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Causal Inference in Epidemiology

One important reason is to find and assess the size of the
effect of modifiable risk factors (e.g. diet) on diseases so
that public health interventions can be informed.

Example:

Observational studies consistently show positive association
between homocysteine levels and coronary heart disease
(CHD).

Homocysteine levels are reduced by folate intake.

If the relationshiop is causal, we can reduce CHD risk by
adding folate to the diet.
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Problem: Association 6= Causation

We might find an association but the intervention turns out
to be useless.

Example: Beta-carotene and lung cancer

• Peto et al. (1981): increased intake of vitamin
beta-carotene “reduces” risk of smoking related
cancers

• Could not be reproduced in randomised controlled
trials (1994)

Need to distinguish between association and causation so
that we know whether an intervention will be useful.
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Problem: Association 6= Causation

Fisher (1926): Randomised experiments render reverse
causation and confounding highly unlikely.

Randomised/controlled experiments not always
possible—ethical, practical or financial problems.

Require causal inferences from observational data.

Confounding problems—exposures and diseases of
interest often related to socioeconomic or behavioural
factors. We can try to adjust for confounding but need to
know and measure the confounding factors.
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Mendelian Randomisation

Katan(1986)—letter to the Lancet:

Hypothesis under debate in mid-1980s: low serum
cholesterol increases risk of cancer.

Have to satisfactorily eliminate

1. Reverse causation: Does presence of hidden
tumours induce a lowering of cholesterol in future
cancer patients?

2. Confounding: Are other factors such as diet and
smoking affecting both cholesterol levels and cancer
risk?
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Mendelian Randomisation

Katan(1986)—letter to the Lancet:

Rare disease abetalipoproteinaemia −→ practically zero
cholesterol levels. No evidence of premature cancer.

Larger sample of individuals genetically predisposed to
having low cholesterol levels?

Known that alleles E2 (8%), E3 (77%) and E4 (15%) of
Apolipoprotein E (APOE) polymorphism associated with
different levels of cholesterol.

APOE2 associated with lower levels.
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Mendelian Randomisation

Katan(1986)—continued:

• Many E2 allele carrriers: majority have relatively low
levels of serum cholesterol from birth.

• Crucially, similar on average to those carrying E3 and
E4 alleles in all other respects.

• Mendel’s Second Law: APOE genes assigned
randomly during meiosis and independently of
confounding factors.

• Hence, no need for a prospective study. Just compare
APOE genotypes in cancer patients and controls.
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Mendelian Randomisation

Katan(1986)—continued:

• If low serum cholesterol level is really a risk factor for
cancer, then patients should have more E2 alleles and
controls should have more E3 and E4 alleles.

• On the other hand, if the reported associations are
indeed spurious, APOE alleles should be equally
distributed across both groups.

Conjecture: we should find an association between
genotype and disease if and only if the phenotype is
causal for the disease.
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Formal Approach

• Let X be the phenotype and Y the disease of interest;

• Let G be the genotype related to X;

• Let U stand for unmeasued confounders.

e.g.

X = homocysteine level

Y = 1 if CHD, 0 if no CHD (binary)

G = MTHFR genotype—typically dichotomised

U = lifestyle.
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Interventions

Want notation to distinguish between association and
causation.

Intervention: setting X to a value x: use do(X = x).

P (Y |do(X = x)) not necessarily same as P (Y |X = x).

• P (Y = y|do(X = x)) depends on x only if X is
causal for Y −→ observed in a randomised study.

• P (Y = y|X = x) will also depend on x when there is
confounding or reverse causation −→ observed in an
observational study.
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Causal Effect

The Average Causal Effect ACE is

ACE(x1, x2) = E(Y |do(X = x1))− E(Y |do(X = x2)),

i.e. average difference in Y between setting X = x1 and
X = x2.

Alternatively:

Consider Causal Odds Ratio or Causal Relative Risk—but
Maths more difficult.
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Identifiability

The ACE is identifiable if we can estimate it consistently
from observational data.

Mathematically: ACE is identifiable if it can be
re-expressed without do(X) notation and only using
distribution of observable variables.

Note: If sufficient confounders U are measured, it can be
shown that the ACE can be identified as∑

u

(E(Y |X = x1, U = u)−E(Y |X = x2, U = u))P (U = u)

—usual adjustment.
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Identifiability via Mendelian Randomisation

MR permits identification of ACE when genotype satisfies
the properties of an Instrumental Variable (IV).

1. G and U are independent: G⊥⊥U ;

2. G and X are associated (the stronger the better):
G⊥⊥/ X;

3. G and Y are conditionally independent given X and
U : Y⊥⊥G | (X, U).

Note:
• No causal assumptions here

• Assumptions 1 and 3 cannot be tested without
measuring U −→ justification has to be based on
background/subject matter knowledge.
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Core Conditions—Graphically

G X Y

U

• G does not affect Y other than through X;

• G is not associated with the unobserved confounders.
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Core Conditions—Graphically

G X Y

U

Equivalent to factorisation

p(y, x, u, g) = p(y|u, x))p(x|u, g)p(u)p(g)

And under intervention in X

p(y, u, g|do(X = x0)) = p(y|u, x0))p(u)p(g)

Graphically, the intervention corresponds to removing all
arrows leading into X.
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Case-Control Scenario

Beware: Everything is conditional on Y .

G X Y

U

p(y, x, u, g) = p(y|x, u)p(x|u, g)p(u)p(g)

⇒ p(g, u|y) 6= p(g|y)p(u|y) despite p(g, u) = p(g)p(u).

Selection effect: “moral” edge between G and U .
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Results

If core conditions are satisfied

• Can test for causal effect by testing for an association
between G and Y —Katan’s original idea.

• For linear models without interactions, can find
consistent point estimator for causal effect ACE.

• For binary/categorical variables, can find bounds on
causal effect.

• With binary response, causal effect for subgroups of
population can be estimated under certain model
assumptions (local causal effect).
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Graphical Illustration for Linear Case

G X Y

U

δ1 β1

δ2 β2

• Wanted: β1

• Regression of Y on G gives β1δ1

• Regression of X on G gives δ1

• Obtain β1 as ratio

• works only for linear / no–interactions case!
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Mendelian Randomisation in Practice

Typically

• G—Binary,

• X—Continuous,

• Y —Binary.

Therefore p(y|x, u) is usually non-linear e.g. logistic.

Can’t use ratio of regression coefficients to estimate causal
effect of X on Y ,

This has been misunderstood.
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Chosen Gene is not “Causal”

X Y

U

G1

G2

• G2 is causal for X.

• G1 and G2 are associated.

• We are using G1 as the Instrumental Variable.

⇒ All Core Conditions are still satisfied!

For our purposes, we do not have to find the “right” gene.
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Linkage Disequilibrium

Population association between alleles at different loci.

X Y

U

G1

G2

(a)

• Chosen instrument in linkage disequilibrium with gene
having a direct effect on Y .

• Y⊥⊥G1|(X, U) is violated.
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Linkage Disequilibrium

X Y

U

G1

G2

(b)

• Chosen instrument in linkage disequilibrium with gene
affecting Y indirectly via confounders.

• G1⊥⊥U violated.
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Genetic Heterogeneity

More than one gene affects the phenotype.

X Y

U

G1

G2

G3

• Okay if other genes are not both associated with G1

and influence Y other than via X.

• Suspect weaker G1−X association (bad instrument).
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Conclusion

A formal causal framework is imperative for these
epidemiological applications

• for a precise statement of what the relevant causal
parameter is;

• to formalise the relationship between associational
findings and causal implications in order to estimate
this parameter.
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Conclusion

• Causal inference always requires background
knowledge for verification of necessary assumptions.

• Mendelian randomisation: background knowledge
←→ genetics.

• Hence, we can decide when IV assumptions are met
by Mendelian randomisation.

• Can use this to test for and estimate the causal effect
in situations where confounding is believed to be
likely and not fully understood.
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Problems and Open Questions

• Estimation requires additional (strong?) parametric
assumptions which are unlikely to be satisfied in the
case of a binary/categorical response.

• If all variables are binary, can only calculate bounds
for the causal effect without making any assumptions
besides core conditions.

• Causal parameters other than ACE are more difficult
to identify.

• Estimation in retrospective studies more
complicated—only odds ratio can be used.
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