Recap
The Classical Derivation
A Modern Approach
Universes
Objections, your Honor!

Maximum Entropy and Inductive Logic II

Jürgen Landes

Spring School on Inductive Logic
Outline

1 Recap
2 The Classical Derivation
 - Desiderata
 - The Classical Result
3 A Modern Approach
 - Decision Making
 - Justification
4 Universes
5 Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Rational subjective Beliefs

- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling
Rational subjective Beliefs

- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling
- Rational subjective Beliefs
- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling
Rational subjective Beliefs
Finite propositional language L
Variables v_1, \ldots, v_n
Sentences of L, SL
No funny business, self-reference, truth predicates, self-fulfilling
Rational subjective Beliefs

Finite propositional language L

Variables v_1, \ldots, v_n

Sentences of L, SL

No funny business, self-reference, truth predicates, self-fulfilling
Probabilities

- \(P : SL \rightarrow [0, 1] \)
- Set of probability functions \(\mathbb{P} \)
- Possible world, states

\[
\omega = v_1 \land v_2 \land \neg v_3 \land \ldots \land v_n \land \neg v_n
\]

\[
P(\varphi) = \sum_{\omega \in \Omega, \omega \models \varphi} P(\omega).
\]

A probability function \(P \in \mathbb{P} \) is uniquely determined by its values on possible worlds, \(\langle P(\omega) : \omega \in \Omega \rangle \).
Probabilities

- $P : SL \rightarrow [0, 1]$
- Set of probability functions \mathbb{P}
- Possible world, states

$$\omega = v_1 \land v_2 \land \neg v_3 \land \ldots \land v_n \land \neg v_n$$

$$P(\varphi) = \sum_{\omega \in \Omega} P(\omega).$$

A probability function $P \in \mathbb{P}$ is uniquely determined by its values on possible worlds, $\langle P(\omega) : \omega \in \Omega \rangle$.
Probabilities

- \(P : SL \to [0, 1] \)
- Set of probability functions \(\mathbb{P} \)
- Possible world, states

\[
\omega = v_1 \land v_2 \land \neg v_3 \land \ldots \land v_n \land \neg v_n
\]

\[
P(\varphi) = \sum_{\omega \in \Omega \atop \omega \models \varphi} P(\omega).
\]

- A probability function \(P \in \mathbb{P} \) is uniquely determined by its values on possible worlds, \(\langle P(\omega) : \omega \in \Omega \rangle \).

Recap
The Classical Derivation
A Modern Approach
Universes
Objections, your Honor!

Maximum Entropy and Inductive Logic II
Probabilities

- $P : SL \rightarrow [0, 1]$
- Set of probability functions \mathbb{P}
- Possible world, states

$$\omega = v_1 \land v_2 \land \neg v_3 \land \ldots \land v_n \land \neg v_n$$

$$P(\varphi) = \sum_{\omega \in \Omega} P(\omega).$$

A probability function $P \in \mathbb{P}$ is uniquely determined by its values on possible worlds, $\langle P(\omega) : \omega \in \Omega \rangle$.
Probabilities

- $P : SL \rightarrow [0, 1]$
- Set of probability functions \mathbb{P}
- Possible world, states

$$\omega = v_1 \land v_2 \land \neg v_3 \land \ldots \land v_n \land \neg v_n$$

$$P(\varphi) = \sum_{\omega \in \Omega} P(\omega) \cdot \omega \models \varphi$$

- A probability function $P \in \mathbb{P}$ is uniquely determined by its values on possible worlds, $\langle P(\omega) : \omega \in \Omega \rangle$.

Jürgen Landes Maximum Entropy and Inductive Logic II
Inference Processes

- Knowledge K leads to $E \subseteq P$.
- Formally, an inference process is a map from a set of probability functions (here E) to the set of probability functions.
- An inference process is a map (or function)
 - Input: E
 - Output: P^+.
Inference Processes

- Knowledge K leads to $\mathbb{E} \subseteq \mathbb{P}$.
- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.

An inference process is a map (or function)
- Input: \mathbb{E}
- Output: P^+.
Inference Processes

- Knowledge K leads to $E \subseteq P$.
- Formally, an *inference process* is a map from a set of probability functions (here E) to the set of probability functions.
- An inference process is a map (or function)
 - Input: E
 - Output: P^+.
Inference Processes

- Knowledge K leads to $E \subseteq P$.
- Formally, an *inference process* is a map from a set of probability functions (here E) to the set of probability functions.
- An inference process is a map (or function)
 - Input: E
 - Output: P^+.

Jürgen Landes

Maximum Entropy and Inductive Logic II
Inference Processes

- Knowledge K leads to $E \subseteq P$.
- Formally, an *inference process* is a map from a set of probability functions (here E) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P^+.

Jürgen Landes

Maximum Entropy and Inductive Logic II
Obviously right

- Adopt the function, P^\dagger, which solve this optimisation problem

$$\text{maximise: } - \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$$

subject to: $P \in \mathbb{E}$.

- Shannon Entropy: $H(P) = - \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$.

- Maximum Entropy Inference Process (MaxEnt):

$$\{P^+\} = \arg \sup_{P \in \mathbb{E}} H(P)$$
Obviously right

- Adopt the function, P^t, which solve this optimisation problem

$$\text{maximise: } - \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$$

subject to: $P \in \mathbb{E}$.

- Shannon Entropy: $H(P) = - \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$.

- Maximum Entropy Inference Process (MaxEnt):

$$\{P^+\} = \text{arg sup}_{P \in \mathbb{E}} H(P)$$
Obviously right

- Adopt the function, P^\dagger, which solve this optimisation problem

\[
\text{maximise: } - \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))
\]

subject to: $P \in \mathbb{E}$.

- Shannon Entropy: $H(P) = - \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$.

- Maximum Entropy Inference Process (MaxEnt):

\[
\{ P^+ \} = \arg \sup_{P \in \mathbb{E}} H(P)
\]
Desideratum: Internal

- $P^+ \in \mathbb{E}$
- if \mathbb{E} is non-empty, convex and closed.
Desideratum: Internal

- \(P^+ \in E \)
- if \(E \) is non-empty, convex and closed.
Desideratum: Open-mindedness

\[P^+(\omega) > 0, \text{ if there exists a } P \in \mathbb{E} \text{ such that } P(\omega) > 0. \]
Desideratum: Language Invariance

- L' generated by $v_1, v_2, \ldots, v_n, v_{n+1}$
- and the same knowledge and the same patient? For all $\varphi \in SL$

$$P'(\varphi) = P^+(\varphi)$$

- Repeat argument for even larger languages.
Desideratum: Language Invariance

- L' generated by $v_1, v_2, \ldots, v_n, v_{n+1}$
- and the same knowledge and the same patient? For all $\phi \in SL$

$$P'(\phi) = P^+(\phi)$$

- Repeat argument for even larger languages.
Desideratum: Language Invariance

- L' generated by $v_1, v_2, \ldots, v_n, v_{n+1}$
- and the same knowledge and the same patient? For all $\varphi \in SL$

\[P'(\varphi) = P^+(\varphi) \]

- Repeat argument for even larger languages.
Outline

1 Recap

2 The Classical Derivation
 • Desiderata
 • The Classical Result

3 A Modern Approach
 • Decision Making
 • Justification

4 Universes

5 Objections, your Honor!
 • Bug or Feature?
 • Issues of Language
 • Risqué
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Renaming

- Names should not matter.
Knowledge entirely irrelevant to the problem in hand can he ignored.

Languages: L_1 with variables v_1, \ldots, v_s, L_2 with variables v_{s+1}, \ldots, v_n.

2 Bodies of Knowledge: K_1 formulated within L_1, K_2 formulated within L_2.

For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1, \ldots, v_n\}, K_1)(\varphi) = IP(\{v_1, \ldots, v_n\}, K_1 \cup K_2)(\varphi).$$
Irrelevance

Knowledge entirely irrelevant to the problem in hand can be ignored.

Languages: L_1 with variables v_1, \ldots, v_s, L_2 with variables v_{s+1}, \ldots, v_n.

2 Bodies of Knowledge: K_1 formulated within L_1, K_2 formulated with in L_2

For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1, \ldots, v_n\}, K_1)(\varphi) = IP(\{v_1, \ldots, v_n\}, K_1 \cup K_2)(\varphi).$$
Knowledge entirely irrelevant to the problem in hand can be ignored.

Languages: L_1 with variables v_1, \ldots, v_s, L_2 with variables v_{s+1}, \ldots, v_n.

2 Bodies of Knowledge: K_1 formulated within L_1, K_2 formulated within L_2.

For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1, \ldots, v_n\}, K_1)(\varphi) = IP(\{v_1, \ldots, v_n\}, K_1 \cup K_2)(\varphi).$$
Irrelevance

- Knowledge entirely irrelevant to the problem in hand can be ignored.
- Languages: L_1 with variables v_1, \ldots, v_s, L_2 with variables v_{s+1}, \ldots, v_n.
- 2 Bodies of Knowledge: K_1 formulated within L_1, K_2 formulated with in L_2.
- For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1, \ldots, v_n\}, K_1)(\varphi) = IP(\{v_1, \ldots, v_n\}, K_1 \cup K_2)(\varphi).$$
Obstinacy

- Learning something one already believes should not make any difference.
- Given two consistent bodies of knowledge, K_1, K_2 (on the same language)
- If $IP(K_1)$ (which is a probability function), is consistent with K_2, then

$$IP(K_1) = IP(K_1 \cup K_2).$$
Learning something one already believes should not make any difference.

Given two consistent bodies of knowledge, K_1, K_2 (on the same language)

If $IP(K_1)$ (which is a probability function), is consistent with K_2, then

$$IP(K_1) = IP(K_1 \cup K_2).$$
Learning something one already believes should not make any difference.

Given two consistent bodies of knowledge, K_1, K_2 (on the same language)

If $IP(K_1)$ (which is a probability function), is consistent with K_2, then

\[IP(K_1) = IP(K_1 \cup K_2). \]
Obstinacy

- Learning something one already believes should not make any difference.
- Given two consistent bodies of knowledge, K_1, K_2 (on the same language)
- If $IP(K_1)$ (which is a probability function), is consistent with K_2, then

$$IP(K_1) = IP(K_1 \cup K_2).$$
Obstinacy

- Learning something one already believes should not make any difference.
- Given two consistent bodies of knowledge, K_1, K_2 (on the same language)
- If $IP(K_1)$ (which is a probability function), is consistent with K_2, then
 $$IP(K_1) = IP(K_1 \cup K_2).$$
Obstinacy

- Learning something one already believes should not make any difference.
- Given two consistent bodies of knowledge, K_1, K_2 (on the same language)
- If $IP(K_1)$ (which is a probability function), is consistent with K_2, then
- $IP(K_1) = IP(K_1 \cup K_2)$.
Suppose you know the probability of φ.

That is, for all $P \in \mathbb{E}$ there exists some $c \in [0, 1]$ such that $P(\varphi) = c$.

If $\omega^- \models \varphi$, then $IP(\omega^-)$ should not depend on your knowledge about the $\neg \varphi$-worlds.
Suppose you know the probability of φ.
That is, for all $P \in \mathbb{E}$ there exists some $c \in [0, 1]$ such that $P(\varphi) = c$.
If $\omega^- \models \varphi$, then $IP(\omega^-)$ should not depend on your knowledge about the $\neg \varphi$-worlds.
Suppose you know the probability of φ.

That is, for all $P \in \mathbb{P}$ there exists some $c \in [0, 1]$ such that $P(\varphi) = c$.

If $\omega^- \models \varphi$, then $IP(\omega^-)$ should not depend on your knowledge about the $\neg \varphi$-worlds.
Independence

If K does not contain any information which makes v_1, v_2 conditionally dependent on v_3, then v_1, v_2 should be conditionally independent given v_3.

If $K = \{ P(v_3) = \gamma, P(v_1|v_3) = \frac{\alpha}{\gamma}, P(v_2|v_3) = \frac{\beta}{\gamma} \}$ ($P(\gamma) > 0$), then

$$IP(K)(v_1 \land v_2|v_3) = \frac{\alpha \beta}{\gamma \gamma}.$$
Independence

- If K does not contain any information which makes v_1, v_2 conditionally dependent on v_3, then v_1, v_2 should be conditionally independent given v_3.
- If $K = \{ P(v_3) = \gamma, P(v_1|v_3) = \frac{\alpha}{\gamma}, P(v_2|v_3) = \frac{\beta}{\gamma} \} \ (P(\gamma) > 0)$, then

$$IP(K)(v_1 \land v_2|v_3) = \frac{\alpha \beta}{\gamma \gamma}.$$
If E' can be obtained from E by moving or deforming E a bit, then

$$IP(E') \approx IP(E).$$

For all sentences $\varphi \in SL$: $IP(E')(\varphi) \approx IP(E)(\varphi)$.
Continuity

- If E' can be obtained from E by moving or deforming E a bit, then
- $IP(E') \approx IP(E)$.
- For all sentences $\varphi \in SL$: $IP(E')(\varphi) \approx IP(E)(\varphi)$.
Continuity

- If E' can be obtained from E by moving or deforming E a bit, then
- $\text{IP}(E') \approx \text{IP}(E)$.
- For all sentences $\varphi \in SL$: $\text{IP}(E')(\varphi) \approx \text{IP}(E)(\varphi)$.
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Theorem

If E is closed, convex and non-empty, IP satisfies Renaming, Irrelevance, Obstinance, Relativisation, Independence and Continuity, then IP is MaxEnt. MaxEnt satisfies language invariance and open-mindedness and is internal.
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

Jürgen Landes
Maximum Entropy and Inductive Logic II
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Continuity - Bristolean

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are *best*.
- A *utility function* u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the “best utility”.
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined.
One considers the decision problem of setting degrees of belief and wonders which beliefs are best. A utility function u is used to measure the goodness / bad-ness / utility of a belief function. Determine which beliefs have the “best utility”. The usual caveats for decision making apply: Non-causal, act-state independence, etc. Decision theoretic norm still undetermined.
Continuity - Bristolean

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the “best utility”.
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined.
One considers the decision problem of setting degrees of belief

and wonders which beliefs are best.

A utility function u is used to measure the goodness / badness / utility of a belief function.

Determine which beliefs have the “best utility”.

The usual caveats for decision making apply: Non-causal, act-state independence, etc.

Decision theoretic norm still undetermined.
Continuity - Bristolean

- One considers the decision problem of setting degrees of belief.
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / bad-ness / utility of a belief function.
- Determine which beliefs have the “best utility”.
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined.
One considers the decision problem of setting degrees of belief and wonders which beliefs are best.

A *utility function* u is used to measure the goodness / badness / utility of a belief function.

Determine which beliefs have the “best utility”.

The usual caveats for decision making apply: Non-causal, act-state independence, etc.

Decision theoretic norm still undetermined.
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.

Expected utility for $P \in E$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.

If E is closed, convex and non-empty, maximise worst case expected utility:

$$\arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in E} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^+\}.$$

The latest rage is to understand u as an accuracy measure.

Measure closeness to the truth.
If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.

Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.

If \mathbb{E} is closed, convex and non-empty, maximise worst case expected utility:

$$\arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^+\}.$$

The latest rage is to understand u as an accuracy measure.

Measure closeness to the truth.
Logarithmic Utility

- If \(\omega \) is the true world, then the utility is \(u(\omega, P^+) = \log(P^+(\omega)) \).
- Expected utility for \(P \in \mathbb{E} \) is: \(\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) \).
- If \(\mathbb{E} \) is closed, convex and non-empty, maximise worst case expected utility:

 \[
 \arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^\dag\}.
 \]

- The latest rage is to understand \(u \) as an accuracy measure.
- Measure closeness to the truth.

Jürgen Landes Maximum Entropy and Inductive Logic II
Logarithmic Utility

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- If \mathbb{E} is closed, convex and non-empty, maximise worst case expected utility:

$$\arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^\dagger\}.$$

- The latest rage is to understand u as an accuracy measure.
- Measure closeness to the truth.
Logarithmic Utility

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- If \mathbb{E} is closed, convex and non-empty, maximise worst case expected utility:

$$\arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{ P^\dagger \}.$$

- The latest rage is to understand u as an accuracy measure.
- Measure closeness to the truth.
Utility Theory

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of *common-sense* principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions *appear* much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.
Utility Theory

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of common-sense principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions appear much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.
Utility Theory

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of common-sense principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions appear much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.
Utility Theory

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of *common-sense* principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions *appear* much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.
Utility Theory

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of *common-sense* principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions *appear* much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Consider an entire population M with $|M|$ members.

- K consists of statements of the form
- 32.2% of patients complain of symptom φ

$$\left|\{x \in M \mid x \text{ complains about } \varphi\}\right| \approx \frac{32.2}{100}|M|$$

Consider all populations M of fixed large size $|M|$ which satisfy the above.

Then almost all such populations M satisfy

$$\frac{\left|\{x \in M \mid x \text{ complains about } \varphi\}\right|}{|M|} \approx P^*(\varphi).$$
Ensembles, populations

- Consider an entire population M with $|M|$ members.
- K consists of statements of the form
 - 32.2% of patients complain of symptom φ

\[
|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|
\]

- Consider all populations M of fixed large size $|M|$ which satisfy the above.
- Then almost all such populations M satisfy

\[
\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^\dagger(\varphi)
\]
Ensembles, populations

- Consider an entire population M with $|M|$ members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size $|M|$ which satisfy the above.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^+(\varphi).$$
Ensembles, populations

- Consider an entire population M with $|M|$ members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

\[
|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|
\]

- Consider all populations M of fixed large size $|M|$ which satisfy the above.
- Then almost all such populations M satisfy

\[
\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^\dagger(\varphi)
\]
Ensembles, populations

- Consider an entire population M with $|M|$ members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ
- \[
\left| \left\{ x \in M \mid x \text{ complains about } \varphi \right\} \right| \approx \frac{32.2}{100} |M|
\]
- Consider all populations M of fixed large size $|M|$ which satisfy the above.
- Then almost all such populations M satisfy
- \[
\frac{\left| \left\{ x \in M \mid x \text{ complains about } \varphi \right\} \right|}{|M|} \approx P^+(\varphi).
\]
Ensembles, populations

- Consider an entire population M with $|M|$ members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size $|M|$ which satisfy the above.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^\dagger(\varphi).$$
Theorem

For all $\delta > 0$ there exists some natural number M_0 such that for all sentences $\varphi \in SL$ and all fixed sizes of populations $|M| \geq M_0$ the proportion of populations M of fixed size $|M| \geq M_0$ which satisfy

$$\left| \frac{\left| \{x \in M \mid x \text{ complains about } \varphi \} \right|}{|M|} - P^\dagger(\varphi) \right| < \delta$$

is greater or equal than $1 - \delta$.

Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Equivocation, come what may

- The least opinionated function is
 \[P_\parallel(\omega) = \frac{1}{|\Omega|}, \{P_\parallel\} = \arg\sup_{P\in\mathbb{E}} H(P). \]
- If \(P_\parallel \in \mathbb{E} \), then \(P^\dagger = P_\parallel \).
- Entropy strictly decreases along the rays originating from \(P_\parallel \).
- Entropy maximiser different from \(P_\parallel \) face \(P_\parallel \).
- If \(\mathbb{E} = \{P \in \mathbb{P} \mid 0 \leq P(v_1) \leq 0.5\} \), then \(P^\dagger(v_1) = 0.5 \).
- Can this be right?
Equivocation, come what may

- The least opinionated function is
 \[P_\omega(\omega) = \frac{1}{|\Omega|}, \{P_\omega\} = \arg \sup_{P \in E} H(P). \]

- If \(P_\omega \in E \), then \(P^\dagger = P_\omega \).

- Entropy strictly decreases along the rays originating from \(P_\omega \).

- Entropy maximiser different from \(P_\omega \) face \(P_\omega \).

- If \(E = \{P \in \mathbb{P} \mid 0 \leq P(v_1) \leq 0.5\} \), then \(P^\dagger(v_1) = 0.5 \).

- Can this be right?
Equivocation, come what may

- The least opinionated function is
 \(P_\|= (\omega) = \frac{1}{|\Omega|}, \{ P_\|= \} = \arg \sup_{P \in \mathbb{E}} H(P) \).
- If \(P_\|= \in \mathbb{E} \), then \(P^\dagger = P_\|= \).
- Entropy strictly decreases along the rays originating from \(P_\|= \).
- Entropy maximiser different from \(P_\|= \) face \(P_\|= \).
- If \(\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \leq P(v_1) \leq 0.5 \} \), then \(P^\dagger(v_1) = 0.5 \).
- Can this be right?
Equivocation, come what may

- The least opinionated function is
 \[P_\perp(\omega) = \frac{1}{|\Omega|}, \{ P_\perp \} = \arg \sup_{P \in \mathcal{E}} H(P). \]
- If \(P_\perp \in \mathcal{E} \), then \(P^\dagger = P_\perp \).
- Entropy strictly decreases along the rays originating from \(P_\perp \).
- Entropy maximiser different from \(P_\perp \) face \(P_\perp \).
- If \(\mathcal{E} = \{ P \in \mathcal{P} \mid 0 \leq P(v_1) \leq 0.5 \} \), then \(P^\dagger(v_1) = 0.5 \).
- Can this be right?
Equivocation, come what may

- The least opinionated function is
 \[P_{=}(\omega) = \frac{1}{|\Omega|}, \{P_{=}\} = \arg \sup_{P \in \mathbb{P}} H(P). \]
- If \(P_{=} \in \mathbb{P} \), then \(P^\dagger = P_{=} \).
- Entropy strictly decreases along the rays originating from \(P_{=} \).
- Entropy maximiser different from \(P_{=} \) face \(P_{=} \).
- If \(\mathbb{P} = \{P \in \mathbb{P} | 0 \leq P(v_1) \leq 0.5\} \), then \(P^\dagger(v_1) = 0.5 \).
- Can this be right?
Equivocation, come what may

- The least opinionated function is
 \[P_\perp(\omega) = \frac{1}{|\Omega|}, \{P_\perp\} = \arg\sup_{P \in \mathcal{E}} H(P). \]

- If \(P_\perp \in \mathcal{E} \), then \(P^\dagger = P_\perp \).

- Entropy strictly decreases along the rays originating from \(P_\perp \).

- Entropy maximiser different from \(P_\perp \) face \(P_\perp \).

- If \(\mathcal{E} = \{ P \in \mathcal{P} \mid 0 \leq P(v_1) \leq 0.5 \} \), then \(P^\dagger(v_1) = 0.5 \).

- Can this be right?
Equivocation, come what may

- The least opinionated function is
- \(P_\bot(\omega) = \frac{1}{|\Omega|}, \{P_\bot\} = \arg \sup_{P \in \mathcal{E}} H(P) \).
- If \(P_\bot \in \mathcal{E} \), then \(P^\dagger = P_\bot \).
- Entropy strictly decreases along the rays originating from \(P_\bot \).
- Entropy maximiser different from \(P_\bot \) face \(P_\bot \).
- If \(\mathcal{E} = \{P \in \mathcal{P} | 0 \leq P(v_1) \leq 0.5\} \), then \(P^\dagger(v_1) = 0.5 \).
- Can this be right?
If $E = P$, then $P^\dagger = P_\subseteq$.

But what if you learn this?
Can this be right?
If $E = P$, then $P^\dagger = P\preceq$.

But what if you learn this?

Can this be right?
If $E = P$, then $P^\dagger = P_{=}$.
But what if you learn this?
Can this be right?
Intuition?!?

Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.

How would you(!) respond to this objection?

If the aim is to reconstruct “rational” human thinking, then MaxEnt fails; I claim.
Intuition?!?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

- If the aim is to reconstruct “rational” human thinking, then MaxEnt fails; I claim.
Maximising \(-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))\) is sooo counter-intuitive.

How would you(!) respond to this objection?

If the aim is to reconstruct “rational” human thinking, then MaxEnt fails; I claim.
Maximising $- \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.

How would you(!) respond to this objection?

If the aim is to reconstruct “rational” human thinking, then MaxEnt fails; I claim.
Maximising $- \sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.

How would you(!) respond to this objection?

If the aim is to reconstruct “rational” human thinking, then MaxEnt fails; I claim.
Intuition?!!

Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.

How would you(!) respond to this objection?

If the aim is to reconstruct “rational” human thinking, then MaxEnt fails; I claim.
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
Dependence

- No knowledge, $E = \mathbb{P}$.
- Possible worlds: red and blue.
 - $P^\uparrow(\text{red}) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
 - $P^\uparrow(\text{red}) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.
Dependence

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
 - $P^+(\text{red}) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
 - $P^+(\text{red}) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.
No knowledge, $E = P$.

Possible worlds: red and blue.

$P^+(red) = \frac{1}{2}$. Okay.

Possible worlds: red and light blue and dark blue.

$P^+(red) = \frac{1}{3}$. Ohho!

This phenomenon is called language dependence.

It is quite common.
Dependence

- No knowledge, $E = P$.
- Possible worlds: red and blue.
 - $P^+(\text{red}) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
 - $P^+(\text{red}) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.
Dependence

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^\dagger(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^\dagger(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.
No knowledge, $E = P$.

Possible worlds: red and blue.

$P^+(\text{red}) = \frac{1}{2}$. Okay.

Possible worlds: red and light blue and dark blue.

$P^+(\text{red}) = \frac{1}{3}$. Ohho!

This phenomenon is called language dependence.

It is quite common.
Dependence

- No knowledge, $E = P$.
- Possible worlds: red and blue.
 - $P^\dagger(\text{red}) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
 - $P^\dagger(\text{red}) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.
Invariance

\[L = \langle v_1, v_2, \ldots, v_n \rangle, L' = \langle v_1, v_2, \ldots, v_n, v_{n+1} \rangle. \]

- Knowledge only concerns \(v_1, \ldots, v_n \).
- \(\varphi \in SL. \)

\[IP(L)(\varphi) = IP(L')(\varphi) \]

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!
Invariance

- \(L = \langle v_1, v_2, \ldots, v_n \rangle, \quad L' = \langle v_1, v_2, \ldots, v_n, v_{n+1} \rangle. \)
- Knowledge only concerns \(v_1, \ldots, v_n. \)
- \(\varphi \in SL. \)

\[IP(L)(\varphi) = IP(L')(\varphi) \]

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!
Invariance

- \(L = \langle v_1, v_2, \ldots, v_n \rangle, \quad L' = \langle v_1, v_2, \ldots, v_n, v_{n+1} \rangle. \)
- Knowledge only concerns \(v_1, \ldots, v_n. \)
- \(\varphi \in SL. \)

\[
IP(L)(\varphi) = IP(L')(\varphi)
\]

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!
Invariance

\[L = \langle v_1, v_2, \ldots, v_n \rangle, \quad L' = \langle v_1, v_2, \ldots, v_n, v_{n+1} \rangle. \]

Knowledge only concerns \(v_1, \ldots, v_n \).

\(\varphi \in SL. \)

\[IP(L)(\varphi) = IP(L')(\varphi) \]

Centre of Mass is not language invariant! MaxEnt is language invariant.

\(\text{Ay, caramba!} \)
Invariance

- \(L = \langle v_1, v_2, \ldots, v_n \rangle, \quad L' = \langle v_1, v_2, \ldots, v_n, v_{n+1} \rangle. \)
- Knowledge only concerns \(v_1, \ldots, v_n. \)
- \(\varphi \in SL. \)

\[
IP(L)(\varphi) = IP(L')(\varphi)
\]

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!
Outline

1. Recap
2. The Classical Derivation
 - Desiderata
 - The Classical Result
3. A Modern Approach
 - Decision Making
 - Justification
4. Universes
5. Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué
MaxEnt$_W$:

- An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions \mathbb{P}.
- Density functions:

$$
C^1_E := \{ f_1 : E \to [0, 1] : \int_{P \in E} f_1(P) P \, dp \in \mathbb{P} \}.
$$

- “Likelihood of a chance function”
- MaxEnt$_W$: Pick density with greatest entropy.
MaxEnt_\mathcal{W}

- MaxEnt_\mathcal{W}: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions P.
- Density functions:

\[C_E^1 := \{ f_1 : \mathbb{E} \rightarrow [0, 1] : \int_{P \in \mathbb{E}} f_1(P)P \, dp \in \mathbb{P} \}. \]

- “Likelihood of a chance function”
- MaxEnt_\mathcal{W}: Pick density with greatest entropy
MaxEnt$_W$

- **MaxEnt$_W$**: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions P.
- Density functions:

$$C^1_E := \{ f_1 : E \to [0, 1] : \int_{P \in E} f_1(P)P \, dp \in P \}.$$

- “Likelihood of a chance function”
- MaxEnt$_W$: Pick density with greatest entropy
MaxEnt\textsubscript{W}

- MaxEnt\textsubscript{W}: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions \(\mathbb{P} \).
- Density functions:

\[
\mathcal{C}_{E}^{1} := \{ f_{1} : E \to [0,1] : \int_{P \in E} f_{1}(P)P \, dp \in \mathbb{P} \}.
\]

- “Likelihood of a chance function”
- MaxEnt\textsubscript{W}: Pick density with greatest entropy
MaxEnt\textsubscript{W}: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.

Language now contains the chance functions \(P \).

Density functions:

\[
C_{E}^{1} := \{ f_{1} : E \to [0, 1] : \int_{P \in E} f_{1}(P)P \, dp \in P \}.
\]

“Likelihood of a chance function”

MaxEnt\textsubscript{W}: Pick density with greatest entropy
Entropy: $H(f_1) := - \int_{P \in \mathbb{E}} f_1(P) \cdot \log(f_1(P)) \, dp$.

Let f_1^\dagger be the density in \mathbb{C}_E^1 with maximal entropy.

Pick a probability function $P^+ : \int_{P \in \mathbb{E}} f_1^\dagger(P) \, PdP$.

$P^+ = P_{CoM}$.
Entropy: $H(f_1) := - \int_{P \in \mathbb{E}} f_1(P) \cdot \log(f_1(P)) \, dp$.

Let f_1^\dagger be the density in $\mathcal{C}_\mathbb{E}^1$ with maximal entropy.

Pick a probability function $P^+: \int_{P \in \mathbb{E}} f_1^\dagger(P)P \, dP$.

$P^+ = P_{CoM}$.
Level One

- Entropy: \(H(f_1) := - \int_{P \in \mathbb{E}} f_1(P) \cdot \log(f_1(P)) \, dp \).
- Let \(f_1^\dagger \) be the density in \(C_\mathbb{E}^1 \) with maximal entropy.
- Pick a probability function \(P^+ : \int_{P \in \mathbb{E}} f_1^\dagger(P) \, P \, dP \).
- \(P^+ = P_{CoM} \).
Level One

- Entropy: \(H(f_1) := - \int_{P \in \mathbb{E}} f_1(P) \cdot \log(f_1(P)) dp. \)
- Let \(f_1^\dagger \) be the density in \(\mathbb{C}_E^1 \) with maximal entropy.
- Pick a probability function \(P^+ : \int_{P \in \mathbb{E}} f_1^\dagger(P) PdP. \)
- \(P^+ = P_{CoM} \).
Levels

- Density functions for agents with richer languages

\[
C^{n+1}_E := \{ f_{n+1} : E \to [0, 1] : \int_{f_n \in C^n_E} f_{n+1}(f_n) f_n \, df_n \in C^n_E \}.
\]

- Entropy: \(H(f_{n+1}) := -\int_{f_n \in C^n_E} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) \, df_n. \)

- Let \(f_{n+1}^\dagger \) be the density in \(C^{n+1}_E \) with maximal entropy (it is flat).

- Pick a \(n \) density \(f_n^\dagger : \int_{f \in C^n_E} f_{n+1}^\dagger(f_n) f_n \, df_n. \)

- Eventually this determines some \(P^{++} \in E. \)

- \(P^{++} = P_{CoM}. \)
Levels

- Density functions for agents with richer languages

\[C_{\mathbb{E}}^{n+1} := \{ f_{n+1} : \mathbb{E} \to [0, 1] : \int_{f_n \in C_{\mathbb{E}}^n} f_{n+1}(f_n) f_n \, df_n \in C_{\mathbb{E}}^n \}. \]

- Entropy: \(H(f_{n+1}) := - \int_{f_n \in C_{\mathbb{E}}^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) \, df_n. \)

- Let \(f_{n+1}^\dagger \) be the density in \(C_{\mathbb{E}}^{n+1} \) with maximal entropy (it is flat).

- Pick a \(n \) density \(f_n^+ : \int_{f \in C_{\mathbb{E}}^n} f_{n+1}^\dagger(f_n) f_n \, df_n. \)

- Eventually this determines some \(P^{++} \in \mathbb{E}. \)

\[P^{++} = P_{\text{CoM}}. \]
Levels

- Density functions for agents with richer languages

\[C_{\mathbb{E}}^{n+1} := \{ f_{n+1} : \mathbb{E} \to [0, 1] : \int_{f_n \in C_{\mathbb{E}}^n} f_{n+1}(f_n)f_n \, df_n \in C_{\mathbb{E}}^n \}. \]

- Entropy: \(H(f_{n+1}) := -\int_{f_n \in C_{\mathbb{E}}^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) \, df_n. \)

- Let \(f_{n+1}^\dagger \) be the density in \(C_{\mathbb{E}}^{n+1} \) with maximal entropy (it is flat).

- Pick a \(n \) density \(f_n^{+} : \int_{f \in C_{\mathbb{E}}^n} f_{n+1}^\dagger(f_n)f_n \, df_n. \)

- Eventually this determines some \(P^{++} \in \mathbb{E}. \)

\[P^{++} = P_{CoM}. \]
Density functions for agents with richer languages

\[C_{E}^{n+1} := \{ f_{n+1} : E \to [0, 1] : \int_{f_n \in C_{E}^n} f_{n+1}(f_n) f_n \, df_n \in C_{E}^n \}. \]

Entropy: \(H(f_{n+1}) := -\int_{f_n \in C_{E}^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) \, df_n. \)

Let \(f_{n+1}^\dagger \) be the density in \(C_{E}^{n+1} \) with maximal entropy (it is flat).

Pick a \(n \) density \(f_{n}^+ : \int_{f \in C_{E}^n} f_{n+1}^\dagger(f_n) f_n \, df_n. \)

Eventually this determines some \(P^{++} \in E. \)

\(P^{++} = P_{CoM}. \)
Density functions for agents with richer languages

\[C^{n+1}_E := \{ f_{n+1} : E \to [0, 1] : \int_{f_n \in C^n_E} f_{n+1}(f_n) f_n \, df_n \in C^n_E \} . \]

Entropy: \(H(f_{n+1}) := -\int_{f_n \in C^n_E} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) \, df_n . \)

Let \(f^\dagger_{n+1} \) be the density in \(C^{n+1}_E \) with maximal entropy (it is flat).

Pick a \(n \) density \(f_n^+ : \int_{f \in C^n_E} f^\dagger_{n+1}(f_n) f_n \, df_n . \)

Eventually this determines some \(P^{++} \in E . \)

\[P^{++} = P^{CoM} . \]
Levels

- Density functions for agents with richer languages

$$\mathbb{C}^{n+1}_E := \{ f_{n+1} : E \rightarrow [0, 1] : \int_{f_n \in \mathbb{C}^n_E} f_{n+1}(f_n) f_n \, df_n \in \mathbb{C}^n_E \}. $$

- Entropy: $$H(f_{n+1}) := -\int_{f_n \in \mathbb{C}^n_E} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) \, df_n.$$

- Let $$f_{n+1}^{\dagger}$$ be the density in $$\mathbb{C}^{n+1}_E$$ with maximal entropy (it is flat).

- Pick a density $$f_n^{\dagger} : \int_{f \in \mathbb{C}^n_E} f_{n+1}^{\dagger}(f_n) f_n \, df_n.$$

- Eventually this determines some $$P^{++} \in \mathbb{E}.$$

- $$P^{++} = P_{CoM}.$$
Density Invariance

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Equivocating over \mathbb{P} gives MaxEnt!
- The level matters.
- Ay, ay, caramba!
Density Invariance

- Equivocating over a density level \((\geq 1)\) leads to centre of mass, regardless of the level.
- **Density Invariance**
 - Equivocating over \(P\) gives MaxEnt!
 - The level matters.
 - Ay, ay, caramba!
Density Invariance

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over \mathbb{P} gives MaxEnt!
- The level matters.
- Ay, ay, caramba!
Density Invariance

- Equivocating over a density level ≥ 1 leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over P gives MaxEnt!
- The level matters.
- Ay, ay, caramba!
Density Invariance

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over \mathbb{P} gives MaxEnt!
- The level matters.
- Ay, ay, caramba!
References I

References II

References IV

That’s it. Thank you! Questions? – Progic Tomorrow
Intuitive human sensations tend to be logarithmic functions of the stimulus. – Jaynes

Savage

Jon’s L1 – L4