr(D)(f | A).

clp.4 Bayes’ rule:

lpr(D)(f − α)IA | B)
{
≥ 0 if α < lpr(D)(f | A)
≤ 0 if α > lpr(D)(f | A).
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Representing conditional lower previsions

Theorem (Walley 1991, Troffaes and De Cooman 2014)
A R∗-valued functional P(· | ·) on G× ℘+ is a conditional lower
prevision iff there is some set of acceptable gambles D such that
I P(· | ·) = lpr(D)(· | ·), and
I P(· | ·) satisfies clp1 – clp4.

Example
P(f | A) = −∞ says that, given A, You are not willing to buy f at
any price.
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Coherence

Coherence for conditional lower previsions can be purchased in each
of the following (equivalent) ways:

1. There is some coherent set of acceptable gambles D such that
lpr(D)(· | ·) is an extension of P(· | ·)

2. P(· | ·) avoids sure loss and is a restriction of the natural
extension of P(· | ·).
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Two ways of defining lower previsions w/out credal sets

Directly

I Define P(f ) directly as Your
supremum acceptable buying
price for f

I P(f ) is the highest price s
s.t. for any t < s, You accept
to pay t before observing X on
the promise that You will
receive f (x) upon observing the
event X = x .

I Thus, You are only required to
consider whether you accept
bounded gambles of type f − α.

I Conditioning is complicated

Via Gambles
I Announce Your acceptable

bounded gambles
I Enforce coherence conditions
I Then infer Your lower P(f ) and

upper P(f ) previsions for any
bounded gamble f .

I Conditioning is clean
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Three goals
1. Get rid of probabilities, credal sets, and lower previsions

X Sets of Acceptable Gambles
Williams 1977; Walley 1991, 2000; De Cooman and Troffaes 2014

2. Propose a benchmark for evaluating a model of belief
X Operationalizable: one-sided betting
X Inference: closure, marginalization, and conditionalization
X Unification: unify different uncertainty models

3. Address with some alleged problems
◦ Dilation
◦ Violations of Good’s Principle
◦ No Strictly Proper IP Scoring Rules
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Summary

I IP via sets of acceptable gambles is ready for general use
I It meets the minimal acceptable benchmarks

I Operationalizable
I Inference: closure, conditionalization, marginalization
I Unifies different accounts: propositional logic, Bayesian

probabilities, linear previsions, and lower previsions are all
special cases.

I Next: Objections to IP.
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Rationality Criteria for Sets of Acceptable Gambles
For all bounded-gambles f and g on X , and all non-negative real
numbers λ,
A1. Avoid Partial Loss - If f < 0, then f 6∈ D.

You should not accept any gamble you cannot win.

A2. Accept Partial Gain - If f ≥ 0, then f ∈ D.
You should accept any gamble you cannot lose.

A3. Scale Invariance - If f ∈ D, then λf ∈ D.
If you accept gamble f , you should accept λf .

A4. Combination - If f ∈ D and g ∈ D, then f + g ∈ D.
If you accept f and accept g, you should accept f + g.

A5. Monotonicity - If f ∈ D and g ≥ f , then g ∈ D.
Any gamble dominating an acceptable gamble is acceptable.
NB: A5 is a theorem. It follows from A2 and A4.
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Information ordering

Suppose D1 and D2 are the sets of acceptable gambles for subject1
and subject2, respectively.

If D1 ⊆ D2, then subject2 will accept (at least) all the bounded
gambles that subject1 does.

We may interpret ‘⊆’ between sets of acceptable bounded gambles
as:
I ‘is at most as informative as’
I ‘is at most as committal as’
I ‘is at least as conservative as’

Gregory Wheeler 73



Information ordering

Suppose D1 and D2 are the sets of acceptable gambles for subject1
and subject2, respectively.

If D1 ⊆ D2, then subject2 will accept (at least) all the bounded
gambles that subject1 does.

We may interpret ‘⊆’ between sets of acceptable bounded gambles
as:
I ‘is at most as informative as’
I ‘is at most as committal as’
I ‘is at least as conservative as’

Gregory Wheeler 74



Extensions

Suppose A is Your set of acceptable bounded gambles. Your
assessment A is (likely) to be finite. Suppose we extend A by the
following set of bounded gambles:

GA :=
{

g +
n∑

k=1
λk fk | g ≥ 0, n ∈ N, fk ∈ R≥0, k = 1, . . . , n

}

where R≥0 is the set of non-negative real numbers.

GA is the smallest set of bounded gambles that includes A and
satisfies A2 - A4.
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Consistency
A set A of acceptable bounded gambles is consistent or avoids
partial loss if one (or both) of the equivalent conditions is satisfied:

A. A is included in some coherent set of acceptable bounded
gambles:

D ∈ Db | A ⊆ D} 6= ∅.

B. For all n ∈ N, non-negative λ1, . . . , λn ∈ R, and bounded
gambles f1, . . . , fn ∈ A:

n∑
k=1

λk fk ≮ 0.

NB: Condition B explain why consistency is also called
avoiding partial loss: no non-negative linear combination of
bounded gambles in A should produce a partial loss.
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Closure

Proposition: Given a non-empty class Di , i ∈ I of sets of
acceptable bounded gambles, if all Di are coherent, then so is their
intersection

⋂
i∈I Di .

For any assessment A, consider the set {D ∈ Db | A ⊆ D} of all
coherent sets of acceptable bounded gambles including A. Define
the intersection of this set to be the closure ClDb (A) of A:

ClDb (A) :=
⋂
{D ∈ Db : A ⊆ D}

NB: the intersection of the empty set is the set of all bounded
gambles:

⋂
∅ := B.

Gregory Wheeler 79



Closure

Proposition: Given a non-empty class Di , i ∈ I of sets of
acceptable bounded gambles, if all Di are coherent, then so is their
intersection

⋂
i∈I Di .

For any assessment A, consider the set {D ∈ Db | A ⊆ D} of all
coherent sets of acceptable bounded gambles including A. Define
the intersection of this set to be the closure ClDb (A) of A:

ClDb (A) :=
⋂
{D ∈ Db : A ⊆ D}

NB: the intersection of the empty set is the set of all bounded
gambles:

⋂
∅ := B.

Gregory Wheeler 80



Properties of Closure

Let A1,A2, and A3 be sets of acceptable bounded gambles. Then
the following hold:

1. A ⊆ ClDb (A)

2. If A1 ⊆ A2, then ClDb (A1) ⊆ ClDb (A2).

3. ClDb (ClDb (A)) = ClDb (A).

4. If A ⊆ B≥0 then ClDb (A) = B≥0.

5. A is consistent iff ClDb (A) 6= B.

6. A is a coherent set of acceptable bounded gambles iff it is consistent
and A = ClDb (A).

NB: Any P(B)− P(B)-map that satisfies (1) - (3) is a closure operator;
(4) says that the corresponding closed subsets of P(B) different from B
are exactly the coherent sets of acceptable bounded gambles.
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Natural Extension

Theorem (Natural Extension) If the set A of acceptable bounded
gambles is consistent, then there is a smallest coherent set of
acceptable bounded gambles that includes A. It is given by

ClDb (A) = GA =
{

g +
n∑

k=1
λk fk | g ≥ 0, n ∈ N, fk ∈ R≥0, k = 1, . . . , n

}

=
{

h ∈ B | h ≥
n∑

k=1
λk fk for some n ∈ N, fk ∈ A, λk ∈ R≥0

}

and it is called the natural extension of A.
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Inference

Applying the closure operator, ClDb , or (equivalently) natural
extension, to a consistent assessment A adds those bounded
gambles to A that can be obtained from bounded gambles in A
using the production rules A2 - A4 and no other gambles.

Thus, natural extension is a conservative inference mechanism: it
picks the smallest coherent set of bounded gambles (with respect
to some A that satisfy A2 - A4.

Consistency then ensures A1, namely that the production rules will
not lead to negative bounded gambles and therefore will not lead to
partial loss.
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Propositional Logic as a Special Case of Natural Extensions

The inference mechanism of natural extension subsumes that of
classical propositional logic.
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Propositional Logic as a Special Case of Natural Extensions

Setup:
I An event is a subset of the possible values X of X .
I The indicator IE of an event E is the bounded gamble that gives

one if the actual value x of X belongs to E and zero otherwise.

I Now consider propositions p about X , which are in one-to-one
correspondence with subsets Ep of X .

I If You accept a proposition p, then You accept the bounded
gambles IEp − 1 + ε for all ε > 0.

I Since,
IEp (x)− 1 + ε =

{
ε if x ∈ Ep

ε− 1 if x 6∈ Ep,

You are willing to bet on the occurrence of Ep at any odds 1−ε
ε , i.e.,

at any rate strictly less than 1.
I For any rate (1− ε)/ε < 1, You are practically certain that Ep occurs.
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Propositional Logic as a Special Case of Natural Extensions

Logical Production Rules
I Modus Ponens: Suppose You accept both p and p ⇒ q.

Then, Ep ⊆ Eq, so,

IEp (x)− 1 + ε ≤ IEq (x)− 1 + ε.

From Monotonicity (A5), it follows that You should accept Eq.
I Therefore, the logical inference rule modus ponens is included

in the inference mechanism for coherent sets of acceptable
gambles.
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Propositional Logic as a Special Case of Natural Extensions

Logical Production Rules
I Conjunction: Suppose You accept both p and q.

Then, You accept the bounded gambles IEp (x)− 1 + ε and
IEq (x)− 1 + ε, and by A4 You also accept the bounded
gambles IEp (x) + IEq (x)− 2 + 2ε, for all ε > 0.
Then, You also accept the conjunction p ∧ q by A5, since
Ep∧q = Ep ∩ Eq and

IEp (x) + IEq (x)− 1 ≤ IEp∩Eq (x) = min{IEp , IEq}.

I Therefore, the logical rule of conjunction is included in the
inference mechanism for coherent sets of acceptable bounded
gambles.
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Propositional Logic as a Special Case of Natural Extensions

Logical Production Rules
I Logical Non-Contradiction: Suppose You accept both p and
¬p.

The, You would accept both IEp (x)− 1 + ε and IE¬p (x)− 1 + ε,
and by A4, You would also accept the bounded gambles

IEp (x)− 1 + ε+ IE¬p (x)− 1 + ε = −1 + 2ε

for all ε > 0, since IEp (x) + IE¬p (x) = 1. But this contradicts
A1, avoiding partial loss.

I Therefore, logical contradiction is prohibited by the inference
mechanism for coherent sets of acceptable bounded gambles.
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