Recap
The Classical Derivation
A Modern Approach
Universes
Objections, your Honor!

Maximum Entropy and Inductive Logic II

Jürgen Landes

Spring School on Inductive Logic

Canterbury, 20.04.2015 - 21.04.2015

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

- Rational subjective Beliefs
- Finite propositional language L
- Variables v₁,..., v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates self-fulfilling

- Rational subjective Beliefs
- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling

- Rational subjective Beliefs
- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates self-fulfilling

- Rational subjective Beliefs
- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling

- Rational subjective Beliefs
- Finite propositional language L
- Variables v_1, \ldots, v_n
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling

- $P: SL \to [0,1]$
- Set of probability functions P
- Possible world, states

$$\omega = V_1 \wedge V_2 \wedge \neg V_3 \wedge \ldots \wedge V_{n_1} \wedge \neg V_n$$

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \varphi}} P(\omega).$$

- $P: SL \to [0,1]$
- ullet Set of probability functions ${\mathbb P}$
- Possible world, states

$$\omega = V_1 \wedge V_2 \wedge \neg V_3 \wedge \ldots \wedge V_{n_1} \wedge \neg V_n$$

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \omega}} P(\omega).$$

- $P: SL \to [0,1]$
- ullet Set of probability functions ${\mathbb P}$
- Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \varphi}} P(\omega).$$

- $P: SL \to [0,1]$
- ullet Set of probability functions ${\mathbb P}$
- Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

•

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \varphi}} P(\omega).$$

- $P: SL \to [0,1]$
- ullet Set of probability functions ${\mathbb P}$
- Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

•

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \omega}} P(\omega).$$

- Knowledge K leads to $\mathbb{E} \subseteq \mathbb{P}$.
- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P⁺.

- Knowledge K leads to $\mathbb{E} \subseteq \mathbb{P}$.
- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P⁺.

- Knowledge K leads to $\mathbb{E} \subseteq \mathbb{P}$.
- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P^+ .

- Knowledge K leads to $\mathbb{E} \subseteq \mathbb{P}$.
- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: *P*⁺.

- Knowledge K leads to $\mathbb{E} \subseteq \mathbb{P}$.
- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: *P*⁺.

Obviously right

• Adopt the function, P^{\dagger} , which solve this optimisation problem

$$\mbox{maximise: } -\sum_{\omega\in\Omega}P(\omega)\log(P(\omega))$$
 subject to: $P\in\mathbb{E}$.

- Shannon Entropy: $H(P) = -\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$.
- Maximum Entropy Inference Process (MaxEnt):

$$\{P^+\}=rg\sup_{P\in\mathbb{E}}H(P)$$

Obviously right

• Adopt the function, P^{\dagger} , which solve this optimisation problem

$$\mbox{maximise: } -\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$$
 subject to: $P \in \mathbb{E}$.

- Subject to: $I \in \mathbb{R}$
- Shannon Entropy: $H(P) = -\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$.
- Maximum Entropy Inference Process (MaxEnt):

$$\{P^+\} = \arg\sup_{P \in \mathbb{E}} H(P)$$

Obviously right

• Adopt the function, P^{\dagger} , which solve this optimisation problem

$$\mbox{maximise: } -\sum_{\omega\in\Omega}P(\omega)\log(P(\omega))$$
 subject to: $P\in\mathbb{E}$.

- Shannon Entropy: $H(P) = -\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$.
- Maximum Entropy Inference Process (MaxEnt):

$$\{P^+\}=rg\sup_{P\in\mathbb{E}}H(P)$$

Desideratum: Internal

- $P^+ \in \mathbb{E}$
- ullet if $\mathbb E$ is non-empty, convex and closed.

Desideratum: Internal

- $P^+ \in \mathbb{E}$
- ullet if $\mathbb E$ is non-empty, convex and closed.

Desideratum: Open-mindedness

• $P^+(\omega) > 0$, if there exists a $P \in \mathbb{E}$ such that $P(\omega) > 0$.

Desideratum: Language Invariance

- L' generated by $v_1, v_2, \ldots, v_n, v_{n+1}$
- and the same knowledge and the same patient? For all $\varphi \in \mathit{SL}$

$$P'(\varphi) = P^+(\varphi)$$
.

Repeat argument for even larger languages.

Desideratum: Language Invariance

- L' generated by $v_1, v_2, \ldots, v_n, v_{n+1}$
- and the same knowledge and the same patient? For all $\varphi \in \mathit{SL}$

$$P'(\varphi) = P^+(\varphi)$$
.

Repeat argument for even larger languages.

Desideratum: Language Invariance

- L' generated by $v_1, v_2, \ldots, v_n, v_{n+1}$
- and the same knowledge and the same patient? For all $\varphi \in \mathit{SL}$

$$P'(\varphi) = P^+(\varphi)$$
.

Repeat argument for even larger languages.

Outline

- The Classical Derivation

 - The Classical Result
- - Decision Making
 - Justification
- - Bug or Feature?

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

Renaming

Names should not matter.

- Knowledge entirely irrelevant to the problem in hand can he ignored.
- Languages: L_1 with variables v_1, \ldots, v_s , L_2 with variables V_{s+1}, \ldots, V_n .
- 2 Bodies of Knowledge: K₁ formulated within L₁, K₂ formulated with in L₂
- For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1,\ldots,v_n\},K_1)(\varphi) = IP(\{v_1,\ldots,v_n\},K_1 \cup K_2)(\varphi)$$

- Knowledge entirely irrelevant to the problem in hand can he ignored.
- Languages: L_1 with variables v_1, \ldots, v_s , L_2 with variables v_{s+1}, \ldots, v_n .
- 2 Bodies of Knowledge: K_1 formulated within L_1 , K_2 formulated with in L_2
- For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1,\ldots,v_n\},K_1)(\varphi) = IP(\{v_1,\ldots,v_n\},K_1 \cup K_2)(\varphi)$$
.

- Knowledge entirely irrelevant to the problem in hand can he ignored.
- Languages: L_1 with variables v_1, \ldots, v_s , L_2 with variables v_{s+1}, \ldots, v_n .
- 2 Bodies of Knowledge: K_1 formulated within L_1 , K_2 formulated with in L_2
- For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1,\ldots,v_n\},K_1)(\varphi) = IP(\{v_1,\ldots,v_n\},K_1 \cup K_2)(\varphi)$$
.

- Knowledge entirely irrelevant to the problem in hand can he ignored.
- Languages: L_1 with variables v_1, \ldots, v_s , L_2 with variables v_{s+1}, \ldots, v_n .
- 2 Bodies of Knowledge: K_1 formulated within L_1 , K_2 formulated with in L_2
- For all $\varphi \in L_1$ (problem at hand)

$$IP(\{v_1,\ldots,v_n\},K_1)(\varphi) = IP(\{v_1,\ldots,v_n\},K_1 \cup K_2)(\varphi)$$
.

I-AH

University of CENTRE FOR REASONING
WWw. Xeed. ac. al./ Tecasealing

Obstinacy

- Learning something one already beliefs should not make any difference.
- Given two consistent bodies of knowledge, K_1 , K_2 (on the same language)
- If $IP(K_1)$ (which is a probability function), is consistent with K_2 , then

- $IP(K_1) = IP(K_1 \cup K_2)$.

Obstinacy

- Learning something one already beliefs should not make any difference.
- Given two consistent bodies of knowledge, K_1 , K_2 (on the same language)
- If $IP(K_1)$ (which is a probability function), is consistent with K_2 , then

- $IP(K_1) = IP(K_1 \cup K_2)$.

- Learning something one already beliefs should not make any difference.
- Given two consistent bodies of knowledge, K_1 , K_2 (on the same language)
- If IP(K₁) (which is a probability function), is consistent with K₂, then
- - $P(K_1) = IP(K_1 \cup K_2).$

- Learning something one already beliefs should not make any difference.
- Given two consistent bodies of knowledge, K_1 , K_2 (on the same language)
- If IP(K₁) (which is a probability function), is consistent with K₂, then
- •
- $P(K_1) = IP(K_1 \cup K_2)$

- Learning something one already beliefs should not make any difference.
- Given two consistent bodies of knowledge, K_1 , K_2 (on the same language)
- If IP(K₁) (which is a probability function), is consistent with K₂, then
- •
- •
- $IP(K_1) = IP(K_1 \cup K_2)$.

- Learning something one already beliefs should not make any difference.
- Given two consistent bodies of knowledge, K_1 , K_2 (on the same language)
- If IP(K₁) (which is a probability function), is consistent with K₂, then
- •
- •
- $IP(K_1) = IP(K_1 \cup K_2)$.

Relativisation

- Suppose you know the probability of φ .
- That is, for all $P \in \mathbb{E}$ there exists some $c \in [0, 1]$ such that $P(\varphi) = c$.
- If $\omega^- \models \varphi$, then $IP(\omega^-)$ should not depend on your knowledge about the $\neg \varphi$ -worlds.

Relativisation

- Suppose you know the probability of φ .
- That is, for all $P \in \mathbb{E}$ there exists some $c \in [0, 1]$ such that $P(\varphi) = c$.
- If $\omega^- \models \varphi$, then $IP(\omega^-)$ should not depend on your knowledge about the $\neg \varphi$ -worlds.

Relativisation

- Suppose you know the probability of φ .
- That is, for all $P \in \mathbb{E}$ there exists some $c \in [0, 1]$ such that $P(\varphi) = c$.
- If $\omega^- \models \varphi$, then $IP(\omega^-)$ should not depend on your knowledge about the $\neg \varphi$ -worlds.

Independence

- If K does not contain any information which makes v_1, v_2 conditionally dependent on v_3 , then v_1, v_2 should be conditionally independent given v_3 .
- If $K = \{P(v_3) = \gamma, P(v_1|v_3) = \frac{\alpha}{\gamma}, P(v_2|v_3) = \frac{\beta}{\gamma}\}\ (P(\gamma) > 0),$ then

$$IP(K)(v_1 \wedge v_2|v_3) = \frac{\alpha}{\gamma} \frac{\beta}{\gamma}$$

Independence

- If K does not contain any information which makes v_1, v_2 conditionally dependent on v_3 , then v_1, v_2 should be conditionally independent given v_3 .
- If $K = \{P(v_3) = \gamma, P(v_1|v_3) = \frac{\alpha}{\gamma}, P(v_2|v_3) = \frac{\beta}{\gamma}\}\ (P(\gamma) > 0),$ then

$$IP(K)(v_1 \wedge v_2|v_3) = \frac{\alpha}{\gamma} \frac{\beta}{\gamma}$$
.

Continuity

- If \mathbb{E}' can be obtained from \mathbb{E} by moving or deforming \mathbb{E} a bit, then
- $IP(\mathbb{E}') \approx IP(\mathbb{E})$.
- For all sentences $\varphi \in SL$: $IP(\mathbb{E}')(\varphi) \approx IP(\mathbb{E})(\varphi)$.

Continuity

- If \mathbb{E}' can be obtained from \mathbb{E} by moving or deforming \mathbb{E} a bit, then
- $IP(\mathbb{E}') \approx IP(\mathbb{E})$.
- For all sentences $\varphi \in SL$: $IP(\mathbb{E}')(\varphi) \approx IP(\mathbb{E})(\varphi)$.

Continuity

- If \mathbb{E}' can be obtained from \mathbb{E} by moving or deforming \mathbb{E} a bit, then
- $IP(\mathbb{E}') \approx IP(\mathbb{E})$.
- For all sentences $\varphi \in SL$: $IP(\mathbb{E}')(\varphi) \approx IP(\mathbb{E})(\varphi)$.

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- 5 Objections, your Honor
 - Bug or Feature?
 - Issues of Language
 - Risqué

Alena & Jeff

Theorem

If $\mathbb E$ is closed, convex and non-empty, IP satisfies Renaming, Irrelevance, Obstinacy, Relativisation, Independence and Continuity, then IP is MaxEnt.

MaxEnt satisfies language invariance and open-mindedness and is internal.

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- 5 Objections, your Honor
 - Bug or Feature?
 - Issues of Language
 - Risqué

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the "best utility".
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the "best utility".
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the "best utility".
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the "best utility".
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the "best utility".
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined.

- One considers the decision problem of setting degrees of belief
- and wonders which beliefs are best.
- A utility function u is used to measure the goodness / badness / utility of a belief function.
- Determine which beliefs have the "best utility".
- The usual caveats for decision making apply: Non-causal, act-state independence, etc.
- Decision theoretic norm still undetermined.

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor
 - Bug or Feature?
 - Issues of Language
 - Risqué

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- If $\mathbb E$ is closed, convex and non-empty, maximise worst case expected utility:

$$rg\sup_{P^+\in\mathbb{P}}\inf_{P\in\mathbb{E}}\sum_{\omega\in\Omega}P(\omega)\log(P^+(\omega))=\{P^\dagger\}$$
 .

- The latest rage is to understand *u* as an accuracy measure.
- Measure closeness to the truth

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- \bullet If $\mathbb E$ is closed, convex and non-empty, maximise worst case expected utility:

$$\operatorname{arg} \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^\dagger\}$$

- The latest rage is to understand *u* as an accuracy measure.
- Measure closeness to the truth.

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- If $\mathbb E$ is closed, convex and non-empty, maximise worst case expected utility:

$$\arg\sup_{P^+\in\mathbb{P}}\inf_{P\in\mathbb{E}}\sum_{\omega\in\Omega}P(\omega)\log(P^+(\omega))=\{P^\dagger\}\ .$$

- The latest rage is to understand *u* as an accuracy measure.
- Measure closeness to the truth.

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- If $\mathbb E$ is closed, convex and non-empty, maximise worst case expected utility:

$$\arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^\dagger\} \ .$$

- The latest rage is to understand *u* as an accuracy measure.
- Measure closeness to the truth.

- If ω is the true world, then the utility is $u(\omega, P^+) = \log(P^+(\omega))$.
- Expected utility for $P \in \mathbb{E}$ is: $\sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega))$.
- If $\mathbb E$ is closed, convex and non-empty, maximise worst case expected utility:

$$\arg \sup_{P^+ \in \mathbb{P}} \inf_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \log(P^+(\omega)) = \{P^\dagger\} \ .$$

- The latest rage is to understand *u* as an accuracy measure.
- Measure closeness to the truth.

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of common-sense principles hinge on

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of common-sense principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions appear much more

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of common-sense principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions appear much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.

- If you do have a utility function and a Decision Theoretic Norm,
- then you can show that a particular inference process is optimal with respect to the above.
- Justifications in terms of common-sense principles hinge on the common-sensicality of the principles.
- Justifications in terms of utility functions appear much more objective.
- However, one has to give a story explaining where the utility function and the DTN come from.

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

Ensembles, populations

- Consider an entire population M with |M| members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

d

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size |M| which satisfy the above.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^{\dagger}(\varphi)$$

Ensembles, populations

- Consider an entire population M with |M| members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size |M| which satisfy the above.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^{\dagger}(\varphi)$$

- Consider an entire population M with |M| members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size |M| which satisfy the above.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^{\dagger}(\varphi) \ .$$

- Consider an entire population M with |M| members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

•

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size |M| which satisfy the *above*.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^{\dagger}(\varphi) .$$

- Consider an entire population M with |M| members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

•

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size |M| which satisfy the *above*.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^{\dagger}(\varphi) \ .$$

- Consider an entire population M with |M| members.
- K consists of statements of the form
- 32.2% of patients complain of symptom φ

•

$$|\{x \in M \mid x \text{ complains about } \varphi\}| \approx \frac{32.2}{100} |M|$$

- Consider all populations M of fixed large size |M| which satisfy the *above*.
- Then almost all such populations M satisfy

$$\frac{|\{x \in M \mid x \text{ complains about } \varphi\}|}{|M|} \approx P^{\dagger}(\varphi) .$$

Alena & Jeff 2 – one last justification

Theorem

For all $\delta>0$ there exists some natural number M_0 such that for all sentences $\varphi\in SL$ and all fixed sizes of populations $|M|\geq M_0$ the proportion of populations M of fixed size $|M|\geq M_0$ which satisfy

$$\Big| rac{|\{x \in M \mid x \; complains \; about \; arphi\}|}{|M|} - P^\dagger(arphi) \Big| < \delta$$

is greater or equal than $1 - \delta$.

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

The least opinionated function is

•
$$P_{=}(\omega) = \frac{1}{|\Omega|}, \{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P).$$

- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from P=.
- Entropy maximiser different from P₌ face P₌
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5.5$
- Can this be right?

- The least opinionated function is
- $P_{=}(\omega) = \frac{1}{|\Omega|}$, $\{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P)$.
- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from P=.
- Entropy maximiser different from P_{-} face P_{-}
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5.5$
- Can this be right?

- The least opinionated function is
- $P_{=}(\omega) = \frac{1}{|\Omega|}$, $\{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P)$.
- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from $P_{=}$.
- Entropy maximiser different from P₌ face P₌.
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5$.
- Can this be right?

- The least opinionated function is
- $P_{=}(\omega) = \frac{1}{|\Omega|}$, $\{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P)$.
- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from $P_{=}$.
- Entropy maximiser different from P_{-} face P_{-} .
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5$.
- Can this be right?

- The least opinionated function is
- $P_{=}(\omega) = \frac{1}{|\Omega|}$, $\{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P)$.
- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from P=.
- Entropy maximiser different from P_{-} face P_{-} .
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5$.
- Can this be right?

- The least opinionated function is
- $P_{=}(\omega) = \frac{1}{|\Omega|}$, $\{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P)$.
- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from P=.
- Entropy maximiser different from P₌ face P₌.
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5$.
- Can this be right?

- The least opinionated function is
- $P_{=}(\omega) = \frac{1}{|\Omega|}$, $\{P_{=}\} = \arg \sup_{P \in \mathbb{E}} H(P)$.
- If $P_{=} \in \mathbb{E}$, then $P^{\dagger} = P_{=}$.
- Entropy strictly decreases along the rays originating from P=.
- Entropy maximiser different from P₌ face P₌.
- If $\mathbb{E} = \{ P \in \mathbb{P} \mid 0 \le P(v_1) \le 0.5 \}$, then $P^{\dagger}(v_1) = 0.5$.
- Can this be right?

Donkey

- If $\mathbb{E} = \mathbb{P}$, then $P^{\dagger} = P_{=}$.
- But what if your learn this?
- Can this be right?

Donkey

- If $\mathbb{E} = \mathbb{P}$, then $P^{\dagger} = P_{=}$.
- But what if your learn this?
- Can this be right?

Donkey

- If $\mathbb{E} = \mathbb{P}$, then $P^{\dagger} = P_{=}$.
- But what if your learn this?
- Can this be right?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

- Maximising $-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$ is sooo counter-intuitive.
- How would you(!) respond to this objection?

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence
- It is quite common.

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence
- It is quite common.

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence
- It is quite common.

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence
- It is quite common.

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.

- No knowledge, $\mathbb{E} = \mathbb{P}$.
- Possible worlds: red and blue.
- $P^{\dagger}(red) = \frac{1}{2}$. Okay.
- Possible worlds: red and light blue and dark blue.
- $P^{\dagger}(red) = \frac{1}{3}$. Ohho!
- This phenomenon is called language dependence.
- It is quite common.

- $\bullet L = \langle v_1, v_2, \dots, v_n \rangle, L' = \langle v_1, v_2, \dots, v_n, v_{n+1} \rangle.$
- Knowledge only concerns v_1, \ldots, v_n .
- $\varphi \in SL$.

$$IP(L)(\varphi) = IP(L')(\varphi)$$

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!

- $L = \langle v_1, v_2, \dots, v_n \rangle, L' = \langle v_1, v_2, \dots, v_n, v_{n+1} \rangle.$
- Knowledge only concerns v_1, \ldots, v_n .
- $\bullet \varphi \in SL.$

$$IP(L)(\varphi) = IP(L')(\varphi)$$

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!

- $L = \langle v_1, v_2, \dots, v_n \rangle, L' = \langle v_1, v_2, \dots, v_n, v_{n+1} \rangle.$
- Knowledge only concerns v₁,..., v_n.
- $\varphi \in SL$.

$$IP(L)(\varphi) = IP(L')(\varphi)$$

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!

- $L = \langle v_1, v_2, \dots, v_n \rangle, L' = \langle v_1, v_2, \dots, v_n, v_{n+1} \rangle.$
- Knowledge only concerns v₁,..., v_n.
- $\varphi \in SL$.

$$IP(L)(\varphi) = IP(L')(\varphi)$$

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!

- $L = \langle v_1, v_2, \dots, v_n \rangle, L' = \langle v_1, v_2, \dots, v_n, v_{n+1} \rangle.$
- Knowledge only concerns v₁,..., v_n.
- $\varphi \in SL$.

$$IP(L)(\varphi) = IP(L')(\varphi)$$

- Centre of Mass is not language invariant! MaxEnt is language invariant.
- Ay, caramba!

Outline

- Recap
- 2 The Classical Derivation
 - Desiderata
 - The Classical Result
- A Modern Approach
 - Decision Making
 - Justification
- 4 Universes
- Objections, your Honor!
 - Bug or Feature?
 - Issues of Language
 - Risqué

- MaxEnt_W: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions P.
- Density functions:

$$\mathbb{C}^1_{\mathbb{E}} := \{ f_1 : \mathbb{E} \to [0,1] : \int_{P \in \mathbb{E}} f_1(P) P \, dp \in \mathbb{P} \}$$

- "Likelihood of a chance function"
- MaxEnt_W: Pick density with greatest entropy

- MaxEnt_W: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions \mathbb{P} .
- Density functions:

$$\mathbb{C}^1_\mathbb{E} := \{ \mathit{f}_1 : \mathbb{E} \rightarrow [0,1] \ : \ \int_{P \in \mathbb{E}} \mathit{f}_1(P) P \ \mathit{d}p \in \mathbb{P} \}$$

- "Likelihood of a chance function
- MaxEnt_W: Pick density with greatest entropy

- MaxEnt_W: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions \mathbb{P} .
- Density functions:

$$\mathbb{C}^1_\mathbb{E}:=\{f_1:\mathbb{E}\to[0,1]\ :\ \int_{P\in\mathbb{E}}f_1(P)P\ dp\in\mathbb{P}\}.$$

- "Likelihood of a chance function"
- MaxEnt_W: Pick density with greatest entropy

- MaxEnt_W: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions \mathbb{P} .
- Density functions:

$$\mathbb{C}^1_\mathbb{E}:=\{f_1:\mathbb{E}\to[0,1]\ :\ \int_{P\in\mathbb{E}}f_1(P)P\ dp\in\mathbb{P}\}.$$

- "Likelihood of a chance function"
- MaxEnt_W: Pick density with greatest entropy

- MaxEnt_W: An agent ought to equivocate (sufficiently) between the basic possibilities that she can express.
- Language now contains the chance functions \mathbb{P} .
- Density functions:

$$\mathbb{C}^1_\mathbb{E} := \{ \mathit{f}_1 : \mathbb{E} \rightarrow [0,1] : \int_{\mathit{P} \in \mathbb{E}} \mathit{f}_1(\mathit{P})\mathit{P} \; \mathit{dp} \in \mathbb{P} \}.$$

- "Likelihood of a chance function"
- MaxEnt_W: Pick density with greatest entropy

- Entropy: $H(f_1) := -\int_{P \in \mathbb{E}} f_1(P) \cdot \log(f_1(P)) dp$.
- Let f_1^{\dagger} be the density in $\mathbb{C}^1_{\mathbb{E}}$ with maximal entropy.
- Pick a probability function $P^+: \int_{P\in\mathbb{E}} f_1^{\dagger}(P)PdP$.
- $P^+ = P_{CoM}.$

- Entropy: $H(f_1) := -\int_{P \in \mathbb{R}} f_1(P) \cdot \log(f_1(P)) dp$.
- Let f_1^{\dagger} be the density in $\mathbb{C}^1_{\mathbb{E}}$ with maximal entropy.
- Pick a probability function $P^+: \int_{P\in\mathbb{E}} f_1^{\dagger}(P)PdP$.
- $P^+ = P_{CoM}$.

- Entropy: $H(f_1) := -\int_{P \in \mathbb{R}} f_1(P) \cdot \log(f_1(P)) dp$.
- Let f_1^{\dagger} be the density in $\mathbb{C}^1_{\mathbb{E}}$ with maximal entropy.
- Pick a probability function $P^+: \int_{P\in\mathbb{R}} f_1^{\dagger}(P)PdP$.
- $P^+ = P_{CoM}$.

- Entropy: $H(f_1) := -\int_{P \in \mathbb{R}} f_1(P) \cdot \log(f_1(P)) dp$.
- Let f_1^{\dagger} be the density in $\mathbb{C}^1_{\mathbb{E}}$ with maximal entropy.
- Pick a probability function $P^+: \int_{P\in \mathbb{E}} f_1^{\dagger}(P)PdP$.
- $P^+ = P_{CoM}$.

$$\mathbb{C}^{n+1}_\mathbb{E}:=\{f_{n+1}:\mathbb{E}\to[0,1]\ :\ \int_{f_n\in\mathbb{C}^n_\mathbb{E}}f_{n+1}(f_n)f_n\ df_n\in\mathbb{C}^n_\mathbb{E}\}.$$

- Entropy: $H(f_{n+1}) := -\int_{f_n \in \mathbb{C}_{\mathbb{R}}^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) df_n$.
- Let f_{n+1}^{\dagger} be the density in $\mathbb{C}_{\mathbb{E}}^{n+1}$ with maximal entropy (it is flat).
- Pick a n density $f_n^+: \int_{f \in \mathbb{C}^n_{\mathbb{R}}} f_{n+1}^\dagger(f_n) f_n df_n$
- Eventually this determines some $P^{++} \in \mathbb{E}$.
- $P^{++} = P_{COM}$

$$\mathbb{C}^{n+1}_\mathbb{E}:=\{f_{n+1}:\mathbb{E}\to[0,1]\ :\ \int_{f_n\in\mathbb{C}^n_\mathbb{E}}f_{n+1}(f_n)f_n\ df_n\in\mathbb{C}^n_\mathbb{E}\}.$$

- Entropy: $H(f_{n+1}) := -\int_{f_n \in \mathbb{C}_{\mathbb{R}}^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) df_n$.
- Let f_{n+1}^{\dagger} be the density in $\mathbb{C}_{\mathbb{E}}^{n+1}$ with maximal entropy (it is flat).
- Pick a n density $f_n^+:\int_{f\in\mathbb{C}_p^n}f_{n+1}^\dagger(f_n)f_ndf_n$
- Eventually this determines some $P^{++} \in \mathbb{E}$.
- $P^{++} = P_{CoM}$.

$$\mathbb{C}^{n+1}_\mathbb{E}:=\{f_{n+1}:\mathbb{E}\to[0,1]\ :\ \int_{f_n\in\mathbb{C}^n_\mathbb{E}}f_{n+1}(f_n)f_n\ df_n\in\mathbb{C}^n_\mathbb{E}\}.$$

- Entropy: $H(f_{n+1}) := -\int_{f_n \in \mathbb{C}_n^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) df_n$.
- Let f_{n+1}^{\dagger} be the density in $\mathbb{C}_{\mathbb{E}}^{n+1}$ with maximal entropy (it is flat).
- Pick a n density $f_n^+: \int_{f \in \mathbb{C}_p^n} f_{n+1}^\dagger(f_n) f_n df_n$.
- Eventually this determines some $P^{++} \in \mathbb{E}$
- $P^{++} = P_{CoM}$

$$\mathbb{C}^{n+1}_\mathbb{E}:=\{f_{n+1}:\mathbb{E}\to[0,1]\ :\ \int_{f_n\in\mathbb{C}^n_\mathbb{E}}f_{n+1}(f_n)f_n\ df_n\in\mathbb{C}^n_\mathbb{E}\}.$$

- Entropy: $H(f_{n+1}) := -\int_{f_n \in \mathbb{C}_p^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) df_n$.
- Let f_{n+1}^{\dagger} be the density in $\mathbb{C}_{\mathbb{E}}^{n+1}$ with maximal entropy (it is flat).
- Pick a n density $f_n^+: \int_{f \in \mathbb{C}_p^n} f_{n+1}^\dagger(f_n) f_n df_n$.
- Eventually this determines some $P^{++} \in \mathbb{E}$.
- $P^{++} = P_{CoM}$

$$\mathbb{C}^{n+1}_\mathbb{E}:=\{f_{n+1}:\mathbb{E}\to[0,1]\ :\ \int_{f_n\in\mathbb{C}^n_\mathbb{E}}f_{n+1}(f_n)f_n\ df_n\in\mathbb{C}^n_\mathbb{E}\}.$$

- Entropy: $H(f_{n+1}) := -\int_{f_n \in \mathbb{C}_p^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) df_n$.
- Let f_{n+1}^{\dagger} be the density in $\mathbb{C}_{\mathbb{E}}^{n+1}$ with maximal entropy (it is flat).
- Pick a n density $f_n^+: \int_{f \in \mathbb{C}_p^n} f_{n+1}^\dagger(f_n) f_n df_n$.
- Eventually this determines some $P^{++} \in \mathbb{E}$.

$$P^{++} = P_{CoM}$$
.

$$\mathbb{C}^{n+1}_{\mathbb{E}}:=\{f_{n+1}:\mathbb{E}\to[0,1]\ :\ \int_{f_n\in\mathbb{C}^n_{\mathbb{E}}}f_{n+1}(f_n)f_n\ df_n\in\mathbb{C}^n_{\mathbb{E}}\}.$$

- Entropy: $H(f_{n+1}) := -\int_{f_n \in \mathbb{C}_p^n} f_{n+1}(f_n) \cdot \log(f_{n+1}(f_n)) df_n$.
- Let f_{n+1}^{\dagger} be the density in $\mathbb{C}_{\mathbb{E}}^{n+1}$ with maximal entropy (it is flat).
- Pick a n density $f_n^+: \int_{f\in\mathbb{C}_p^n} f_{n+1}^\dagger(f_n) f_n df_n$.
- Eventually this determines some $P^{++} \in \mathbb{E}$.
- $P^{++} = P_{CoM}$.

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over P gives MaxEnt
- The level matters.
- Ay, ay, caramba!

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over P gives MaxEnt!
- The level matters.
- Ay, ay, caramba!

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over P gives MaxEnt!
- The level matters.
- Ay, ay, caramba!

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over P gives MaxEnt!
- The level matters.
- Ay, ay, caramba!

- Equivocating over a density level (≥ 1) leads to centre of mass, regardless of the level.
- Density Invariance
- Equivocating over P gives MaxEnt!
- The level matters.
- Ay, ay, caramba!

References I

Csiszár, I. (1991).

Why Least Squares and Maximum Entropy? An Axiomatic Approach to Inference for Linear Inverse Problems. *The Annals of Statistics*, 19(4):2032–2066.

Grünwald, P. D. and Dawid, A. (2004).

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory.

Annals of Statistics, 32(4):1367–1433.

Jaynes, E. (1957).
Information Theory and Statistical Mechanics.

Physical Review, 106(4):620–630.

References II

- Jaynes, E. T. (2003).

 Probability Theory: The Logic of Science.

 Cambridge University Press.
- Paris, J. B. (1998).
 Common Sense and Maximum Entropy.

 Synthese, 117:75–93.
- Paris, J. B. (2006).

The Uncertain Reasoner's Companion: A Mathematical Perspective, volume 39 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2 edition.

References III

Paris, J. B. and Vencovská, A. (1989).

On the applicability of maximum entropy to inexact reasoning.

International Journal of Approximate Reasoning, 3(1):1–34.

Paris, J. B. and Vencovská, A. (1990).
A note on the inevitability of maximum entropy.

International Journal of Approximate Reasoning,
4(3):183–223.

References IV

Paris, J. B. and Vencovská, A. (1997).
In Defense of the Maximum Entropy Inference Process.
International Journal of Approximate Reasoning,
17(1):77–103.

Williamson, J. (2010).

In Defence of Objective Bayesianism.
Oxford University Press.

That's it. Thank you! Questions? - Progic Tomorrow

Logarithmic Utility

- Intuitive human sensations tend to be logarithmic functions of the stimulus. – Jaynes
- Savage
- Jon's L1 L4

