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Attempts to define “reasoning”

▸ “[. . . R]easoning is a mental process that produces new
representations from old ones. Of course, not all such
processes qualify as reasoning” (Rips, 2002, p. 363).

▸ “[O]ne may be rational in terms of achieving personal goals
(rationality1) without being rational in the sense of
conforming to a normative system such as logic (rationality2)”
(Evans, Newstead, & Byrne, 1993, p. X). “When most psychologists talk about
“reasoning”, they mean an explicit, sequential thought process
of some kind, consisting of propositional representations.
. . . The psychologists’ use of th[is] term—which is linked with
their endorsement of rationality2—is much closer to what a
philosopher would call theoretical reasoning” (Evans et al., 1993, p. 15).

▸ “There are three main varieties of reasoning: calculation,
deduction, and induction” (Johnson-Laird & Byrne, 1991, p. 2).
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Interaction of formal and empirical work (Pfeifer, 2011, 2012b)

Formal work Empirical work

suggests new empirical hypotheses

provides rationality norms

empirical evaluation

suggests new formal systems

arbitration
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Truth tables

Negation:
A not-A

¬A
T F
F T

Samples of other connectives:
A B A and B A or B If A, then B A iff B

A ∧ B A ∨B A ⊃ B A ≡ B
T T T T T T
T F F T F F
F T F T T F
F F F F T T
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represents a clause in these assertions only when it is true in that
possibility.” (Johnson-Laird & Byrne, 2002, p. 653)



Principle of truth

“Each mental model of a set of assertions represents a possibility
given the truth of the assertions, and each mental model
represents a clause in these assertions only when it is true in that
possibility.” (Johnson-Laird & Byrne, 2002, p. 653)
Example 1:

There is a heart or there is no triangle (♡ ∨ ¬△).



Principle of truth

Example 1:

There is a heart or there is not a triangle (♡ ∨ ¬△).✬

✫

✩

✪

Truth table Mental Models
♡ △ ♡∨ ¬△
T T T ♡
T F T
F T F
F F W ¬△



Principle of truth

Example 1:

There is a heart or there is not a triangle (♡ ∨ ¬△).✬

✫

✩

✪

Truth table Mental Models
♡ △ ♡∨ ¬△
T T T ♡
T F T
F T F
F F W ¬△



Principle of truth

Example 1:

There is a heart or there is not a triangle (♡ ∨ ¬△).✬

✫

✩

✪

Truth table Mental Models
♡ △ ♡∨ ¬△
T T T ♡
T F T ♡ ¬△
F T F
F F T ¬△



Principle of truth
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There is a heart or there is not a triangle (♡ ∨ ¬△).✬

✫

✩

✪

Truth table Mental Models
♡ △ ♡∨ ¬△
T T T ♡
T F T ♡ ¬△
F T F
F F T ¬△

three mental models
the set of all three models represents the whole sentence
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Example 2:
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“. . . ” denotes the “mental footnote” (implicit mental model).
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Inference, Example 1: Modus Ponens

If there is a heart, then there is a triangle. ♡ ⊃ △
There is a heart. ♡
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Premise 1: Premise 2:✎
✍

☞
✌

♡ △
. . .

✎
✍

☞
✌

♡ △
. . .

Integrated model:✎
✍

☞
✌

♡ △
. . .

△ can directly be read off.
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Inference, Example 2: Modus Tollens

If there is a heart, then there is a triangle. ♡ ⊃ △
There is not a triangle. ¬△
There is not a heart. ¬♡

Premise 1: Premise 2:✎
✍

☞
✌

♡ △
. . .

✎
✍

☞
✌

♡ ¬△
. . .

Integrated model:✗
✖

✔
✕

♡ △
¬♡ △
¬♡ ¬△

“Fleshing out” adds difficulty!
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Examples:

▸ Affirming the Consequent (♡ ⊃ △, △, therefore: ♡)

▸ Denial of the Antecedent (♡ ⊃ △, ¬♡, therefore: ¬△)

Explanation: People who (mistakenly) interpret these argument
forms as logically valid, interpret the conditional premise
(mistakenly) as a biconditional (♡ ≡ △):

✎
✍

☞
✌

♡ △
. . .
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Mental models: Predictions

▸ The difficulty of inferences increases with the number of
mental models (working memory load).

▸ The difficulty of inferences decreases, if less explicit mental
models are required.

▸ Reasoning is a process involving representing, integrating and
validating mental models; the search for inconsistencies
requires time.

▸ Errors occur, if:
▸ not all alternatives are represented
▸ inconsistencies are overlooked



(photo source: Niki Pfeifer)
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Conclusion: If p, then both, q and r . p ⊃ (q ∧ r)

Formula Justification

(1) p ⊃ q Premise 1
(2) p ⊃ r Premise 2

q ∧ r Conjunction Rule: (4)+(5)

▸ Goal: Try to infer the conclusion (p ⊃ (q ∧ r)), only from the
premises and the (valid) inference rules.
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Subgoal 1: q, r .
Subgoal 2: q ∧ r .
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Formula Justification

(1) p ⊃ q Premise 1
(2) p ⊃ r Premise 2
(3) p Conditional Proof (Assumption)
(4) q Modus ponens: (1)+(3)
(5) r Modus ponens: (2)+(3)

q ∧ r Conjunction Rule: (4)+(5)

▸ Modus Ponens: applied to (2) and (3).
Subgoal 1 (q, r) completed.



Deductive proof
Premise 1: If p, then q. p ⊃ q
Premise 2: If p, then r . p ⊃ r
Conclusion: If p, then both, q and r . p ⊃ (q ∧ r)

Formula Justification

(1) p ⊃ q Premise 1
(2) p ⊃ r Premise 2
(3) p Conditional Proof (Assumption)
(4) q Modus ponens: (1)+(3)
(5) r Modus ponens: (2)+(3)
(6) q ∧ r Conjunction Rule: (4)+(5)

▸ Conjunction Rule applied to (4) and (5).
Subgoal 2 (q ∧ r) completed.



Deductive proof
Premise 1: If p, then q. p ⊃ q
Premise 2: If p, then r . p ⊃ r
Conclusion: If p, then both, q and r . p ⊃ (q ∧ r)

Formula Justification

(1) p ⊃ q Premise 1
(2) p ⊃ r Premise 2
(3) p Conditional Proof (Assumption)
(4) q Modus ponens: (1)+(3)
(5) r Modus ponens: (2)+(3)
(6) q ∧ r Conjunction Rule: (4)+(5)
(7) p ⊃ (q ∧ r) Conditional Proof: (3)-(6)

▸ We derived the conclusion.
Therefore, the argument is logically valid.
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Features of Deductive Proofs

▸ Each step is justified exclusively by the premises or valid
inference rules

▸ No reference to truth values or meaning, thus purely
syntactically

▸ Process principles:
▸ Translation of the natural language argument into logical
language (What belongs to the “logical form/skeleton”?)

▸ Top-down, bottom-up (Goals, Subgoals)
▸ Pattern matching: Recognition of applicability of inference
rules
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Mental Rule theories

Assumptions:

▸ Human reasoning apparatus is built up with with a set of
formal rules

▸ Ability of constructing a mental proof by use of formal rules

▸ Ability of pattern matching: understanding of which rules are
applicable

Two strategies:

▸ Bottom up: derive everything that follows directly by
application of the formal inference rules

▸ Top down: determine and prove subgoals from which the
conclusion may be reached
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Mental Rule theories: 3 error types

▸ Comprehension errors (mis-representing premises, wrong
pattern matching, . . . )

▸ Coordination errors (mistaken sub-goals, . . . )

▸ Processing errors (attention, WM, . . . )
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Mental Rule theories

▸ The more steps a mental proof requires, the harder the
reasoning task will be

▸ Clear description of the reasoning process (production system)

▸ Less problems to explain multiple premise inferences (building
many mental models Ô⇒ WM overload)

▸ Problems: Which rules are built in? What exactly is
represented? How can suppression effects be explained (Byrne,

1989)?

▸ . . .



Mental rules/models: Summary

▸ Mental rule theories (Rips, 1994; Braine & O’Brien, 1998)

▸ psychological fragment of proof-theory
▸ formal rules
▸ reasoning is constructing a mental proof
▸ pattern matching, top down and bottom up strategies

▸ Mental model theory (Johnson-Laird, 1983; Johnson-Laird & Byrne, 2002)

▸ psychological fragment of model theory
▸ truth tables
▸ reasoning is constructing, combining and evaluating mental
models



Problems of the old paradigm

▸ unable to deal with degrees of belief

▸ unable to deal with nonmonotonicity

▸ interpreting natural language conditionals by the material
conditional (⋅ ⊃ ⋅) is highly problematic



Table of contents

Introduction
Theory of mental models
Mental rules/logic

The new paradigm
Mental probability logic
Paradoxes of the material conditional
Probabilistic truth tables
Aristotle’s theses
Chater & Oaksford’s probabilistic syllogisms
The coherence perspective on syllogisms
Nonmonotonic reasoning

Concluding remarks
References



Truth tables
Negation:
A not-A

¬A
T F
F T

Samples of other connectives:
A B A and B A or B If A, then B A iff B B given A

A ∧ B A ∨B A ⊃ B A ≡ B
T T T T T T
T F F T F F
F T F T T F
F F F F T T

“If two people are arguing ‘If p will q?’ and are both in doubt as
to p, they are adding p hypothetically to their stock of knowledge
and arguing on that basis about q; . . .We can say they are fixing
their degrees of belief in q given p. If p turns out false, these
degrees of belief are rendered void” (Ramsey, 1929/1994, footnote, p. 155).
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Mental probability logic (Pfeifer, 2006b, 2012a, 2012b, 2014, 2013a; Pfeifer & Kleiter, 2005b)

▸ competence

▸ uncertain indicative If A, then C is interpreted as P(C ∣A)
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▸ competence

▸ uncertain indicative If A, then C is interpreted as P(C ∣A)

▸ C ∣A is partially truth-functional (void, if A is false and
undefined if A is a logical contradiction)

▸ arguments: ⟨ premise(s) , conclusion ⟩
▸ premises contain:

▸ probabilistic and/or logical information
▸ background knowledge (if available)

▸ uncertainty is transmitted deductively from the premises to
the conclusion

▸ mental process: check if argument is probabilistically
informative

▸ if no: STOP ([0,1] is coherent)
▸ if yes: transmit the uncertainty from the premises to the
conclusion

▸ rationality framework: coherence based probability logic
framework
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Scozzafava, Walley, . . . }

▸ degrees of belief
▸ complete algebra is not required
▸ many probabilistic approaches define P(B ∣A) by

P(A ∧B)
P(A) and assume that P(A) > 0

what if P(A) = 0?
in the coherence approach, conditional probability, P(B ∣A), is
primitive

▸ zero probabilities are exploited to reduce the complexity
▸ imprecision
▸ bridges to possibility, DS-belief functions, fuzzy sets,
nonmonotonic reasoning (System P (Gilio, 2002)), . . .

▸ Probability logic
▸ uncertain argument forms
▸ deductive consequence relation
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Modus ponens Probabilistic modus ponens
(Conditional event) (Material conditional)

If A, then C p(C ∣A) = .90 p(A ⊃ C) = .90
A p(A) = .50 p(A) = .50
C .45 ≤ p(C) ≤ .95 .40 ≤ p(C) ≤ .90

xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x

. . . where the consequence relation (“———”) is deductive.
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Example: Modus ponens

From A and If A, then B infer B

From P(A) = x and P(B ∣A) = y infer xy ≤P(B)≤ xy + 1 − x

P(B) = P(A)
²

x

P(B ∣A)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

y

+P(¬A)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

1−x

P(B ∣¬A)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q∈[0,1]

From P(A) = x , P(B ∣A) = y and P(B ∣¬A) = q

infer P(B)= xy + (1 − x)q
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Proprieties of arguments

An argument is a pair consisting of a premise set and a conclusion.

▸ An argument is logically valid if and only if it is impossible
that all premises are true and the conclusion is false.

▸ An argument is p-valid if and only if the uncertainty of the
conclusion of a valid inference cannot exceed the sum of the
uncertainties of its premises (where “uncertainty of X” is
defined by 1 −P(X )) (Adams, 1975).

▸ An argument is probabilistically informative if and only if it is
possible that the premise probabilities constrain the conclusion
probability. I.e., if the coherent probability interval of its
conclusion is not necessarily equal to the unit interval [0,1]
(Pfeifer & Kleiter, 2006a).
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Paradoxes of the material conditional, e.g.,

(Paradox 1) (Paradox 2)
P(B) = x P(¬A) = x

0 ≤ P(B ∣A) ≤ 1 0 ≤ P(B ∣A) ≤ 1

probabilistically non-informative

This matches the data (Pfeifer & Kleiter, 2011).

Paradox 1: Special case covered in the coherence approach, but
not covered in the standard approach to probability:

If P(B) = 1, then P(A ∧ B) = P(A). Thus,
P(B ∣A) = P(A∧B)

P(A) =
P(A)
P(A)= 1, if P(A) > 0.
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From Pr(B) = 1 and A ∧ B ≡ � infer Pr(B ∣A) = 0 is coherent.

From Pr(B) = 1 and A ⊃ B ≡ ⊺ infer Pr(B ∣A) = 1 is coherent.

From Pr(B) = x and Pr(A) = y infer

max{0, x + y − 1

y
} ⩽ Pr(B ∣A) ⩽ min{x

y
,1} is coherent.

. . . a special case of the cautious monotonicity rule of System P
(Gilio, 2002).
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Probabilistic truth table task (Evans et al., 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1
P(A ∧ ¬C) = x2
P(¬A ∧ C) = x3

P(¬A ∧ ¬C) = x4
P(If A, then C) = ?

Main results:

▸ More than half of the responses are consistent with P(C ∣A)
▸ Many responses are consistent with P(A ∧ C)
▸ Generalized version: Interpretation shifts to P(C ∣A) (Fugard, Pfeifer,

Mayerhofer, & Kleiter, 2011a, Journal of Experimental Psychology: LMC)

Key feature:

▸ Reasoning under complete probabilistic knowledge



Experiment

Motivation

▸ probabilistic truth table task with incomplete probabilistic
knowledge

▸ Is the conditional event interpretation still dominant?

▸ Are there shifts of interpretation?
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0 1 2 3 4 5 6

1 2 3 4 5 6
out of

0 1 2 3 4 5 6

1 2 3 4 5 6

(please tick the appropriate boxes)



Example: Task 5 (Pfeifer, 2013a, Thinking & Reasoning)

Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or
square). Question marks indicate covered sides.

? ?

Imagine that this die is placed in a cup. Then the cup is randomly
shaken. Finally, the cup is placed on the table so that you cannot
see what side of the die shows up.
Question: How sure can you be that the following sentence holds?

If the side facing up shows white, then the side shows a square.

Answer: Mat. cond.: at least 2 out of 6 and at most 4 out of 6

at least at most

out of
0 1 2 3 4 5 6

1 2 3 4 5 6
out of

0 1 2 3 4 5 6

1 2 3 4 5 6

(please tick the appropriate boxes)



Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional,
conjunction, and conditional event interpretation



Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up
▸ 20 tasks, three “warming-up tasks”
▸ all tasks differentiate between material conditional,
conjunction, and conditional event interpretation

Sample
▸ 20 Cambridge University students
▸ 10 female, 10 male
▸ between 18 and 27 years old (mean: 21.65)
▸ no students of mathematics, philosophy, computer science, or
psychology



Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional,
conjunction, and conditional event interpretation

Results

▸ Overall (340 interval responses)
▸ 65.6% consistent with conditional event
▸ 5.6% consistent with conjunction
▸ 0.3% consistent with material conditional



Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional,
conjunction, and conditional event interpretation

Results

▸ Overall (340 interval responses)
▸ 65.6% consistent with conditional event
▸ 5.6% consistent with conjunction
▸ 0.3% consistent with material conditional

▸ Shift of interpretation
▸ First three tasks: 38.3% consistent with conditional event
▸ Last three tasks: 83.3% consistent with conditional event
▸ Strong correlation between conditional event frequency and
item position (r(15) = 0.71, p < 0.005)



Increase of cond. event resp. (n1 = 20) (Pfeifer, 2013a, Thinking & Reasoning)
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Aristotle’s Theses

AT #1: ¬(¬A→ A)

AT #2: ¬(A→ ¬A)



Aristotle’s Theses

AT #1: ¬(¬A→ A)
¬(¬A ⊃ A)

AT #2: ¬(A→ ¬A)
¬(A ⊃ ¬A)



Aristotle’s Theses

AT #1: ¬(¬A→ A)
¬(¬A ⊃ A) ≡ ¬A ∧ ¬A ≡ ¬A

AT #2: ¬(A→ ¬A)
¬(A ⊃ ¬A) ≡ A ∧ A ≡ A



Aristotle’s Theses: Prob. log. predictions (Pfeifer, 2012a, The Monist)

AT #1: ¬(¬A→ A)
▸ P(¬(¬A ⊃ A)) = P(¬A)



Aristotle’s Theses: Prob. log. predictions (Pfeifer, 2012a, The Monist)

AT #1: ¬(¬A→ A)
▸ P(¬(¬A ⊃ A)) = P(¬A)
▸ P(A∣¬A) = 0, its negation: P(¬A∣¬A) = 1



Aristotle’s Theses: Prob. log. predictions (Pfeifer, 2012a, The Monist)

AT #1: ¬(¬A→ A)
▸ P(¬(¬A ⊃ A)) = P(¬A)
▸ P(A∣¬A) = 0, its negation: P(¬A∣¬A) = 1

AT #2: ¬(A→ ¬A)
▸ P(¬(A ⊃ ¬A)) = P(A)
▸ P(¬A∣A) = 0, its negation: P(¬¬A∣A) = P(A∣A) = 1



Experiment 1: Abstract version, Aristotle’s Thesis #1
The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form,
whether they are guaranteed to be false or guaranteed to be true. For example:

▸ “A and not-A” is guaranteed to be false.
▸ “A or not-A” is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical
form, whether they are true or false. The sentence “A” (“It is raining.”), for
example, can be true but it can just as well be false: this depends upon
whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If not-A, then A.

The sentence in the box is guaranteed to be false ◻
The sentence in the box is guaranteed to be true ◻
One cannot infer whether the sentence is true or false ◻



Experiment 1: Abstract version, Aristotle’s Thesis #2
The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form,
whether they are guaranteed to be false or guaranteed to be true. For example:

▸ “A and not-A” is guaranteed to be false.
▸ “A or not-A” is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical
form, whether they are true or false. The sentence “A” (“It is raining.”), for
example, can be true but it can just as well be false: this depends upon
whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If A, then not-A.

The sentence in the box is guaranteed to be false ◻
The sentence in the box is guaranteed to be true ◻
One cannot infer whether the sentence is true or false ◻



Experiment 1: Sample (Pfeifer, 2012a, The Monist)

▸ N = 141

▸ all psychology students (University of Salzburg)

▸ 91% third semester

▸ 78% female

▸ median age: 21 (1st Qu. = 20, 3rd Qu. =23)



FALSE TRUE CANNOT INFER

Concrete (n=71) versus abstract (n=71) task material
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Scope ambiguities (Pfeifer, 2012a, The Monist)

(W) Negating the conditional: ¬ (A→ ¬A)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wide scope

(N) Negating the consequent: (A→ ¬ ¬A)±
narrow scope



Scope ambiguities (Pfeifer, 2012a, The Monist)

(W) Negating the conditional: ¬ (A→ ¬A)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wide scope

(N) Negating the consequent: (A→ ¬ ¬A)±
narrow scope

(W) and (N) are well defined for ∧ and ⊃.



Scope ambiguities (Pfeifer, 2012a, The Monist)

(W) Negating the conditional: ¬ (A→ ¬A)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wide scope

(N) Negating the consequent: (A→ ¬ ¬A)±
narrow scope

(W) and (N) are well defined for ∧ and ⊃. Conditional events, B ∣A,
are usually negated by (N), P(¬B ∣A).



Experiment 2: Design (Pfeifer, 2012a, The Monist)

Between participants: Explicit (n1 = 20) vs. implicit negation
(n2 = 20)
Within participants: 12 Tasks

Task Name Argument form

1 Aristotle’s Thesis 1 ¬(A→ ¬A)
2 Negated Reflexivity ¬(A→ A)
3 Aristotle’s Thesis 2 ¬(¬A→ A)
4 Reflexivity A→ A
5 Contingent Arg. 1 A → B
6 Contingent Arg. 2 ¬(A→ B)

7-10 4 Probabilistic truth-table tasks
11 Paradox 1 from B infer A→ B
12 Neg. Paradox 1 from B infer A→ ¬B



Experiment 2: Predictions (Pfeifer, 2012a, The Monist)

Argument form Scope
wide narrow

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅

¬(A→ ¬A) T CT T T
¬(A→ A) F F CT CT
¬(¬A→ A) T CT T T

A→ A T T T CT
A→ B CT CT CT CT

¬(A→ B) CT CT CT CT
from B infer A→ B U H U
from B infer A→ ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Predictions ⋅∣⋅ against wide scope of ⋅ ⊃ ⋅

Argument form Scope
wide narrow

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅

¬(A→ ¬A) T CT T T
¬(A→ A) F F CT CT
¬(¬A→ A) T CT T T

A→ A T T T CT
A→ B CT CT CT CT

¬(A→ B) CT CT CT CT
from B infer A→ B U H U
from B infer A→ ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Predictions ⋅∣⋅ against narrow scope of ⋅ ⊃ ⋅

Argument form Scope
wide narrow

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅

¬(A→ ¬A) T CT T T
¬(A→ A) F F CT CT
¬(¬A→ A) T CT T T

A→ A T T T CT
A→ B CT CT CT CT

¬(A→ B) CT CT CT CT
from B infer A→ B U H U
from B infer A→ ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Sample (Pfeifer, 2012a, The Monist)

▸ N = 40 (University of Salzburg)

▸ no psychology students

▸ individual tested

▸ 50% female

▸ median age: 22 (1st Qu. = 21, 3rd Qu. =23)



Experiment 2: Results (Pfeifer, 2012a, The Monist)

Argument form Scope Responses
wide narrow in percent

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅ T F CT

¬(A→ ¬A) T CT T T 78 18 5
¬(A→ A) F F CT CT 10 88 2
¬(¬A→ A) T CT T T 80 13 8

A→ A T T T CT 93 3 5
A→ B CT CT CT CT 0 13 88

¬(A → B) CT CT CT CT 20 3 78
from B infer A→ B U H U 40 0 60
from B infer A→ ¬B U H L 5 30 65

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Results (Pfeifer, 2012a, The Monist)

Argument form Scope Responses
wide narrow in percent

⋅∣⋅ ⋅ ⊃ ⋅ ⋅ ⊃ ⋅ ⋅ ∧ ⋅ T F CT

¬(A→ ¬A) T CT T T 78 18 5
¬(A→ A) F F CT CT 10 88 2
¬(¬A→ A) T CT T T 80 13 8

A→ A T T T CT 93 3 5
A→ B CT CT CT CT 0 13 88

¬(A → B) CT CT CT CT 20 3 78
from B infer A→ B U H U 40 0 60
from B infer A→ ¬B U H L 5 30 65

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability
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Aristotelian Syllogisms

▸ Long history in psychology (starting with Störring (1908))



Aristotelian Syllogisms

▸ Long history in psychology (starting with Störring (1908))

▸ Aristotelian syllogisms:
▸ either too strict (universal, ∀) or too weak (existential, ∃)
quantifiers

▸ not a language for uncertainty / vagueness



Aristotelian Syllogisms

▸ Long history in psychology (starting with Störring (1908))

▸ Aristotelian syllogisms:
▸ either too strict (universal, ∀) or too weak (existential, ∃)
quantifiers

▸ not a language for uncertainty / vagueness

▸ Developing coherence based probability logic semantics for
Aristotelian syllogisms



Syllogistic types of propositions and figures (see, e.g. Pfeifer, 2006a)

Name of Proposition Type PL formula

Universal affirmative (A) ∀x(Sx ⊃ Px) ∧ ∃xSx
Particular affirmative (I) ∃x(Sx ∧Px)
Universal negative (E) ∀x(Sx ⊃ ¬Px) ∧ ∃xSx
Particular negative (O) ∃x(Sx ∧ ¬Px)



Syllogistic types of propositions and figures (see, e.g. Pfeifer, 2006a)

Name of Proposition Type PL formula

Universal affirmative (A) ∀x(Sx ⊃ Px) ∧ ∃xSx
Particular affirmative (I) ∃x(Sx ∧Px)
Universal negative (E) ∀x(Sx ⊃ ¬Px) ∧ ∃xSx
Particular negative (O) ∃x(Sx ∧ ¬Px)

Figure name
1 2 3 4

Premise 1 MP PM MP PM
Premise 2 SM SM MS MS
Conclusion SP SP SP SP



Syllogistic types of propositions and figures (see, e.g. Pfeifer, 2006a)

Name of Proposition Type PL formula

Universal affirmative (A) ∀x(Sx ⊃ Px) ∧ ∃xSx
Particular affirmative (I) ∃x(Sx ∧Px)
Universal negative (E) ∀x(Sx ⊃ ¬Px) ∧ ∃xSx
Particular negative (O) ∃x(Sx ∧ ¬Px)

Figure name
1 2 3 4

Premise 1 MP PM MP PM
Premise 2 SM SM MS MS
Conclusion SP SP SP SP

256 possible syllogisms, 24 Aristotelianly-valid, 9 require ∃xSx



Traditionally valid syllogisms (see, e.g., Pfeifer, 2006a, Figure 2)



Example: Modus Barbara

All philosophers are mortal.
All members of the Vienna Circle are philosophers.

All members of the Vienna Circle are mortal.



Modus Barbara

(A) All M are P
(A) All S are M

(A) All S are P



Modus Barbara

(A) All M are P
(A) All S are M

(A) All S are P

(A) ∀x(Mx ⊃ Px) (∧∃xMx)
(A) ∀x(Sx ⊃Mx) (∧∃xSx)
(A) ∀x(Sx ⊃ Px)



Modus Barbara

(A) All M are P
(A) All S are M

(A) All S are P

(A) ∀x(Mx ⊃ Px) (∧∃xMx)
(A) ∀x(Sx ⊃Mx) (∧∃xSx)
(A) ∀x(Sx ⊃ Px)

Figure name
1 2 3 4

Premise 1 MP PM MP PM
Premise 2 SM SM MS MS
Conclusion SP SP SP SP

. . . transitive structure of Figure 1



Example: Modus Barbari

All M are P
All S are M

At least one S is P

∀x(Mx ⊃ Px) ∧ ∃xMx
∀x(Sx ⊃Mx) ∧ ∃xSx

∃x(Sx ∧ Px)



The probability heuristics model (Chater & Oaksford, 1999; Oaksford & Chater, 2009)

Definitions of the basic sentences:

Quantified statement Prob. interpretation
(A) All S are P p(P ∣S) = 1
(E) No S is P p(P ∣S) = 0
(I) Some S are P p(P ∣S) > 0
(O) Some S are not-P p(P ∣S) < 1



The probability heuristics model (Chater & Oaksford, 1999; Oaksford & Chater, 2009)

Definitions of the basic sentences:

Quantified statement Prob. interpretation
(A) All S are P p(P ∣S) = 1
(E) No S is P p(P ∣S) = 0
(I) Some S are P p(P ∣S) > 0
(O) Some S are not-P p(P ∣S) < 1

Most S are P 1 −∆ < p(P ∣S) < 1
Few S are P 0 < p(P ∣S) <∆

. . . where ∆ is small



The probability heuristics model: Probabilistic syllogisms

▸ Assumption: Conditional independence between the end terms
(i.e., S and P) given the middle term (i.e., M):

p(S ∧P ∣M) = p(S ∣M)p(P ∣M)



The probability heuristics model: Probabilistic syllogisms

▸ Assumption: Conditional independence between the end terms
(i.e., S and P) given the middle term (i.e., M):

p(S ∧P ∣M) = p(S ∣M)p(P ∣M)
▸ Sample reconstruction of Modus Barbara (assumed implicitly
p(S) > 0, p(M) > 0):

(A) p(P ∣M) = 1
(A) p(M ∣S) = 1

(CI assumption) p(S ∧ P ∣M) = p(S ∣M)p(P ∣M)
(A) p(P ∣S) = 1



The probability heuristics model: Probabilistic syllogisms

▸ Assumption: Conditional independence between the end terms
(i.e., S and P) given the middle term (i.e., M):

p(S ∧P ∣M) = p(S ∣M)p(P ∣M)
▸ Sample reconstruction of Modus Barbara (assumed implicitly
p(S) > 0, p(M) > 0):

(A) p(P ∣M) = 1
(A) p(M ∣S) = 1

(CI assumption) p(S ∧ P ∣M) = p(S ∣M)p(P ∣M)
(A) p(P ∣S) = 1

Note, that we do not assume p(S) > 0 and p(M) > 0 in the
coherence framework. Moreover, if p(S ∣M)= 0, then
p(S ∧P ∣M)= 0.



The probability heuristics model: Probabilistic syllogisms

▸ Assumption: Conditional independence between the end terms
(i.e., S and P) given the middle term (i.e., M):

p(S ∧P ∣M) = p(S ∣M)p(P ∣M)
▸ Sample reconstruction of Modus Barbara (assumed implicitly
p(S) > 0, p(M) > 0):

(A) p(P ∣M) = 1
(A) p(M ∣S) = 1

(CI assumption) p(S ∧ P ∣M) = p(S ∣M)p(P ∣M)
(A) p(P ∣S) = 1

Note, that we do not assume p(S) > 0 and p(M) > 0 in the
coherence framework. Moreover, if p(S ∣M)= 0, then
p(S ∧P ∣M)= 0. Then, the premises are satisfied but
0 ≤ p(P ∣S) ≤ 1 is coherent. Thus, Modus Barbara does not
hold.
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The coherence perspective on

syllogisms

(joint work with G. Sanfilippo & A. Gilio)



Towards a probabilistic semantics

CondEv-Formalization:

All S are P : p(P ∣S) = 1 and EI
Almost-all S are P : p(P ∣S)≫ .5 and EI

Most S are P : p(P ∣S) > .5 and EI
At least one S is P : p(P ∣S) > 0



Existential import: Different options
▸ Positive probability of the conditioning event, e.g.:

All S are P : p(S) > 0
▸ p(S ∣M) > 0 (and p(M ∣P) > 0) (Dubois, Godo, López de Màntaras, & Prade, 1993)



Existential import: Different options
▸ Positive probability of the conditioning event, e.g.:

All S are P : p(S) > 0
▸ p(S ∣M) > 0 (and p(M ∣P) > 0) (Dubois, Godo, López de Màntaras, & Prade, 1993)

▸ Replacing the first premise by a logical constraint, e.g.:
⊧ (M ⊃ P)
p(M ∣S) = 1
p(P ∣S) = 1

▸ Strengthening the antecedent of the first premise, e.g.:
p(P ∣S∧M) = 1
p(M ∣S) = 1
p(P ∣S) = 1



Existential import: Different options
▸ Positive probability of the conditioning event, e.g.:

All S are P : p(S) > 0
▸ p(S ∣M) > 0 (and p(M ∣P) > 0) (Dubois, Godo, López de Màntaras, & Prade, 1993)

▸ Replacing the first premise by a logical constraint, e.g.:
⊧ (M ⊃ P)
p(M ∣S) = 1
p(P ∣S) = 1

▸ Strengthening the antecedent of the first premise, e.g.:
p(P ∣S∧M) = 1
p(M ∣S) = 1
p(P ∣S) = 1

▸ Conditional event EI: Positive probability of the conditioning event, given
the disjunction of all conditioning events (Gilio, Pfeifer, & Sanfilippo, submitted):

p(P ∣M) = 1
p(M ∣S) = 1
p(S ∣S ∨M) > 0
p(P ∣S) = 1

▸ p(S ∣S ∨M) > 0 neither implies p(S) > 0 nor p(S ∣M) > 0



Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]



Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)



Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]



Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]
.9 1 .1 [0, 1]



Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]
.9 1 .1 [0, 1]
1 ]0,1] t > 0 ]0,1] (Modus Darii)



Probabilistic Figure 1, conditional event EI

Premises E.I. Conclusion
p(P ∣M) p(M ∣S) p(S ∣S ∨M) p(P ∣S)
x y t [z ′, z ′′]
x y 0 [0, 1]
1 1 t > 0 [1, 1] (Modus Barbara)
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]
.9 1 .1 [0, 1]
1 ]0,1] t > 0 ]0,1] (Modus Darii)

If p(S ∣S ∨M) > 0, then z ′ = max{0, xy − (1−t)(1−x)t }
z ′′ = min {1, (1 − x)(1 − y) + x

t
} .

(Theorem 3 of Gilio, Pfeifer, and Sanfilippo (submitted). Transitive reasoning with imprecise probabilities.)
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The Tweety problem



The Tweety problem (picture© by L. Ewing, S. Budig, A. Gerwinski; http://commons.wikimedia.org)



The Tweety problem (picture© by ytse19; http://mi9.com/flying-tux 35453.html)



System P: Rationality postulates for nonmonotonic

reasoning (Kraus, Lehmann, & Magidor, 1990)

Reflexivity (axiom): α∣∼α
Left logical equivalence:

from ⊧ α ≡ β and α∣∼γ infer β∣∼γ
Right weakening:

from ⊧ α ⊃ β and γ∣∼α infer γ∣∼β
Or: from α∣∼γ and β∣∼γ infer α ∨ β∣∼γ
Cut: from α ∧ β∣∼γ and α∣∼β infer α∣∼γ
Cautious monotonicity:

from α∣∼β and α∣∼γ infer α ∧ β∣∼γ
And (derived rule): from α∣∼β and α∣∼γ infer α∣∼β ∧ γ

α ∣∼ β If α, normally´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
?

β



System P: Rationality postulates for nonmonotonic

reasoning (Kraus et al., 1990)

Reflexivity (axiom): α∣∼α
Left logical equivalence:

from ⊧ α ≡ β and α∣∼γ infer β∣∼γ
Right weakening:

from ⊧ α ⊃ β and γ∣∼α infer γ∣∼β
Or: from α∣∼γ and β∣∼γ infer α ∨ β∣∼γ
Cut: from α ∧ β∣∼γ and α∣∼β infer α∣∼γ
Cautious monotonicity:

from α∣∼β and α∣∼γ infer α ∧ β∣∼γ
And (derived rule): from α∣∼β and α∣∼γ infer α∣∼β ∧ γ

α ∣∼ β is read as If α, normally´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
?

β



Probabilistic version of System P (Gilio (2002); Table 2 Pfeifer and Kleiter (2009))

Name Probability logical version

Left logical equivalence ⊧(E1 ≡ E2),P(E3∣E1) = x ∴ P(E3∣E2) = x
Right weakening P(E1∣E3) = x ,⊧(E1 ⊃ E2) ∴ P(E2∣E3) ∈ [x ,1]
Cut P(E2∣E1 ∧ E3) = x ,P(E1∣E3) = y

∴ P(E2∣E3) ∈ [xy ,1 − y + xy]
And P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E2 ∧ E3∣E1) ∈ [max{0, x + y − 1},min{x , y}]
Cautious monotonicity P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E3∣E1 ∧ E2) ∈ [max{0, (x+y−1)/x},min{y/x ,1}]
Or P(E3∣E1)=x ,P(E3∣E2)=y

∴ P(E3∣E1∨E2)∈[xy/(x+y−xy), (x+y−2xy)/(1−xy)]
Transitivity P(E2∣E1) = x ,P(E3∣E2) = y ∴ P(E3∣E1)∈ [0,1]
Contraposition P(E2∣E1) = x ∴ P(¬E1∣¬E2)∈ [0,1]
Monotonicity P(E3∣E1) = x ∴ P(E3∣E1 ∧ E2)∈ [0,1]
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. . . probabilistically non-informative



The Tweety problem (Pfeifer, 2012b)

P1 P [Fly(x)∣Bird(x)] = .95. (Birds can normally fly.)
P2 Bird(Tweety). (Tweety is a bird.)
C1 P [Fly(Tweety)] = .95. (Tweety can normally fly.)
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Example 1: (Cautious) monotonicity

▸ In logic

from A ⊃ B infer (A ∧ C) ⊃ B
▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(B ∣A ∧C) ≤ 1
But: from P(A ⊃ B) = x infer x ≤P((A ∧C) ⊃ B) ≤ 1

▸ Cautious monotonicity (Gilio, 2002)

from P(B ∣A) = x and P(C ∣A) = y
infer max(0, (x + y − 1)/x) ≤ P(C ∣A ∧B) ≤ min(y/x ,1)
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About the guests at a prom we know the following:

exactly 72% wear a black suit.
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Example task: Cautious monotonicity (Pfeifer & Kleiter, 2003)

About the guests at a prom we know the following:

exactly 72% wear a black suit.
exactly 63% wear glasses.

Imagine all the persons of this prom who wear glasses.

How many of the persons wear a black suit,
given they are at this prom and wear glasses?



Results – Monotonicity (Example Task 1; Pfeifer and Kleiter (2003))
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Example 2: Contraposition

▸ In logic
from A ⊃ B infer ¬B ⊃ ¬A

from ¬B ⊃ ¬A infer A ⊃ B
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Example 2: Contraposition

▸ In logic
from A ⊃ B infer ¬B ⊃ ¬A

from ¬B ⊃ ¬A infer A ⊃ B

▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(¬A∣¬B) ≤ 1
from P(¬A∣¬B) = x infer 0 ≤ P(B ∣A) ≤ 1

▸ But

P(A ⊃ B)=P(¬B ⊃ ¬A)



Results Contraposition (n1 = 40, n2 = 40; Pfeifer and Kleiter (2006b))
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