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Abstract

Over the last two decades or so, the Akaike Information Criterion (AIC)
and its various modifications/extensions have found wide applicability in econo-
metrics as objective procedures which can be used to select parsimonious sta-
tistical models. The aim of this paper is to argue that these model selection
procedures invariably give rise to unreliable inferences primarily because their
selection within a prespecified family of models, (a) assumes away the problem
of model validation, and (b) ignores the relevant error probabilities.
The paper argues for a return to the original statistical model specification

problem, as envisaged by Fisher (1922), where the task is understood as one
of selecting a statistical model in such a way so as to render the particular
data a truly typical realization of the stochastic process underlying the model
in question. This problem can be addressed by evaluating a statistical model
in terms of its statistical adequacy, i.e. whether it accounts for the chance
regularities in the data, as opposed to trading goodness-of-fit against parsimony.

∗Thanks are due to Steven Durlauf, Andros Kourtellos, Nikitas Pittis and two anonymous referees
for their constructive comments and suggestions that helped to improve the paper substantially.
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1 Introduction
R. A. Fisher (1922) pioneered modern frequentist statistics as a model-based approach
to statistical induction anchored on the notion of a statistical model, formalized by:

Mθ(z)={f(z;θ), θ ∈Θ}, z ∈Rn
Z , Θ ⊂ Rm, m < n. (1)

Unlike Pearson (1920), who would proceed from data z0:=(z1, ..., zn) in search of a
frequency curve f(z;ϑ) to describe its histogram, Fisher proposed to begin with a
prespecifiedMθ(z) (a ‘hypothetical infinite population’), and view z0 as a realization
thereof. He envisaged the specification ofMθ(z) as a response to the question: “Of
what population is this a random sample?” (ibid., p. 313), underscoring that: “the
adequacy of our choice may be tested a posteriori.” (p. 314) He identified the ‘problems
of statistics’ to be: (1) specification, (2) estimation and (3) distribution and emphasized
that addressing (2)-(3) depended crucially on dealing with (1) successfully first. A
misspecifiedMθ(z) would vitiate any procedure relying on f(z;θ), z ∈Rn

Z , (or the
likelihood function), and render all inductive inferences unreliable by giving rise to
actual error probabilities that are invariably different from the nominal ones.
Despite its manifest importance, specification received only scant attention in the

statistics literature since the 1920s (Spanos, 2006a). Although the formal apparatus
of frequentist statistical inference was largely in place by the late 1930s, the nature
of the underlying inductive reasoning was clouded by disagreements. Fisher argued
for ‘inductive inference’ spearheaded by his significance testing (Fisher, 1955), and
Neyman argued for ‘inductive behaviour’ based on N—P testing (Neyman, 1956).
However, neither account gave a satisfactory answer to the canonical question:

when do data z0 provide evidence for (or against) a substantive claim H?
Their testing procedures were plagued by the fallacy of acceptance [no evidence
against the null is misinterpreted as evidence for it], and the fallacy of rejection
[evidence against the null is misinterpreted as evidence for the alternative]. Indeed,
several crucial foundational problems reverberate largely unresolved to this day:
(I) how could a (possibly) infinite set P(z), of all possible models that could have
given rise to data z0, be narrowed down to a single statistical modelMθ(z)?

(II) how could the adequacy of a statistical modelMθ(z) be tested a posteriori?
(III) what is the role of substantive information in statistical modeling?
(IV) what is the role of pre-data vs. post-data error probabilities? (Hacking, 1965),
(V) how could the fallacies of acceptance and rejection be addressed in practice?
These issues created endless confusions in the minds of practitioners concerning the
appropriate use and interpretation of the frequentist approach to inference.
Over the last three decades, Fisher’s specification problem has been recast in the

form of model selection where questions (IV)-(V) are ignored, but (I)-(III) are dealt
with in specific ways. Question (I) is handled by separating the problem into two
stages where, a broader family of models {Mϕi(z), i=1, ...m} is selected first, and
then a best modelMϕk(z) within this family is chosen. The problem raised in (II)
is treated by trading goodness-of-fit against parsimony, and the issue in (III) is of-
ten handled by using substantive information (including mathematical approximation
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theory) in selecting the family of models. The quintessential example of such a proce-
dure is based on the Akaike Information Criterion (AIC) and variations/extensions
thereof, such as the Bayesian (BIC), the Schwarz (SIC), the Hannan-Qinn (HQIC)
and the Minimum Description Length (MDL), as well as Cross-Validation criteria;
Rao and Wu (2001), Burnham and Anderson (2002), Konishi and Kitagawa (2008).
These Akaike-type procedures are widely used in econometrics, and other ap-

plied disciplines, as offering objective methods for selecting parsimonious models (see
Greene, 2003). In philosophy of science they are viewed as providing a pertinent way
to address the curve fitting problem; see Forster and Sober (1994), Kieseppa (1997).
The primary objective of this paper is to make a case that the Akaike-type model

selection procedures invariably give rise to unreliable inferences because:
(a) they ignore the preliminary step of validating the prespecified family of models,
(b) their selection amounts to testing comparisons among the models within the
prespecified family but without ‘controlling’ the relevant error probabilities.
To deal with problems (a)-(b) and address questions (I)-(V) the paper argues

for a return to the original statistical model specification problem, as envisaged by
Fisher (1922), but view it in the context of a modification/extension of the original
frequentist framework, known as error statistics (see Mayo, 1996), which emphasizes
the probing of the different ways an inference might be in error. A key difference is
that error statistics pays due attention to potential errors at the two points of nexus
between statistical inference and the real-world phenomenon of interest:
[A] from the phenomenon of interest to an adequate statistical model,
[B] from inference results to evidence for or against substantive claims.
In the error statistical framework, Fisher’s specification is carried out by distin-

guishing, ab initio, between substantive and statistical information and devising a
purely probabilistic construal of a statistical model Mθ(z) by viewing it as a pa-
rameterization of the stochastic process {Zk,k∈N:=(1, ..., n, ...)} whose probabilistic
structure is chosen so as to render data z0 a truly typical realization thereof; see Spanos
(1986). The specification ofMθ(z) in P(z) is guided solely by statistical adequacy:
the probabilistic assumptions making up the model are valid for data z0. Securing
the statistical adequacy ofMθ(z) enables one to deal with problems (a)-(b), and ad-
dress questions (I)-(V) by employing ascertainable error probabilities (pre-data and
post-data) to evaluate the reliability and pertinence of inductive inferences, including
the inferential appraisal of substantive claims; see Mayo and Spanos (2006).
Section 2 discusses briefly the curve-fitting problem with a view to bring out the

main features of the mathematical approximation perspective that motivates and
underlays the Akaike-type selection procedures and most nonparametric methods in
econometrics. The error statistical perspective is used to argue that undue reliance
on mathematical approximation often undermines the reliability of inference because
it relies on non-testable premises that often ignore the regularities in the data. In
section 3, the Akaike-type selection procedures are discussed and their unreliability
illustrated using empirical examples. Section 4 discusses the general question of rec-
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onciling statistical and substantive information by embedding a structural model into
a validated statistical model. Section 5 contrasts the Akaike-type selection procedures
with securing statistical adequacy using thorough Mis-Specification (M-S) testing and
respecification, and section 5 discusses certain charges leveled against M-S testing,
like double-use of data, infinite regress, circularity and pre-test bias.

2 Mathematical approximation and curve fitting
The curve-fitting problem is often viewed in both statistics and philosophy of science
as an exemplar that encapsulates the multitude of dimensions and problems associ-
ated with inductive inference (learning from data), including underdetermination —
more than one curve can ‘account for the regularities in the data’ equally well — and
the reliability of inference, which is often assumed to depend on a priori stipulations,
such as the uniformity of nature; see Skyrms (2000).

2.1 The curve-fitting problem: a brief summary
In its simplest form the curve-fitting problem has three basic components:
(i) The existence of a ‘true’ but unknown function: y = h(x), (x, y)∈RX ×RY .
(ii) A data set in the form of n observations: z0:={(xk, yk), k=0, 1, . . . , n}.
(iii) Seeking an approximating function gm(x) of h(x) over z0 that is ‘best’
in the sense that it ‘accounts for the regularities in z0’; see Skyrms (2000).
Example 1. In an attempt to motivate some of mathematical apparatus needed

to address this problem, consider a familiar example where gm(x) is chosen to be:

gm(x;α) = α0 +
Pm

k=1 αix
k, (2)

i.e. an ordinary polynomial of degree m, and ‘best’ is selected via the minimization:

min :
α∈Rm

c(α) =
Pn

k=1

¡
yk − α0 −

Pm
k=1 αix

k
¢2
, (3)

giving rise to the Least-Squares estimator bαLS=(bα0, .., bαm) of α=(α0, .., αm).
In this example a number of decisions (choices) were made that need to be formally

(mathematically) justified in light of the information in (i)-(iii) above:
[a] What guarantees the existence and uniqueness of the ‘best’ fitted curve gm(x; bαLS)?
[b] Why choose an ordinary polynomial for gm(x;α), and not some other function(s)?
[c] Why minimize the sum of squares in (3), and not some other objective function?

2.2 The mathematical approximation perspective
Mathematical approximation theory, which began with a profound theorem byWeier-
strass in 1885 (see Powell, 1981), is concerned with how unknown functions like h(x)
can best be approximated with simpler known functions {φi(x), i=1, 2, ...}, and with
quantitatively characterizing the errors introduced thereby. This theory proposes
specific answers to questions [a]-[c] stemming from three interrelated premises:
(a) the structure and ‘smoothness’ of y = h(x), (x, y)∈RX×RY (continuity, etc.),
(b) a family G of approximating functions {φi(x),i=1, ...} used as building blocks,
(c) a concept of ‘distance’ determining the notion of a ‘best’ approximation.
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Mathematically the most effective way to render the curve-fitting tractable is
to view the problem in the context of a normed linear space (see Powell, 1981),
such as the set of all continuous functions over the interval [a, b] ⊂ R, denoted by
(C[a, b], k . kp), where the p-norm is defined by:

k f kp =(
R b
a
|f(x)|p dx)

1
p , p ≥ 1, for all f∈C[a, b]. (4)

Interesting special cases are p=1, 2 and p=∞: k f k∞ =maxa≤f≤b | f | , f∈C[a, b].
It can be argued that the traditional view of curve-fitting is largely the result of

imposing a mathematical approximation perspective on the problem. Hence, it’s no
accident that the approximating function often takes the linearized form:

gm(x;α) = α0 +
Pm

i=1 αiφi(x), (5)

where {φi(x), i=1, ...m} is a base set of generalized polynomials defined on [a, b]; see
Appendix for a summary of the basic results on mathematical approximation.
It is important to note that when the approximation is over a net of points

Gn(x):={xk, k=1, . . . , n}, the results in the appendix need to be modified, because
the relevant metric is associated with the discrete p-norm:

k h(xk)−gm(xk;α) kp =(
Pn

k=1w(xk) |h(xk)−gm(xk;α)|
p)

1
p , p ≥ 1, (6)

where w(xk)>0,
Pn

k=0w(xk)=1, denotes the weight function. This is commonly jus-
tified on the basis that the net Gn(x) is dense in the interval [a, b], in the sense that
as n→∞ the discrete metric converges to its continuous analogue (see Rivlin, 1981):

lim
n→∞

(
Pn

k=1w(xk) |h(xk)−gm(xk;α)|
p)

1
p =(

R b
a
w(x) |h(x)−gm(x;α)|p dx)

1
p , p≥1.

Example 2. Let y=h(x), x∈R, y∈R, be a square integrable function defined on
R:=(−∞,∞), i.e.

R∞
−∞ |h(x)|

2 dx < ∞, and denoted by h(x)∈L2(−∞,∞). Mathe-
matical approximation theory asserts that the Hermite orthogonal polynomials:n

h0(x)=1, h1(x)=2x, h2(x)=4x
2−2, h3(x)=x3−3x, ..., hm(x)=(−1)mex

2 dm(e−x
2
)

dxm

o
,

provide a complete base set for the normed linear (Hilbert) space (L2(−∞,∞), k . k2),
and thus, for the approximating function gm(xk;α)=

Pm
k=0 αihi(xk), the 2-norm en-

sures both uniqueness and convergence in mean to h(x); see Luenberger (1969).
Hence, one can estimate α using Weighted Least Squares (Hildebrand, 1982):

min :
α∈Rm

c(α) =
Pn

k=1 e
−x2k (yk − gm(xk;α))

2 , (7)

giving rise to the residuals: bε(xk,m)=yk −Pm
k=0 bαihi(xk), k=1, 2, ..., n, where:bαWLS=(bα0, bα1, ...bαm) , bαc=(

1
2cc!

√
π
)
Pn

k=1[e
−x2k ]hc(xk)yk, , c=0, 1, ...,m. (8)

2.3 Mathematical approximation vs. inductive inference
2.3.1 Goodness-of-fit vs. parsimony: is that the issue?
The curve-fitting problem discussions are dominated by the mathematical approxi-
mation perspective to such an extent that the primary problem in selecting (5) is
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thought to be overfitting, stemming from the fact that one can make the error in (3)
as small as desired by increasing m. Indeed, the argument goes, one can make the
approximation error ε(xk;m)=yk−

Pm
i=0 αiφi(xk) equal to zero by choosing m=n−1;

see Skyrms (2000). This reasoning suggests that goodness-of-fit cannot be the sole
criterion for ‘best’. To avoid overfitting one needs to supplement goodness-of-fit with
pragmatic criteria such as simplicity, which can be justified on prediction grounds,
since simpler curves enjoy better predictive accuracy; see Forster and Sober (1994).
A closer look at the above argument reveals that ‘trading goodness-of-fit against

parsimony’ ignores two potential unreliability of inference problems when the fitted
curve gm(xk; bα)=Pm

i=0 bαiφi(xk) is used as a basis for inductive inference.

• The first relates to an inherent tension between the sample size n (statistical
information) and the degree of approximation m of gm(xk;α) (section 2.3.2).

• The second has to do with the notion of assessing when ‘a fitted curve accounts
for the regularities in data z0’ (section 2.3.3).

2.3.2 The inherent tension between m→∞ and n→∞
The tension between n and m can be brought out by scrutinizing the soundness of
the claim that the choice m=n−1 renders the approximation error zero. Although
this claim is mathematically sound, it is inferentially fallacious because the estimated
coefficients bα:=(bα0, ..., bαm) will be inconsistent estimators of α :=(α0, ..., αm), and
thus, any inference based on gm(xk; bα) will be totally unreliable.
Indeed, this highlights an inherent tension between mathematical convergence re-

sults that concernm→∞, and probabilistic convergence results concerned with n→∞.
The former enhances fit by making the approximation error smaller, but consistency
(convergence in probability), bα P→ α as n→∞, is necessary (but not sufficient) for
the reliability of any form of inductive inference; see Spanos (2007a).

2.3.3 The qualitative characterization of the approximation error
When does a fitted curve gm(xk; bα) account for the regularities in data z0? Intuition
suggests that gm(xk; bα) has captured the systematic information in z0 when what is
left, the residuals bε(xk;m), k=1, 2, ..., n, constitute white-noise. More formally, when
the approximation error ε(xk;m) is non-systematic in a probabilistic sense:

[i] εk(xk,m) v IID(0, σ2), [ii] E [εk(xk,m)·gm(xk;α)]=0, ∀ (xk, k)∈Rx×N, (9)

where ‘IID’ stands for ‘Independent and Identically Distributed’. A closer look at
the qualitative characterization of ε(xk;m) reveals that being ‘small’ in a mathemat-
ical sense (see (56) in the Appendix), does not entail (9), and neither does trading
goodness-of-fit against overfitting. Indeed, reflecting on the results of mathematical
approximation theory, suggests that conditions [i]-[ii] will often be invalid since the
qualitative characterization of ε(xk;m) renders it a function of k, x and m. This can
potentially devastate the reliability of any inference based on gm(xk; bα).
To be more specific, the potential violation of conditions [i]-[ii] stems from the

very mathematical results that specify necessary and sufficient conditions (iff) for
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the existence and uniqueness of the best approximating function gm(x; bα), known as
oscillation-type theorems; see Powell (1981). According to theorem 3 in the Appen-
dix, the iff conditions require the residuals bε(xk;m)=h(xk)−gm(xk; bα), k=1, ..., n to
alternate in sign at least m+2 times over Gn(x). Analogous oscillation theorems
are needed, not only for approximations based on different norms, but also for local
(piecewise) polynomial approximation using splines (see Watson, 1980).
This potential unreliability problem can be brought out using a simple runs test

for randomness (IID), which states that under IID the expected number of runs R is
approximatelyE(R)=(2n−1)/3; a run is a sub-sequence of one type (+ or−) immedi-
ately preceded and succeeded by an element of the other type. For n=100, E(R) ' 66,
the expected number of runs in the residuals should be considerably higher than
(m+2), otherwise they are likely to exhibit Markov dependence; see Spanos (1999).
This problem is illustrated in Spanos (2007a) by comparing the estimated Kepler’s

first law of planetary motion (statistically adequate) with Ptolemy’s model (statis-
tically inadequate), shown to represent a quintessential form of curve fitting whose
residuals exhibit strong temporal dependence/heterogeneity.

2.3.4 The missing inductive understructure
Example 3. Consider fitting (by least squares) the line y = α0 + α1x, suggested by
a certain theory (see Mayo and Spanos, 2004), through the scatter-plot of data z0:byt = 167.115 + 1.907xt, s=1.77, n=35. (10)

The end result is that, as it stands, (10) provides no basis for inductive inference
(learning from data). At best, mathematical approximation can provide very crude
Jackson-type upper bounds (see Appendix) in terms of m (the degree of gm(xk;α)).
The residuals bεk=yk−bα0−bα1xk can be used to construct goodness-of-fit measures like:

R2 = 1−
£Pn

k=1bε2k/Pn
k=1(yk−y)2

¤
. (11)

However, this framework does not provide the necessary understructure for inductive
inference, i.e. it does not delineate the probabilistic premises stating the conditions
under which the statistics (bα0, bα1, s2, R2) are inferentially reliable, as opposed to
mathematically justifiable or theoretically meaningful.
The above discussion brings out a crucial weaknesses of the mathematical approx-

imation perspective: its answers to questions [a]-[c] (section 2.1) rely on premises
(a)-(c) (section 2.2) that are largely non-testable and often ignore the regularities
in data z0. This can potentially undermine the reliability of all inductive inference
methods that rely on this perspective. Indeed, the non-testability of the invoked
mathematical premises can severely undermine the reliability of many nonparamet-
ric/semiparametric methods that are misleadingly appealed to as a way to circumvent
the statistical misspecification problem; see Li and Racine (2006).
The question that naturally arises is whether there is way to relate the mathe-

matical premises (a)-(c) (section 2.2) to the regularities in data z0 that would ensure
the validity of assumptions [i]-[ii]. Such a connection is provided by embedding the
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mathematical approximation problem into a statistical model Mθ(z) whose proba-
bilistic assumptions are chosen with a view to account for the regularities in data z0.
This embedding offers a way to transform the non-testable mathematical premises
(a)-(c) into the testable [vis-a-vis z0] inductive premises ofMθ(z); see section 4.

3 Model selection in statistics
3.1 Gauss’s pioneering contribution
Historically, Gauss (1809) should be credited with the first attempt to embed the
mathematical approximation formulation into a statistical modelMθ(z), by making
explicit probabilistic assumptions pertaining to a generic error term εk, specifying the
Gauss Linear model (see Spanos, 1986, ch. 18):

yk = β0 +
Pm

i=1 βixik + εk, εkvNIID(0, σ2), k=1, 2, . . . , n, ... (12)
What makes his contribution all-important is that (12) provides the inductive premises
for assessing the reliability of inference based on the fitted model byk=bβ0+Pm

i=1
bβixik.

Example 3 (continued). Gauss’s error assumptions in (12) provide specific
premises for inductive inference, in the sense that the estimated model:

yk = 167.115
(.610)

+ 1.907
(.024)

xk + buk
(1.771)

, R2=.995, s=1.77, n=35, (13)

can be used to generate inferential statistics, such as the standard errors (SE) given
in parentheses, to draw inferences, including testing the significance of the coeffi-
cients (β0, β1). For instance, if one were to take these SE at face value, the t-ratios
τ(bβ0)=273.96[.000], τ(bβ1)=79.458[.000] (p-values in square brackets), would suggest
that both coefficients are significantly different from zero. As argued below, how-
ever, such inferences turn out to be untrustworthy when the presumed probabilistic
structure in (12) is invalid for data z0=(y1, ..., yn;x1, ..., xn).
In general, the appended probabilistic structure raises two crucial questions:
(A) How does the approximation error ε(xk;m) relate to the statistical error εk?
(B) How does one validate the probabilistic assumptions of the error εk?

These questions are crucial when reconciling substantive and statistical information
with a view to ensure the reliability of inductive inference; see section 4.
To illustrate the inbuilt connection between the mathematical (a)-(c) (section 2.2)

and inductive premises, consider the choice of a norm k . k and the distributional
assumption underlying a statistical modelMθ(z).

3.2 The choice of a norm and distributional assumptions
The majority of statistical models motivated by the mathematical approximation
perspective revolve around a generalized form of (12):

yk = α0+
Pm

k=1 αiφi(xk) + εk, εkvNIID(0, σ2), k=1, 2, . . . , n, ..., (14)
where gm(xk;α)=α0+

Pm
k=1 αiφi(xk) is chosen using substantive information relating

to y=h(x), (x, y)∈[RX × RY ]. In this case, the assumed distribution is Normal and
the norm implicitly used is k . k2, inducing the inner product :

hh(xk)− gm(xk;α)i2 =
Pn

k=1 (yk − α0−
Pm

k=1 αiφi(xk))
2
, (15)
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and convergence in mean, giving rise the Least-Squares estimator bαLS of α. Indeed,
it is no accident that in example 2 a natural base set for L2(−∞,∞) is provided
by the Hermite polynomials whose weight function for orthogonality w(x)=e−x

2
is in

essence [by rescaling] the standard Normal density φ(x), i.e. the Rodrigues formula
for hm(x) can be written equivalently as h∗m(x) =

(−1)m
φ(x)

dmφ(x)
dxm

, m=0, 1, ....

What is often not made explicit in the statistics literature is the connection
between other p-norms and the implicit distributional assumption. The 1-norm
k h(xk)−gm(xk;α) k1, inducing the inner product (Powell, 1981):

hh(xk)− gm(xk;α)i1 =
Pn

k=1 |yk−α0−
Pm

k=1 αiφi(xk)| , (16)

and pointwise convergence, giving rise to the Least Absolute Deviation estimator of
α (see Shao, 2003), is related to the Laplace distribution, f(εk)=( 12σ )e

(−|εk|/σ), εk∈R.
The ∞-norm k h(xk)−gm(xk;α) k∞, inducing the inner product :

hh(xk)− gm(xk;α)i∞ = supεk∈[−σ,σ] |yk−α0−
Pm

k=1 αiφi(xk)| , (17)

and uniform convergence, giving rise to theMinimax estimator of α (see Shao, 2003),
is related to the Uniform distribution, f(εk) = 1

2σ
, εk∈[−σ, σ]. Note that the natural

base set for C[−1, 1] is provided by the Legendre polynomials whose weight function
w(x) for orthogonality relates to the uniform density; see Hildebrand (1982).
The importance of this connection stems from the fact that when the choice of a

norm is based on the appropriateness of the corresponding distributional assumption
vis-a-vis data z0, the resulting estimator bαML is the Maximum Likelihood Estimator
of α, which enjoys certain desirable statistical properties, including parameterization
invariance, which is particularly crucial in econometrics since the structural parame-
ters are often reparametrizations/restrictions of the statistical parameters; see section
4.4. This suggests that in practice the choice of a norm should not be a matter of
convenience, mathematical expediency or even robustness (see Shao, 2003, p. 346),
but needs to be justified on statistical adequacy grounds.

3.3 Akaike-type model selection procedures
Akaike-type model selection procedures assume a prespecified family of models {Mϕi(z),
i=1, 2, ...m} based on some variation/extension of (14). The stated objective of these
procedures is motivated by the curve-fitting perspective and the selection is guided
by trading goodness-of-fit against overfitting.
The initial attempt to curb overfitting was made by introducing the adjusted R2:

R
2

m = 1−
¡

n−1
n−m−1

¢
(1−R2), (18)

that ‘penalizes’ the R2 in (11) for increasing as m increases. The statistical literature
continued with Akaike’s (1970) Final Prediction Error (FPE), Mallows’s (1973) Cp

and Allen’s (1971) Cross-Validation criteria:

FTEK = RSSm
n

¡
1+ 2K

n−K
¢
, Cp = (

nRSSp
RSSm

− n+2p), CV (1) ' RSSm(
n

(n−K)2 ), (19)

where K=(m+1), RSSp=
Pn

k=1(yk−bβ0−Pp
i=1
bβixik)2 for p ≤ m.
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The model selection literature came of age with Akaike’s Information Criterion
(AIC) and related procedures such as the BIC, SIC, HQIC in the 1970s and 1980s;
see Rao and Wu (2001). The AIC is based on curbing overfitting by penalizing the
log-likelihood function (lnL(θ)) — measuring goodness-of- fit — using the number of
unknown parameters (K) in θ: AIC = −2 lnL(θ) + 2K.
The formal justification for this criterion is that AIC provides a pertinent estimator

of the risk of the Kullback-Leibler (K-L) loss function:

∆K−L(M0,cM1) = E0
³
ln
³
f0(x;θ0)

f1(x;θ1)

´´
=
R
z∈RnZ

(ln[f(z;θ0)/f1(z; bθ1)])f(z;θ0)dz, (20)

viewed as the expected discrepancy between the true model M0 and an estimated
model M1. In particular, Akaike (1973) showed that when one compares different
models within a prespecified family {Mθi(z), i=1, 2, ...m} :

AIC(i) = −2 ln fi(z; bθi) + 2Ki, i=1, 2, ...,m, (21)

provides an asymptotically unbiased estimator of∆K−L(M0,cMi),Ki being the number
of parameters in θi. For example, in the case of (12):

AIC = n ln(bσ2) + 2K, or AICn = ln(bσ2) + 2K
n
, (22)

where bσ2= 1
n

Pn
k=1(yk−bβ0−Pm

i=1
bβixik)2, and K=m+2. The AIC procedure selects

Mθk(z) when AIC(k) yields the minimum value. Early studies on the effectiveness of
the AIC raised two crucial weaknesses (see McQuarrie and Tsai, 1998):
(i) The value bK chosen by AIC is an inconsistent estimator of the ‘true’ K∗,
(ii) In small samples AIC often leads to overfitting, i.e. ( bK> K∗).

Attempts to deal with the inconsistency problem gave rise to several modifications
of the AICn, with the most widely used being the BIC (see Schwarz, 1978), Hannan
and Quinn (1979) and Rissanen’s (1978) Minimum Description Length criteria:

BICn = ln(bσ2) + K ln(n)
n

, HQICn = ln(bσ2) + 2K ln(ln(n))
n

, MDLn=(BICK/2). (23)

These are special cases of the generalized criterion: GICn = −2 ln(f(z; bθ)) + a(n) ·K,
where a(n) is a smooth function of the sample size, which also includes Tacheuchi’s
(TIC) criterion; see Konishi and Kitaqawa (2008).
Attempts to deal with the small sample overfitting problem led to a several mod-

ifications of AIC, such as (see McQuarrie and Tsai, 1998):

M-AICn = ln(bσ2) + ([n+K]/[n-K-2]) . (24)

In what follows it is argued that (i)-(ii) above are the least of AIC’s difficulties.
The unreliability of inference problems (a)-(b) (section 1) are considerably more se-
rious, and undermine equally all the modifications/extensions of the AIC, including
cross-validation criteria and nonparametric methods which rely solely on mathemati-
cal approximation theory (see Konishi and Kitagawa, 2008). In all these areas, as well
as curve-fitting (see Forster and Sober, 1994), the assumptions defining the likelihood
function are often treated as an afterthought, and not as crucial stipulations whose
inappropriateness vis-a-vis data z0 will undermind the reliability of inference.
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3.4 Potential errors in model selection
Viewing the Akaike-type model selection procedures in the context of error statistics
(Mayo and Spanos, 2009), calls for probing all the different ways the final inference:

Mϕk(z) is the ‘best’ model within the prespecified family {Mϕi(z), i=1, 2, ...m}
might be in error, as well as delineating the notion of a ‘best’ model as it relates to
the various objectives associated with usingMϕk(z).
It is argued that the primary objective of a statistical modelMθ(z) is to provide

a sound basis for both, inductive inference (estimation, testing, prediction and sim-
ulation), as well as risk evaluation associated with different decision rules. In light
of that, a minimum requirement for a ‘best’ model Mϕk(z) is statistical adequacy,
because without it all inductive inferences, as well as risk evaluations, are likely to
be misleadingly unreliable, voiding any practical usage ofMϕk(z).
This stems from the fact that a misspecified f(z;θ) will vitiate the sampling

distribution Fn(t) of any statistic Tn=g(Z1, ..., Zn), since by definition:
Fn(t) = P(Tn ≤ t) =

R
···
R
{z: g(z)≤t} f(z;θ)dz, t∈R. (25)

In turn, Fn(t) will undermine the reliability of any inference based on it by giving
rise to actual error probabilities that are different from the nominal ones.
Example 4. LetMθ(z) be a simple Normal model, i.e. Zk vNIID(μ, σ2), k=1, ..., n,

and consider testing: H0: μ=μ0 vs. H1: μ>μ0, using the t-test:

τ(Z)=
√
n(Zn−μ0)

s
, C1:={z: τ(z)>cα}, Zn=

1
n

Pn
k=1 Zk, s

2=( 1
n−1)

Pn
k=1(Zk−Zn)

2.

What would the effect on the relevant error probabilities be if Independence is false?
Instead, assume that Corr(Zi, Zj)=ρ, 0<ρ<1, for i6=j, i, j=1, ...n. For n=100, and a
nominal α=.05 (cα=2.01), even a small value ρ=.1 will yield an actual type I error of
α∗=.317; a sixfold increase! Similarly, the distortions in power, ranging from positive
for tiny discrepancies γ=μ−μ0, π∗(γ=.01)−π(γ=.01)=.266 [where more power is not
needed], to negative for larger discrepancies, π∗(γ=.3)−π(γ=.3)=− .291 [where more
power is needed], will render the test completely unreliable. Moreover, the distortions
in both, the type I error and the power, get much larger as ρ→1; see Spanos (2009).
Similarly, the evaluation of the risk function for a decision rule bθ(Z) using a loss

function L(.), is likely to be highly misleading because the averaging is with respect
to a misspecified f(z;θ) vitiating the result:

R[bθ(Z),θ] = R ··· R
z∈RnZ

L(bθ(z),θ)·f(z;θ)dz, θ ∈ Θ. (26)

In the Akaike-type model selection literature the notion of ‘best’ is sometimes
identified with the ‘true’ model, whatever that might mean (see Burnham and An-
derson, 2002). In the error statistical framework that would require one to secure
both statistical and substantive adequacy —Mϕk(z) provides a veritable explanation
for the phenomenon of interest — which calls for additional probing of (potential)
errors in bridging the gap between the two. In the present context, the notion of
a ‘best’ model is assumed to include statistical adequacy [accounting for the chance
regularities in data z0], since it is a necessary for assessing substantive adequacy.
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The first potential error arises when the prespecified family {Mϕi(z), i=1, ...m}
does not include an adequate model M0(z). This is a variant of the statistical
adequacy problem that arises when Akaike-type model selection procedures take the
likelihood function at face value. This will invariably lead astray infering a best model
because any use of error probabilities (or risks) will be misguiding; see section 3.5.
A second error arises when the family {Mϕi(z), i=1, ...m} does include a statisti-

cally adequate model, sayMϕj(z), but is different from the selected modelMϕk(z),
j 6=k, which is inadequate. Model selection procedures ignore this potential error be-
cause, despite edicts to the contrary (see Burnham and Anderson, 2002), their norm-
based minimization is tantamount to testing comparisons among the models within
the prespecified family using Neyman-Pearson (N-P) testing, but without ‘controlling’
the relevant error (type I and II) probabilities; see section 3.6.

3.5 Selection within a misspecified family of models
Example 3 (continued). Consider using the Normal/Linear Regression model (table
2) to estimate the relationship between yt-the population of the USA and xt-a special
predictor, using annual data for 1955-1989 (see Mayo and Spanos, 2004):

M(1) : yt = 167.115
(.610)

+1.907
(.024)

xt + but, R2=.995, s=1.77, n=35; (27)

Despite the high R2, consider exploring the possibility of using Akaike-type proce-
dures, to choose m=K-1 within the broader family of models:

M(m) : yk = α0 +
Pm

i=1 αiψi(xk) + εk, (28)

where {ψi(xk), i=1, ...,m} are orthogonal Chebyshev polynomials; see Powell (1981).
The results in table 1 indicate that all three criteria AIC, BIC and HQIC, as well

as the modified AIC in (24), select the same model: M(4)
Applying certain simple Mis-Specification (M-S) tests (see Spanos and McGuirk,

2001), it can be shown (table 3) that (27) is statistically misspecified (assumptions
[4]-[5] are invalid); p-values are reported in square brackets. Because of the statistical
inadequacy of (28), the Akaike-type model selection procedures will always make
fallacious selections; this issue was first highlighted by Lehmann (1990), p. 162. Note
that this criticism extends to all the above selection procedures (see Rao and Wu,
2001). Statistical misspecification will give rise to unreliable inferences concerning
the value of m with probability one.

Table 1 - AIC, BIC and HQIC based on (28)
Model AICn = ln(bσ2) + [2K/n], rank BICn rank HQICn rank
M(1) ln(2.9586) + [2(3)/35]=1.256 5 1.389 4 1.302 4
M(2) ln(2.5862) + [2(4)/35]=1.179 3 1.357 3 1.240 3
M(3) ln(2.5862) + [2(5)/35]=1.236 4 1.458 5 1.313 5
M(4) ln(1.8658) + [2(6)/35]=0.967 1 1.233 1 1.059 1
M(5) ln(1.8018) + [2(7)/35]=0.989 2 1.300 2 1.096 2
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Table 2 - Normal/Linear Regression Model

Statistical GM: yt = β0 + β
>
1 xt + ut, t∈N.

[1] Normality: (yt | Xt= x) v N(., .),
[2] Linearity: E (yt | Xt= xt) = β0 + β

>
1 xt,

[3] Homoskedasticity: V ar (yt | Xt= x) = σ2,
[4] Independence: {(yt | Xt= x) , t∈N} indep. process,
[5] t-invariance: (β0, β1, σ

2) are not changing with t,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ t∈N.

Table 3 - Mis-Specification (M-S) testing results
Normality: D0AP (s)=− .482[.314],
Linearity: F (1, 29)=4.608[.049]
Heteroskedasticity: F (2, 30) = .802[.458],
Independence: F (1, 31) = 6.608[.015]∗,
t-invariance: F (1, 29) = 156.273[.000]∗

3.6 Selection within a well-specified family of models
Although the scenario that the prespecified family of models is well-specified is highly
unlikely in practice, it is interesting to demonstrate that even in this best case scenario
model selection procedures are likely give rise to misleading inferences.
Example 3 (continued). Using statistical adequacy as the criterion for ‘best’, one

is led to the family of statistical models (see Mayo and Spanos, 2004):

M(k, c) : yt = β0 + β1xt +
Pk

i=1 δit+
Pc

i=1[aiyt−i+γixt−i]+εt, t∈N, (29)

which is the Dynamic Linear Regression (DLR) model with trends; see Spanos (1986).
The question is whether Akaike-type criteria will choose the correct model, knowing
that an adequate model [it accounts for the chance regularities in the data] exists.

Table 4 - AIC, BIC and HQIC based on (29)
Model AICn = ln(bσ2) + (2K/n), rank BICn rank HQICn rank
M(1, 1) ln(.057555)+[2(6)/35]=-2.512 9 −2.246 9 −2.420 9
M(1, 2) ln(.034617)+[2(8)/35]=-2.906 3 −2.551 1 −2.784 2
M(1, 3) ln(.033294)+[2(10)/35]=-2.831 5 −2.387 6 −2.678 6
M(2, 1) ln(.040383)+[2(7)/35]=-2.809 6 −2.498 3 −2.702 5
M(2, 2) ln(.033366)+[2(9)/35]=-2.886 4 −2.486 4 −2.748 4
M(2, 3) ln(.032607)+[2(11)/35]=-2.795 7 −2.306 8 −2.626 7
M(3, 1) ln(.042497)+[2(8)/35]=-2.701 8 −2.346 7 −2.578 8
M(3, 2) ln(.029651)+[2(10)/35]=-2.947 1 −2.502 2 −2.793 1
M(3, 3) ln(.026709)+[2(12)/35]=-2.937 2 −2.404 5 −2.753 3

The results in table 4 indicate that the model selected by the AIC and HQIC
criteria is M(3, 2), and M(1, 2) is selected by the BIC. It turns out that the model
selected on statistical adequacy grounds is M(1, 2) :
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yt = 17.687
(5.122)

+ .193
(.080)

t− .000
(.036)

xt + 1.496
(.147)

yt−1 + .013
(.037)

xt−1 − .596
(.134)

yt−2+

+.014
(.035)

xt−2 + bεt, R2 = .9999, s = .154, n = 35.
(30)

The statistical adequacy of (30) is established via thorough Mis-Specification (M-S)
testing where all the assumptions underlying the DLR model are validated vis-a-vis
the data in question; see Mayo and Spanos (2004).
Parenthetically, the N-P test for the joint significance of the coefficients of (xt, xt−1, xt−2)

in (30) yields F (3, 26)=.142[.934], which indicates that the special predictor is totally
unrelated to the US population; negating the earlier (unreliable) inference that xt is
an excellent predictor, based on the misspecified model (27).
The questions that naturally arise are ‘what led to the different choices?’, and ‘why

did the BIC select the correct model?’ The answer is that Akaike-type procedures
are often unreliable because their minimization of a normed-based function is tan-
tamount to comparisons among the models within the prespecified family {Mϕi(z),
i=1, 2, ...m}, based on Neyman-Pearson (N-P) hypothesis testing with unknown error
probabilities. To illustrate that consider the question of choosing between:

M2 : yt = β0 + β1xt + β2x
2
t + β3x

3
t + ut,

M1 : yt = α0 + α1xt + ut,
(31)

and assume that on the basis of the AIC procedure model M2 was selected, i.e.£
n ln(bσ21) + 2K1

¤
>
£
n ln(bσ22) + 2K2

¤
. (32)

This selection implies that (bσ21/bσ22) > exp([2(K2-K1)] /n), and one can relate the AIC
decision in favor of M2 to the rejection of the null:

H0 : β2 = β3 = 0, vs. H1 : β2 6= 0, or β3 6= 0,
by the N-P test based on the F statistic (see Spanos, 1986, p. 426):

F (z) = ([bσ21-bσ22]/bσ22)( n-K2

K2-K1
), C1 := {z :F (z) > cα}, (33)

where cα denotes the critical value for significance level α; e.g. for α=.05⇒ cα=3.32.
This suggests that the AIC procedure amounts to rejecting H0 when:

F (z) > kAIC , where kAIC=( n-K2

K2-K1
)
h
exp

³
2(K2-K1)

n

´
-1
i
.

For n=35, kAIC=1.816 implies that the implicit type I error is .180. Note that this
coincides with the probability that the AIC will overfit by 2 parameters. The AIC
procedure is inconsistent because, asymptotically the probability of selectingM1 when
true is less than one: lim

n→∞
P(F (Z) ≤ kAIC ;H0) < 1; see McQuarrie and Tsai (1998).

The same argument as in (32) yields the implicit critical values for BIC and HQIC:

kBIC=(
n−K2

K2-K1
)
h
exp

³
(K2-K1) ln(n)

n

´
-1
i
, kHQIC=(

n−K2

K2-K1
)
h
exp

³
2(K2-K1) ln(ln(n))

n

´
-1
i
,

where for n=35, kBIC=3.379, kHQIC=2.340. Hence, the implicit type I error proba-
bilities for BIC and HQIC are .047 and .114, respectively. The BIC error probability
of .047 is close to the traditional significance levels used in establishing the statistical
adequacy of (30), and might explain why the BIC selected the correct model in this
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particular example. However, this result is coincidental, and should not be used as an
argument in favor of the BIC because these implicit error probabilities are generally
unknown, and they depend crucially on both n and K. As shown in section 5.2, the
BIC leads the inference astray when K changes.
The main conclusion one can draw from the above empirical examples is that

the Akaike-type procedures will only circumstantially select a statistically adequate
model and always unbeknown to the modeler. The next section summarizes the error
statistical modeling framework where statistical adequacy can be deliberately secured
with a view to ensure the reliable appraisal of substantive information.

4 Bridging over statistical and structural models
In the error statistical framework the reconciliation between the statistical and sub-
stantive information is viewed in the broader context of bridging the gap between
theory and data z0 using a sequence of interconnecting models: theory, structural
(estimable) and statistical models; see Spanos (1986).

4.1 Statistical vs. substantive information
It is generally acknowledged that both substantive and statistical information play
important roles in learning from data, and in practice empirical models constitute an
amalgam of both sources of information, but the role of each type of information has
not been delineated in modern statistics; Lehmann (1990), Spanos (2006a).
In the curve-fitting problem, the family of models is determined mainly by ap-

proximation theory (substantive) information based on the ‘smoothness’ of y=h(x),
(x, y)∈RX×RY . For instance, in example 2 this theory asserts that when h(x)∈L2(-
∞,∞), the Hermite orthogonal polynomials provide a complete base set, and the
2-norm ensures the existence and uniqueness of gm(x;α)=

Pm
i=0 αihi(x). None of

these choices, however, has anything to do with the chance regularities in data z0.

Fig. 1: t-plot of xt Fig. 2: t-plot of yt

Broadly speaking, statistical information refers to the chance regularity patterns
exhibited by the data when viewed as realizations of generic stochastic processes,
without any information pertaining to what they represent (measure) substantively.
For instance, in figure 1 one can see a typical realization of a process {Xk, k∈N}
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assumed to be NIID, but figure 2 depicts a typical realization of a process {Yk, k∈N}
assumed to be Normal, Markov and Stationary. This can be discerned from these
plots using analogical reasoning; see Spanos (1999), ch. 5.

4.2 From a theory to a structural model
The term theory is used generically as any claim conjectured to elucidate a phenom-
enon of interest. When one proposes a theory to explain the behavior of an observable
variable, say yk, one demarcates the segment of reality to be modeled by selecting the
primary influencing factors xk, aware that there might be numerous other potentially
relevant factors ξk (observable and unobservable) influencing the behavior of yk.
A theory model corresponds to an idealized mathematical representation of a phe-
nomenon of interest that facilitates ‘learning’ whose generic form is:

yk = h∗(xk, ξk), k∈N. (34)

The guiding principle in selecting the variables in xk is to ensure that they account
for the systematic behavior of yk, and the omitted factors ξk represent non-essential
disturbing influences which, collectively, have only a non-systematic effect on yk. The
potential presence of a large number of contributing factors (xk, ξk) explains the
conjuring of ceteris paribus clauses. This line of reasoning transforms the theory
model (34) into a structural (estimable) model of the form:

yk = h(xk;ϕ) + �(xk,ξk), k∈N, (35)
where h(.) denotes the postulated functional form, ϕ stands for the structural para-
meters of interest. The substantive error term, defined to represent all unmodeled
influences, is often a function of both xk and ξk:

{�(xk,ξk) = yk − h(xk;ϕ), k∈N} . (36)
How does this relate to the approximation error in (9)? As argued above, the

choice of gm(xk;α)=
Pm

i=0 αiφi(xk) relied on substantive (mathematical) information
and thus {εk(xk,m)=yk−gm(xk;α), k∈N} , constitutes a special case of (36), where
the degree m of gm(xk;α) plays the same role as ξk in (35), in the sense that m
stands for the omitted higher order terms φi(x), i=m+1,m+2, ...
For (35) to provide a meaningful model for yk, �(xk,ξk) needs to be non-systematic:

[i] �(xk,ξk) v IID(0, σ2), ∀(xk,ξk)∈Rx×Rξ. (37)

In addition, one needs to ensure that the GM (35) is ‘nearly isolated’ (Spanos, 1995):

[ii] E(�(xk,ξk)·h(xk;φ))=0, ∀(xk,ξk)∈Rx×Rξ. (38)

The assumptions [i]-[ii] are clearly non-testable vis-a-vis data z0:=(z1, z2, ..., zn)
because their confirmation would involve all possible values of both xk and ξk. To
render them testable vis-a-vis data z0 one needs to embed the structural model (35)
into a statistical model built on chance regularities in z0 reflecting the probabilis-
tic structure of {Zk:=(yk,Xk), k∈N}; a crucial modeling move that also addresses
questions (A)-(B) of section 3.1. The embedding depends crucially on the nature of
the available data z0 and their relation to the theory in question; sometimes the gap
between them might be unbridgeable (see Spanos, 1995).
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4.3 Embedding a structural into a statistical model
The nature of the embedding itself depends on whether the data z0 are the result of
an experiment or they are observational in nature, but the aim in both cases is to
find a way to transform the substantive error �(xk,ξk), for all (xk,ξk)∈Rx×Rξ into a
generic IID process without the quantifier; see Spanos (2006a).
Experimental data. In the case where one can perform experiments, controls

and ‘experimental design’ techniques such as replication, randomization and blocking,
can often be used to ‘neutralize’ and ‘isolate’ the phenomenon from the potential
effects of ξk by ensuring that the uncontrolled factors cancel each other out; see
Fisher (1935). The objective is to transform (Ã) �(xk,ξk) into a generic IID error:
(�(xk,ξk) kexperimental controls & designs)Ã εkvIID(0, σ2), k=1, ..., n. (39)

This, in effect, embeds the structural model (35) into a statistical model Mθ(z) :

yk = h(xk;θ) + εk, εk v IID(0, σ2), k = 1, 2, ..., n, (40)
where the statistical error term εk in (40) is qualitatively very different from the
substantive error term �(xk,ξk) in (35), because εk is no longer a function of (xk,ξk),
and its assumptions are rendered testable vis-a-vis data z0; see Spanos (2006a). A
widely used special case of (40) is the Gauss Linear model (12).
Observational data. In the case of observational (non-experimental) data z0

the embedding takes a different form in the sense that the experimental control and
intervention are replaced by judicious conditioning on an appropriate information set
Dk; often generated by an observable process, say σ(Xk). The generating mechanism
of the embedding statistical model takes the general form:

yk = E(yk | Dk) + uk, k∈N, (41)
where μk=E(yk | Dk), denotes the systematic component andDk is a proper subset of
the σ-field F in the probability space (S,F,P(.)) , on which the process {Zk, k∈N} is
defined. Dk is chosen in such as way so as to render the error process {uk, Dk, k∈N}:

uk = yk −E(yk|Dk), (42)
non-systematic in the sense of being a Martingale-difference (M-d) process relative
to Dk; see Doob (1953). The statistical error term is not treated as as an au-
tonomous but as a derived process whose probabilistic structure is determined by
that of the observable stochastic process {Zk, k∈N}. For instance, in the case of
the process {Zk:= (yk,Xk) , k∈N}, where E(Zk) < ∞, the conditioning informa-
tion set Dk=σ(yk−1, yk−2,..., y1,Xk, ...,X1), defines a M-d process in the sense that
E(uk|Dk)=0, and E(ukμk|Dk)=0, k∈N, follows from (42).

In specifying a statistical modelMθ(z) one has a twofold objective in mind:
[I] to account for the chance regularities in data z0 by choosing a probabilistic
structure for the stochastic process {Zk, k∈N} so as to render the data z0
a truly typical realizations thereof, and
[II] to parameterize the probabilistic structure of {Zk, k∈N} in an attempt to
specify an adequate statistical modelMθ(z) that would embed (nest) the
structural model of interestMϕ(z) in its context.
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It is important to emphasize that the functional form of the systematic component
E(yk|Dk) will be determined exclusively by the statistical information described by
the joint D(Z1,Z2, ...,Zn;φ). For instance, when {Zk, k∈N} is IID and Dk=σ(Xk),
the functional form of the regression and skedastic functions, E(yk|Xk)=h(Xk),
V ar(yk|Xk)=g(Xk), are determined by D(yk, Xk;ψ) since:

D(yk|Xk;θ)= [D(yk,Xk;ψ)/
R
yk∈RY D(yk,Xk;ψ)dyk], ∀(yk, xk)∈Ry × RX .

WhenD(yk,Xk;ψ) is assumed to be Normal, E(yk|Xk)=β0+β1Xk and V ar(yk|Xk)=σ
2,

giving rise to the Normal/Linear Regression (N/LR) model (table 2). Indeed, the
N/LR model can be formally viewed as a tripartite reduction of the form:

D(Z1,Z2, ...,Zn;φ)
NIIDÃ

Qn
k=1D(yk| Xk;θ).

This gives rise to the N/LR model, specified in terms of assumptions [1]-[5] (table
2). The relationship between the observable process {(yk| Xk= xk), k∈N} and the
statistical error process, as defined in (42), is:

(yk| Xk= xk) v NI(β0+β>1 xt, σ2)⇒ (uk| Xk= xk) v NIID(0, σ2).
In view of the relationship between the probabilistic structure of the process

{Zk, k∈N} and the model assumptions, one can use the chance regularities exhibited
by data z0 to guide the selection of an appropriate statistical model. For example, if
the scatter plot of z0 looks like figure 3, the N/LR model would be an appropriate
choice, but if it looks like figure 4, N/LR model will be inappropriate, irrespective
of the structural model. This is because fig. 4 exhibits a typical realization of an
Exponential IID process whose regression and skedastic functions are (Spanos, 1999):

E(yk|Xk)=
(1+θ+θXk)
(1+θXk)2

, V ar(yk|Xk)=
[(1+θ+θXk)

2−2θ2]
[1+θXk]4

, xk∈R+, θ > 0.

Fig. 3: Scatter-plot of (xk, yk) Fig. 4: Scatter-plot of (xk, yk)

In this sense the statistical model Mθ(z) is built primarily on statistical infor-
mation, and has ‘a life of its own’ in the sense that it constitutes a parameterization
of a stochastic process {Zk, k∈N}, underlying data z0, chosen to account for the
chance regularities in data z0, which can be gleaned in figures 1-4. In this sense, a
statistically adequate modelMθ(z) provides a form of statistical knowledge, against
which the substantive information can be appraised. Hence, substantive information
enhances learning from data when it does not contravene statistical knowledge.
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4.4 Reconciling substantive and statistical information
Substantive subject matter information is crucially important in learning from data
about phenomena of interest, but no systematic learning can take place in the context
of a statistically misspecified model. For reliable assessment of substantive questions
of interest it is imperative to have a statistically adequate modelMθ(z) which is built
on separate information, and therefore, can be used to provide the broader inductive
premises for evaluating substantive adequacy. The latter requires the structural model
Mϕ(z) to provide a veritable explanation for the phenomenon of interest, and neces-
sitates probing (potential) errors in bridging the gap between the two; this includes
external validity, confounding effects and other concerns (see Spanos, 2006b-c).
The first step in assessing substantive information is to embed the structural

Mϕ(z) into a statistical modelMθ(z) via reparametrization/restriction, in the form
of the implicit function G(ϕ,θ)= 0 where ϕ and θ denote the structural and statis-
tical parameters, respectively. This provides a link betweenMθ(z) and the phenom-
enon of interest that takes the form of identification:

Does the implicit function G(ϕ,θ) = 0 define ϕ uniquely in terms of θ?

Often, there are more statistical than structural parameters, and that enables one to
test the additional substantive information using the overidentifying restrictions:

H0: G(ϕ,θ)= 0, vs. H1: G(ϕ,θ) 6= 0.
This error statistical view of identification differs from the traditional textbook

notion (see Greene, 2003) in so far as it requires that the underlying statistical model
(the reduced form) be validated vis-a-vis data z0 for the link between structural pa-
rameters and the phenomenon of interest to be rendered trustworthy; Spanos (1990).

5 Model specification vs. model selection
5.1 Statistical model specification
Statistical information refers the chance regularities (recurring patterns) exhibited
by data y0 when viewed as a realization of a generic stochastic process {Yk, k∈N},
irrespective of what the data quantify (substantively). This enables one to provide a
purely probabilistic construal of a statistical modelMθ(y), by viewing it as a para-
meterization of the probabilistic structure of the process {Yk, k∈N}, as summarized
by f(y;θ). Mθ(y) is viewed as an idealized probabilistic description of the stochastic
mechanism that gave rise to data y0. In this sense, Mθ(y) is built exclusively on
statistical systematic information in data y0, and its parameterization chosen so as
to embed the structural modelMϕ(y) in its context; see section 4.
Example 5. Specification begins with a data set y0:=(y−p, y−p+1, ..., y1, ..., yn),

say figure 2, and poses the question ‘what kind of probabilistic structure for {Yt, t∈N}
would render that data a typical realization thereof?’ Using analogical reasoning, one
can conjecture that {Yt, t∈N} being Normal (N), Markov(p) (M) and Stationary (S),
would do just that. Imposing these assumptions yields the following reduction:

f(y1, y2, ..., yn;φ)
M&S
= fp(y1, y2, ..., yp;θp)

Qn
t=p+1 f(yt|yt−1, ..., yt−p;θ),
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where the Normality of {Yt, t∈N} implies that for Yp
t−1:=(Yt−1, ..., Yt−p):

(Yt | Yp
t−1) v N (α0 +

Pp
t=1 αtYt−t, σ

2
0) , t∈N.

This reduction gives rise to the AR(p) model in terms of complete and internally
consistent set of testable [vis-à-vis data y0] probabilistic assumptions [1]-[5] (table 5);
this being necessary for statistical adequacy purposes.
This form of specification often demands (i) recasting assumptions about un-

observable errors into equivalent assumptions in terms of the observable process
{Yk, k∈N}, as well as (ii) unveiling hidden assumptions; see Spanos (1986). To
illustrate this issue note that assumptions [1]-[5] (table 5) imply that the error term
{(ut|Ym

t−1), t∈N} defines a [i] Normal (N), [ii] Martingale-difference (M-d) process:
(ut | Yp

t−1) v NM-d (0, σ20) , t∈N, (43)

but the converse is not true. The error assumptions in (43) do not provide a complete
set of assumptions for the AR(p) model, because [i[-[ii] allow for t-varying coefficient
parameters, in the sense that they hold even if ut=Yt−α0(t)−

Pp
k=1 αk(t)Yt−k. Hence,

in terms of (43), the crucial assumption [5] is veiled, and thus rarely tested in practice.

Table 5 - Normal/AutoRegressive Model

Statistical GM: Yt = α0 +
Pp

k=1 αkYt−k + ut, t∈N.
[1] Normality:

¡
Yt | Yp

t−1
¢
vN(., .), yt∈R,

[2] Linearity: E
¡
Yt | Yp

t−1
¢
= α0 +

Pp
k=1 αkYt−k,

[3] Homoskedasticity: V ar
¡
Yt | Yp

t−1
¢
= σ20,

[4] Markov dependence: {Yt, t∈N} is a Markov(p) process,
[5] t-invariance: (α0, α1, ..., αp, σ

2
0) are not changing with t,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭t∈N.

5.2 Statistical adequacy and model selection
In securing statistical adequacy the optimal value of p is decided as part of the val-
idation process for all [1]-[5] assumptions (table 5), with particular emphasis placed
on [4]; see Andreou and Spanos (2003). It can be shown that thorough M-S test-
ing can guard against both underfitting and overfitting since both induce detectable
systematic information in the residuals; see Spanos (1986).
This perspective questions the role of Akaike-type model selection procedures in

determining p, which are widely used in econometrics (see Greene, 2003, Lutkepohl,
2005). As argued above, one of the reasons why the capacity of these procedures to
ensure the reliability of inference is severely impaired is because statistical adequacy
is ignored. What if one were to secure the statistical adequacy of the prespecified
family of models {Mϕi(z), i=1, 2, ...m} first, and then apply these model selection
procedures? The fact of the matter is that establishing statistical adequacy renders
these model selection procedures redundant. But even if we ignore that, model se-
lection is likely to yield unreliable inference because, as argued above, their selection
is tantamount to applying N-P testing with unknown error probabilities. Indeed, the
fact that BIC selected the correct model in table 4 was largely coincidental.

20



Example 3 (continued). To illustrate the unreliability of Akaike-type model
selection procedures further, let yt - the US population annual data (1955-1989), and
consider the selection of a model within the AR(k, p) family:

AR(k, p) : Yt = δ0 +
Pk

i=1 δit+
Pp

i=1 aiYt−i + εt. (44)

In total accord with (30), AR(1, 2) is chosen on statistical adequacy grounds:

Yt = 12.279
(3.507)

+ .153
(.047)

t+ 1.560
(.123)

Yt−1 − .628
(.113)

Yt−2 +bεt, R2=.999, s=.1477. (45)

In contrast, all three procedures, AIC, BIC and HQIC (see table 6) selected the
AR(3, 2) model. By comparing the results of tables 4 and 6, it becomes clear that
dropping the insignificant terms (xt, xt−1, xt−2) from (30), to render the model more
parsimonious, resulted in the BIC switching its selection to the wrong model!

Table 6 - AIC, BIC and HQIC based on (44)
Model AICn = ln(bσ2) + [2K/n], rank BICn rank HQICn rank
AR(1, 1) ln(.038545)+[2(4)/35]=-3.027 8 −2.850 7 −2.966 7
AR(1, 2) ln(.019320)+[2(5)/35]=-3.661 3 −3.439 2 −3.584 3
AR(1, 3) ln(.018818)+[2(6)/35]=-3.630 4 −3.363 3 −3.538 4
AR(2, 1) ln(.036340)+[2(5)/35]=-3.029 7 −2.807 8 −2.952 8
AR(2, 2) ln(.019150)+[2(6)/35]=-3.613 5 −3.346 5 −3.521 5
AR(2, 3) ln(.018795)+[2(7)/35]=-3.574 6 −3.263 6 −3.467 6
AR(3, 1) ln(.035610)+[2(6)/35]=-2.992 9 −2.726 9 −2.900 9
AR(3, 2) ln(.015525)+[2(7)/35]=-3.765 1 −3.454 1 −3.658 1
AR(3, 3) ln(.015525)+[2(8)/35]=-3.708 2 −3.353 4 −3.585 2

5.3 Mis-Specification (M-S) testing and Respecification
The question that one might naturally pose at this stage is that, despite the apparent
differences sketched above, both model selection and the model specification proce-
dures come down to comparing one statistical model to another to find out which one
is more appropriate. Such a view represents a misleading oversimplification.
A closer look at the above specification argument for AR(p), reveals that one is not

choosing a statistical model as such, but a probabilistic structure for the stochastic
process {Yk, k∈N} that would render data y0, a typical realization thereof;Mθ(y) is
a particular parameterization of this structure. This standpoint sheds very different
light on the problem of underdetermination in this context. There can be two statis-
tically adequate models only when they represent two alternative parametrizations
of the same probabilistic structure; see Spanos (2007a). The choice between them is
made using other criteria, including the substantive questions of interest.
The selected modelMθ(y) is viewed as an element of the set P(y) which includes

all possible statistical models that could have given rise to data y0. But how does one
narrow down a possibly infinite set P(y) to one modelMθ(y)? The narrowing down
is attained by partitioning P(y) using probabilistic assumptions from three broad
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categories: Distribution (D), Dependence (M) and Heterogeneity (H); see Spanos
(1995).
Example 6. The partitioning by reduction is illustrated in figure 5 in the case the

simple Normal model which is based on the reduction assumptions that {Yk, k∈N}
is (D) Normal, (M) Independent and (H) Identically Distributed, denoted by
Yk v NIID(μ, σ2), k∈N; a model that seems appropriate for the data in figure 1.
The tripartite partitioning also plays a crucial role inM-S testing based on:

H:f∗(y)∈Mθ(y) vs. H:f∗(y)∈ [P(y)−Mθ(y)] , (46)
where f∗(y) denotes the ‘true’ distribution of the sample. The probing beyond the
boundaries of Mθ(y) raises several conceptual and technical issues concerning its
effectiveness and reliability. The partitioning of P(y) creates a framework wherein
one can formally assess the model assumptions, relating to {Yk, k∈N}, using informed
M-S testing, because it provides an exhaustively complete probing strategy. Changing
the original reduction assumptions in deliberative ways, in light of the information
one can glean from exploratory data analysis, gives rise to effective M-S tests which
can eliminate an infinite number of alternative models at a time; see Spanos (1999).
The most inefficient way to do this is to attempt to probe [P(y)−Mθ(y)] one model
at a timeMϕi(y), i=1, 2, .. since there is an infinity of models to search through.

N o n -N o r m a l

D e p e n d e n t

N o n - ID
Id e n t ic a l ly  D is t r ib u te d

P

In d e p e n d e n t

N o r m a l

N I I D

A R (p )

( )y

Fig. 5 - Specification by partitioning

Respecification amounts to returning to P(y) and recasting the original re-
duction assumptions in an attempt to account for statistical systematic information
unaccounted for by the original model. For instance, the Normal, AR(p) model in
table 5 can be viewed as a respecification of the simple Normal model where the NIID
assumptions have been replaced by the assumptions that {Yk, k∈N} is (D) Normal,
(M) Markov and (H) Stationary; see figure 5.
This error statistical strategy of M-S testing and respecification by re-partitioning

is in complete contrast to the traditional textbook approach based on ad hoc diag-
nostics and ‘furbishing up’ the original model using ‘error-fixing’ techniques. It can
be shown that ad hoc and partial M-S testing can easily give rise to unreliable di-
agnoses, and the traditional error-fixing strategies, such as error-autocorrelation and
heteroskedasticity corrections, as well as the use of heteroskedasticity consistent stan-
dard errors (see Greene, 2003), do not address the unreliability of inference problem.
If anything, they often make matters worse; see Spanos and McGuirk (2001).

22



5.4 The error statistical approach: taking stock
Returning to the methodological questions (I)-(V) raised in the introduction, one can
summarize the answers proposed by the error statistical approach as follows.
(I)* The set of all possible models P(z) can be narrowed down to a single model

Mθ(z) using a three-way partitioning based on probabilistic assumptions pertaining
to the process {Zk, k∈N} underlying data z0. By definition P(z) includes a true
probabilistic structure for {Zk, k∈N} — one that would render data z0 a truly typical
realization thereof — but there is no guarantee that one will always be able to parame-
terize this structure to get an operational model, whatever the chance regularities in
data z0. That will depend on whether this true probabilistic structure has sufficient
invariant features to be adequately parameterized by constant parameters θ.
(II)* The adequacy of such a statistical modelMθ(z) is assessed a posteriori by

probing its probabilistic assumptions (e.g. [1]-[5] in tables 2 and 5) vis-a-vis data z0
using thorough M-S testing to secure their validity. Statistical adequacy answers the
question ‘whenMθ(z) accounts for the chance regularities in data z0.’
(III)* Foisting the substantive information on the data by estimating the struc-

tural modelMϕ(z) directly, is invariably a rash strategy because statistical specifi-
cation errors are likely to undermine the prospect of reliably evaluating the relevant
errors for primary inferences. When modeling with observational data, the estimated
Mϕ(z) is often both statistically and substantively inadequate, and one has no way
to delineate the two; is the theory wrong or are the (implicit) inductive premises
invalid for data z0? To avert this impenetrable dilemma, error statistics proposes to
distinguish, ab initio, between statistical and substantive information and then bridge
the gap between them by a sequence of interconnecting models which enable one to
delineate and probe for the potential errors at different stages of modeling. From the
theory side, the substantive information is initially encapsulated by a theory model
and then modified into a structural one Mϕ(z) to render it estimable with data
z0. From the data side, the statistical information is distilled by a statistical model
Mθ(z) whose parameterization is chosen with a view to renderMϕ(z) a reparame-
trization/restriction thereof. The statistical adequacy of Mθ(z) is secured first in
order to ensure the reliability of the procedures for appraising substantive claims.
(IV)* Error statistics proposes a blending in of the Fisherian and Neyman-Pearson

(N-P) perspectives that weaves a coherent frequentist inductive reasoning anchored
firmly on error probabilities. The key is provided by realizing that the p-value is a
post-data and the type I and II are pre-data error probabilities, and that they fulfill
crucial complementary roles. Pre-data error probabilities are used to appraise the
generic capacity of inference procedures, and post-data error probabilities are used
to bridge the gap between the coarse ‘accept/reject’ and evidence provided by data
z0 for or against substantive claims; see Cox and Mayo (2009).
(V)* Post-data error probabilities can be used to address both the fallacy of ac-

ceptance and the fallacy of rejection, using a post-data evaluation of inference based
on severe testing reasoning. This amounts to establishing the smallest (largest) dis-
crepancy γ ≥ 0 from H0 warranted by data z0, associated with the N-P decision to
accept (reject) H0; see Mayo and Spanos (2006), Mayo and Cox (2006).
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6 Methodological issues raised by M-S testing
As argued above, statistical adequacy renders the relevant error probabilities ascer-
tainable by ensuring that the nominal error probabilities are approximately equal
to the actual ones. Spanos and McGuirk (2001) demonstrated that even seemingly
minor departures from the assumptions ofMθ(z) can have devastating effects on the
reliability of inference; see also Spanos (2009). In light of these, why is there such un-
willingness to secure statistical adequacy using M-S testing in applied econometrics?
One possible explanation is that M-S testing is invariably viewed as undefendable

against several methodological charges including double-use of data, infinite regress,
circularity and pre-test bias; see Kennedy (2008). Let us revisit these issues.

6.1 M-S testing and double-use of data
In the context of the error statistical approach it is certainly true that the same data
z0 are being used for two different purposes: (a) to test primary hypotheses in terms
of the unknown parameter(s) θ, and (b) to assess the validity of the prespecified
model Mθ(z), but ‘does that constitute an illegitimate double-use of data?’ The
short answer is no, because, first, (a) and (b) pose very different questions to data
z0, and second, the probing takes place within vs. outsideMθ(z), respectively.
Neyman-Pearson testing assumes that Mθ(z) is adequate, and poses questions

within its boundaries. In contrast, the question posed by M-S testing is whether
or not the particular data z0 constitute a ‘truly typical realization’ of the stochastic
mechanism described byMθ(z), and the probing takes place outside its boundaries,
i.e. in [P(z)−Mθ(z)]; see Spanos (2000). Indeed, one can go as far as to argue that
the answers to the questions posed in (a) and (b) rely on distinct information in z0.
Spanos (2007b) showed that, for many statistical models, including the simple

Normal and the Normal/Linear Regression (table 2) models, M-S testing can be based
solely on a maximal ancillary statistic R(Z):=(R1, ..., Rn−m), which is independent
of a complete sufficient statistic S(Z):=(S1, ..., Sm) used solely for primary inferences.
This is the case when the distribution of the sample f(z;θ) simplifies as follows:

f(z;θ) = |J | · f(s, r;θ) = |J | · f(s;θ) · f(r), ∀ (s, r)∈Rm
s ×Rn−m

r , (47)

where |J | denotes the Jacobian of the transformation Z→ (S(Z), R(Z)). This means
that all primary inferences can be based exclusively on f(s;θ), and f(r) (free of θ)
can be used to appraise the validity of the statistical model in question.
Example 4 (continued). For Zk v NIID(μ, σ2), k=1, ..., n, the minimal sufficient

statistic is S:=(Zn, s
2) and the maximal ancillary statistics isR(Z)=(bv3, ..,bvn), wherebvk=(√n(Zk−Zn)/s), k=1, 2, .., n, are known as the studentized residuals.

This view calls into question the argument by Claeskens & Hjort (2008), p. xi:
“Uncertainties involved in the first step [specification] must be taken into account
when assessing distributions, confidence intervals, etc. That such themes have
been largely underplayed in theoretical and practical statistics has been called
‘the quiet scandal of statistics.’ ... Model averaging can help to develop methods
for better assessment and better construction of confidence intervals, p-values, etc.”
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As argued above, there is nothing scandalous about separating the two steps, it’s a
matter of judicious modeling. Allowing specification errors to vitiate inferential error
probabilities will derail any learning from data about the underlying mechanism, and
no amount of averaging over misspecified models can redeem the reliability of infer-
ence. Even in the best case scenario whereMφ(z)=λMθ0(z)+(1-λ)Mθ1(z), 0<λ<1,
Mθ0(z) is statistically adequate butMθ1(z) is misspecified, the result of averaging is
to ruin the reliability of inference based onMθ0(z);Mφ(z) is a misspecified model.
Learning from data can only occur when the inferential error probabilities relate di-
rectly to an adequate description of the underlying mechanism, and not when the
assumed modelMφ includesMθ1(z) which could not have contributed in generating
data z0. This is not to deny that model averaging can play a role in the context
of substantive adequacy, when dealing with statistically adequate models based on
different data{Mθi(zi), i=1, ...,m}, e.g. regressions with different regressors.

6.2 M-S testing and infinite regress/circularity charges
The infinite regress charge is often articulated by claiming that each M-S test relies
on a set of assumptions, and thus it assesses the assumptions of the model Mθ(z)
by invoking the validity of its own assumptions, trading one set of assumptions with
another ad infinitum. Indeed, this reasoning is often circular because some M-S tests
inadvertently assume the validity of the very assumption being tested!
A closer look at the reasoning underlying M-S testing reveals that both charges

are misplaced. First, the scenario used in evaluating the type I error invokes no
assumptions beyond those ofMθ(z), since every M-S test is evaluated under:

H0: all the probabilistic assumptions ofMθ(z) are valid.

Example 7. The runs test, using the residuals from anAR(p) model {bεt, t=1, 2, ..., n},
is an example of an omnibus M-S test for assumptions [4]-[5] (table 5) based a test
statistic: ZR(Y)= [R−E(R)]/

p
V ar(R); see Spanos (1999). For n ≥ 40, the type I

error probability evaluation is based on:

ZR(Y) =
R−([2n−1]/3)√
[16n−29]/90

[1]-[5]v N(0, 1).

Second, the type II error (and power), for any M-S test, is determined by evalu-
ating the test statistic under certain forms of departures from the assumptions being
appraised [no circularity], but retaining the rest of the model assumptions, or choose
M-S tests which are insensitive to departures from the retained assumptions.
For the runs test, the evaluation under the alternative takes the form:

ZR(Y)
[1]−[3]&[4]-[5]v N(δ, τ 2), δ 6= 0, τ 2 > 0,

where [4] and [5] denote specific departures from these assumptions considered by the
test in question; note that the runs test is insensitive to departures from Normality.
The type of departures implicitly or explicitly considered by the M-S test in question
will affect the power of the test in a variety of ways, and one needs to apply a battery
of different M-S tests to ensure broad probing capacity and self-correcting in the sense
that the effect of any departures from the maintained assumptions is also detected.
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In practice, potential problems such as circular reasoning, inadequate probing and
erroneous diagnoses can be circumvented by employing:
(a) Judicious combinations of parametric, non-parametric, omnibus and simulation-

based tests, probing as broadly as possible and invoking dissimilar assumptions.
(b) Astute ordering of M-S tests so as to exploit the interrelationship among the

model assumptions with a view to ‘correct’ each other’s diagnosis.
(c) Joint M-S tests (testing several assumptions simultaneously) designed to avoid

‘erroneous’ diagnoses as well as minimize the maintained assumptions.
These strategies enable one to argue with severity that when no departures from

the model assumptions are detected, the validated model provides a reliable basis for
appraising substantive claims; see Spanos (2000), Mayo and Spanos (2004).

6.3 M-S testing/respecification and pre-test bias
The question sometimes raised is whether the above error statistical strategies of M-S
testing and respecification are vulnerable to the charge of pre-test bias. To discuss the
merits of this charge, consider the Durbin-Watson test for assessing the assumption
of no autocorrelation for the linear regression errors, based on (see Greene, 2003):

H0 : ρ = 0, vs. H1 : ρ 6= 0.
Step 1. The pre-test bias perspective interprets this M-S test as equivalent to choosing
between the following two models:

Mθ(x) : yt = β0 + β1xt + ut,
Mψ(z) : yt = β0 + β1xt + ut, ut=ρut−1 + εt.

(48)

Step 2. This is then formalized into a choice between two estimators of β1 in decision-
theoretic terms using the pre-test estimator :

β̈1=λbβ1 + (1−λ)eβ1, where λ=½ 1, if H0 is accepted
0, if H0 is rejected;

(49)

bβ1 is the OLS estimator under H0, and eβ1 is the GLS estimator under H1.
Step 3. This perspective claims that the relevant error probabilities revolve around the
Mean Square Error (MSE) of β̈1, whose sampling distribution is usually non-Normal,
biased and has a highly complicated variance; see Leeb and Pötscher (2005).
When viewed in the context of the error-statistical approach, the pre-test bias

argument, based on (49), seems highly questionable on several grounds.
First, it misconstrues M-S testing by recasting it as a decision-theoretic estimation

problem based on a loss function. As argued discerningly by Hacking (1965), pp. 31:
“Deciding that something is the case differs from deciding to do something.”
M-S testing poses the canonical question whetherMθ(z) is statistically adequate,

i.e. it accounts for the chance regularities in data z0 or not; it is not concerned with
selecting one of two models come what may. Having said that, one can potentially
construct a M-S test with a view to assess a subset of the model assumptions by
viewing an alternative model Mψ(z) as a result of narrowing [P(z)−Mθ(z)] (see
(46)) down to a single alternative model which (parametrically) encompassesMθ(z);
see Spanos (1999). As argued in section 3.4, however, when the ultimate inference is
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concerned with whetherMθ(z) is statistically adequate, the relevant errors are:
(i) the selected model is inadequate but the other model is adequate, or
(ii) both models are inadequate.

In contrast, E(β̈1−β1)2 evaluates the expected loss resulting from the modeler’s sup-
posedly tacit intention to use β̈1 as an estimator of β1. Is there a connection between
E(β̈1−β1)2, for all β1∈R, and the errors (i)-(ii)? The short answer is none. The
former evaluates the expected loss stemming from one’s (misguided) intentions, but
the latter pertain to the relevant error probabilities (type I & II) associated with the
inference that one of the two models is statistically adequate; Spanos (2009).
Second, the case where a M-S test supposedly selects the alternative (Mψ(z)), the

implicit inference is thatMψ(z) is statistically adequate; the raison d’être of model
validation. This constitutes a classic example of the fallacy of rejection [evidence
against H0 is misinterpreted as evidence for H1]. The validity of Mψ(z) needs to
be established separately by testing its own assumptions. Hence, in a M-S test one
should never accept the alternative without further testing; see Spanos (2000).
Third, the case where a M-S test supposedly selects the null (Mθ(z)), the implicit

inference is thatMθ(z) is statistically adequate. This inference is problematic for two
reasons. First, given the multitude of assumptions constituting a model, there is no
single M-S test based on a parametrically encompassing modelMψ(z), that could, by
itself, establish the statistical adequacy ofMθ(z). Second, the inference is vulnerable
to the fallacy of acceptance [no evidence against H0 is misinterpreted as evidence for
it]. It is possible that the particular M-S test did not reject Mθ(z) because it had
very low power to detect an existing departure. In practice this can be remedied
using additional M-S tests with higher power to cross-check the results, or/and use a
post-data evaluation of inference to establish the warranted discrepancies from H0.
In summary, instead of devising ways to circumvent the fallacies of rejection and

acceptance to avoid erroneous inferences, the pre-test bias argument embraces them
by recasting the original problem (in step 1), formalizes them (in step 2), and evalu-
ates risks (in step 3) that have no bearing on erroneously inferring that the selected
model is statistically adequate. The pre-test bias charge is ill-conceived because it
misrepresents model validation as a choice between two models come what may.

7 Summary and conclusions
Akaike-type model selection procedures often give rise to unreliable inferences pri-
marily because they: (a) assume away the problem of statistical model specification,
and (b) ignore the relevant error probabilities for the inferences reached.
Both problems can be addressed in the context of the error statistical framework,

which emphasizes the probing of the different ways an inference might be in error.
Using statistical adequacy as the sole criterion for assessing when a statistical model
Mθ(z) ‘accounts for the chance regularities in data z0’, renders the relevant error
probabilities ascertainable and can obviate statistical misspecification, thus securing
the reliability of inference. The key is provided by viewing Mθ(z) in terms of the
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probabilistic structure of the process {Zk, k∈N} underlying data z0, rendering its
assumptions testable and nesting parametrically the structural modelMϕ(z).
Trenchant M-S testing and informed respecification can secure the statistical ad-

equacy of Mθ(z), which can be subsequently used as a basis for reliable inductive
inference in probing substantive questions of interest; the disentanglement of the two
facets being particularly important to prevent specification errors from vitiating the
inferential error probabilities and thus forestall any learning from data.
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8 Appendix - Mathematical approximation theory:
a brief summary of relevant results

Mathematically the most effective way to render the curve-fitting problem tractable
is to view it in the context of a normed linear space, say L, where the ‘true’ function
h∈L, and the approximating function gm(.) belongs to a subset G ⊂ L. The notion of
‘best’ is defined in terms of a norm k . k: L→ [0,∞), and satisfies certain properties
generalizing the notion of length; see Luenberger (1969).
Example 8. Let C[a, b] consist of all real-valued continuous functions on the real

interval [a, b] ⊂ R, together with the ∞-norm:
k f k∞= max

a≤f≤b
| f | . (50)

It can be shown that (C[a, b], k . k∞) defines a normed linear space. Other norms in
the context of C[a, b] are special cases of:

k f kp =
³R b

a
|f(x)|p dx

´ 1
p
, p ≥ 1. (51)

The norm defines a distance between any two elements (f, g) in L via the metric:
d(f, g) =k f − g k for any (f, g)∈L,

where d(., .) : (L× L)→ [0,∞), and satisfies certain properties. The pair (L, d(., .))
defines a metric space induced by (L, k . k) . Similarly, one can define the notion of
an inner (scalar) product via:p

hf, fi =k f k, for any f∈L,

inducing an inner product space (L, h., .i) ,where d(f, g) = hf − g, f − gi
1
2 ; see Powell

(1981). The additional mathematical structure induced by an inner product (to define
angles, and thus orthogonality via hf, gi = 0) is needed when the problem requires
one to go beyond existence and uniqueness results to construct the approximating
function gm(.) explicitly.
Example 9. For the normed linear space (C[a, b], k . k∞) , the induced metric

space is (C[a, b], d∞(., .)) , where d∞(., .) = max
a≤x≤b

|f(x)− g(x)| .
In a normed linear space one can pose three interrelated questions of interest:
(i) Does there exist in G a best approximation g∗(x) of f(x)?
(ii) When it exists, is g∗(x) unique?
(iii) How can one construct g∗(x)?
(iv) How adequate is the approximation rendered by the constructed g∗(x)?
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Let us consider each of these issues briefly.
The existence result is easy to ensure when G is chosen to be a compact subset

of a normed linear space L. The cornerstone of such existence results is a famous
theorem whose general form is.
Theorem 1. Let f(x) be an upper semicontinuous functional on G, a compact

subset of a normed linear space (L, k . k) , then f(x) achieves a maximum on G; see
Luenberger (1969). A special case of this theorem is known as Weierstrass’ theorem
which ensures that when h(x) is in (C[a, b], k . k∞), for any � > 0 there exists an
integer N(�) such that for m > N(�) :

|h(x)− gm(x;α
∗
m)| < �, for all x∈[a, b], (52)

where gm(x;αm) =
Pm

i=0 αimx
i, m ≥ 1. The norm underlying (52) is the ∞−norm

in (50), giving rise to the metric:
d∞(h(x), gm(x;αm))=max

a≤x≤b
|h(x)− gm(x;αm)|

and the mode of convergence is known as uniform. Note that the coefficients
αm:= (α0m, α1m, ..., αmm) depend crucially on m, and as the degree of the polynomial
increases these coefficients change with it.
The uniqueness result depends crucially on the convexity of both G and k . k .
Theorem 2. Let G be a convex set in a normed linear space (L, k . k) , whose

norm is strictly convex. Then for all f∈L, there is a unique best approximation in G.
Example 8 (continued). In the case of C[a, b], when G is a finite dimensional

linear subspace (convex set), the 2-norm:

k f k2 =
³R b

a
|f(x)|2 dx

´ 1
2
,

ensures uniqueness because k f k2is strictly convex. However, the ∞−norm in (50)
or the 1-norm:

k f k1 =
³R b

a
|f(x)| dx

´
,

are not strictly convex. Note that in general (Powell, 1981):

k f k1≤ (b− a)
1
2 k f k2≤ (b− a) k f k∞ for all f ∈ C[a, b].

This means that in the case of the normed linear spaces (C[a, b], k . k1) and (C[a, b], k . k∞)
one needs to impose further restrictions on G or h(x) to ensure uniqueness. One such
restriction on a linear subspace G of C[a, b], dim(G)= m+1, is the Haar condition.
Haar condition. For any φ(x)∈G, that is not the zero element, the number of

roots of the equation {φ(x)=0, x∈[a, b]} is at most m. In the case where G is a set
of polynomials of the form gm(x;α)=

Pm
i=0 αix

i, this condition is satisfied because
dim(G)= m+ 1 and gm(x;α) can have at most m distinct zeros.
Chebyshev set. A closely related condition is to exchange the base functions

{1, x, x2, ..., xm}with aChebyshev set of generalized polynomials: {φi(x), i=0, 1, ...,m},
defined on [a, b], such that every non-trivial linear combination gm(x;α)=

Pm
i=0 αiφi(x)

has at mostm distinct zeros on [a, b]; α0= · · ·=αm=0 is the trivial case; Powell (1981).
Necessary and sufficient conditions. In the context of the normed linear

space (C[a, b], k . k∞) , where a Chebyshev set {φi(x), i=0, 1, ...,m} spans Gm, the
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Haar condition ensures that the best approximating polynomial gm(x;α∗) is unique
if and only if the error function: ε(x;m) = h(x) − gm(x;α

∗), x∈[a, b], changes sign
more than m + 1 times as x varies over [a, b]; see Cheney (1982). It is important
to emphasize that this result does not say that points {x[k], k=0, 1, ...,m}, where
the successive change of sign in the residuals {ε(x[k];m), k = 0, 1, ...,m} occurs, is
unique, or that it does not happen more than m+1 times.
Theorem 3 -Oscillation. Let G be a finite dimensional linear space in a normed

linear space (L, k . k) that satisfies the Haar condition. For the best approximation
gm(x;α

∗) on [a, b] to h(x) in G, there exist m+2 points {x[k], k = 0, 1, ...,m + 1} :
a ≤ x[0] ≤ x[1] · · · ≤ x[m+1] ≤ b, such that the error function ε(x[k];m) = h(x[k]) −
gm(x[k];α

∗), satisfies the condition (see Powell, 1981):
(O) ε(x[k];m), k = 0, 1, ...,m alternate in sign at least m+ 2 times.
Piecewise approximation. Of particular interest in mathematical approxima-

tion theory are the results pertaining to local (piecewise) approximation using splines,
where the interval [a, b] is partitioned at N+2 knots a=x0 < x1 < x2 < · · · < xN <
xN+1=b, and a polynomial of degreem, say gm(x) is fitted over each interval [xk, xk+1],
k = 0, 1, ..., N. The most widely used piecewise polynomials are splines of degree m
(often m = 2), which have (m − 1) continuous derivatives at the knots. Analogous
oscillation theorems are also applied to the case of local (piecewise) approximation
using splines; see Watson (1980), pp. 157-171.
It turns out that in cases where the approximating function g∗(x) is unique, it can

be represented by a mapping from L to G , say g∗(x) = PG(h(x)), and the structure of
PG(.) is of value in considering the question of constructing such best approximations.
This mapping is often a linear projection operator which is characterized by the
property that:

PG[PG(f(x))] = PG(f(x)), for all f ∈ L. (53)
A sufficient condition for P(.) to be a projection is to satisfy the condition:

PG[g(x)] = g(x), for all g ∈ G. (54)

Theorem 4. Let G be a finite dimensional linear space in a normed linear space
(L, k . k) , such that for every f ∈ L, there is a unique best approximation in G, say
PG(f), then the operator PG is continuous. Moreover, when P(f) satisfies condition
(54), then for d∗ = min

f∈G
k f − g k, the error of the approximation PG(f) satisfies the

bound (Powell, 1981): k f − PG(f) k ≤ [1 + k PG k]d∗.
This result is of interest in constructing g∗(x) = PG(f) because rounding errors

can have substantial effects on the constructed approximations if PG is discontinuous.
Viewing the approximating function as a projection also sheds additional light on
both questions (iii)-(iv).
(iii) Constructing an approximating function often involves (a) the choice of the

appropriate family of building block functions spanning G which, for reasons of exis-
tence and uniqueness, often take the form:

gm(x;α)=
Pm

i=0 αiφi(x), (55)
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where α :=(α0, α1, ..., αm), and {φi(x), i=0, 1, ...m} is a base (Chebyshev) set of gen-
eralized polynomial functions, and (b) an algorithm that chooses the best approxi-
mating function within this family; see Powell (1981).
(iv) Assessing the adequacy of the best approximating function involves construct-

ing upper bounds for the approximating error or even deriving explicit forms of the
error function under certain circumstances where additional smoothness conditions
are imposed on h(x). Typical results in this context are the following.
Theorem 5. Consider the problem of approximating h(x), an element of

(C[a, b], k . k∞) , using gm(x;α) in (55), and define the modulus of continuity of h(x) :
ω(δ) = sup

|x1−x2|≤δ
|h(x1)− h(x2)| , for (x1, x2)∈[a, b], δ > 0.

The approximation error ε(x;m) satisfies the Jackson-type upper bound:

ε(x;m) ≤ 6ω(δ)
¡
b−a
2m

¢
(56)

For more accurate bounds one needs to impose additional smoothness conditions on
h(x), such as the existence of derivatives up to order k. Such bounds are useful in
appraising the behavior of ε(x;m) as m→∞, and hence the appropriateness of the
functions spanning G; see Rivlin (1981), Cheney (1982).
In the case of piecewise (local) approximation, such as splines, these Jackson-type

upper bounds also depend on the length of the intervals [xk, xk+1], say hk = [xk+1−xk],
k = 0, 1, ..., N. When one defines a uniform partition,i.e. xk+1 = hxk, the length h
is known as the smoothing parameter which plays an important role in convergence
results; see Watson (1980).
Theorem 6. Let h(x)∈C[a, b]. The Lagrange interpolation polynomial on a net

of points Gn(x):={xk, k=1, . . . , n}., n ≥ m, spanning the interval [a, b], takes the
form:

gm(x;α) =
Pm

i=0 yi
Ym

j=0,j 6=i

³
x−x∗j
x∗i−x∗j

´
, x∈[a, b], (57)

where the interpolation points (x∗0, x
∗
1, · · · , x∗m, x)∈[a, b] are chosen to be distinct. For

a smooth enough function h(x) (derivatives up to order m + 1 exist), the error is a
systematic function of both x and m since:

ε(x,m) = dm+1h(ξ)
dm+1x

1
(m+1)!

Ym

j=0

¡
x− x∗j

¢
, ξ∈[a, b]. (58)

(58) suggests that the error curve ε(x,m) behaves like a polynomial in x, with m+1
roots (x∗0, x

∗
1, · · · , x∗m) : ε(x,m) = axm+1 + bmx

m + · · ·+ b1x+ b0.
Such an oscillating curve is also typical for error term arising from the least squares
approximation; see Watson (1980).

34


