Maximum Entropy and Inductive Logic I

Jürgen Landes

Spring School on Inductive Logic

Canterbury, 20.04.2015 - 21.04.2015

Outline

- Motivation & Problem
 - Motivation
 - Problem
- - Language
 - Uncertainty
 - Knowledge
- - The Gist
 - The Point

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

- Ballpark: Rational Beliefs
- What does an agent rationally belief?
- As opposed to: When do we say that an agent beliefs X?
- Imagine: You are the agent.
- Normative formal approach

- Ballpark: Rational Beliefs
- What does an agent rationally belief?
- As opposed to: When do we say that an agent beliefs X?
- Imagine: You are the agent.
- Normative formal approach

- Ballpark: Rational Beliefs
- What does an agent rationally belief?
- As opposed to: When do we say that an agent beliefs X?

- Ballpark: Rational Beliefs
- What does an agent rationally belief?
- As opposed to: When do we say that an agent beliefs X?
- Imagine: You are the agent.
- Normative formal approach

- Ballpark: Rational Beliefs
- What does an agent rationally belief?
- As opposed to: When do we say that an agent beliefs X?
- Imagine: You are the agent.
- Normative formal approach

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

Patient, migraines, doctor

Given the doctor's background knowledge.

- Patient, migraines, doctor
- Given the doctor's background knowledge
- patient complaining of certain symptoms
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge.
- patient complaining of certain symptoms.
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do'
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do?
- On the basis of imperfect information

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do?
- On the basis of imperfect information.

- Patient, migraines, doctor
- Given the doctor's background knowledge,
- patient complaining of certain symptoms,
- exhibiting certain traits:
- what should the doctor believe?
- Eventually, what should the doctor do?
- On the basis of imperfect information.

- Carnap1947: A rational agent ought to take all available evidence into account when forming beliefs.
- Reasonable.
- So, the doctor has to take all background knowledge and the patient's individual properties into account.
- Ignoring some information is a "No no".
- .
- Reasonable, ... really?

- Carnap1947: A rational agent ought to take all available evidence into account when forming beliefs.
- Reasonable.
- So, the doctor has to take all background knowledge and the patient's individual properties into account.
- Ignoring some information is a "No no".
- ..
- Reasonable, ... really?

- Carnap1947: A rational agent ought to take all available evidence into account when forming beliefs.
- Reasonable.
- So, the doctor has to take all background knowledge and the patient's individual properties into account.
- Ignoring some information is a "No no".
- ...
- Reasonable, ... really?

- Carnap1947: A rational agent ought to take all available evidence into account when forming beliefs.
- Reasonable.
- So, the doctor has to take all background knowledge and the patient's individual properties into account.
- Ignoring some information is a "No no".
- ...
- Reasonable, ... really?

- Carnap1947: A rational agent ought to take all available evidence into account when forming beliefs.
- Reasonable.
- So, the doctor has to take all background knowledge and the patient's individual properties into account.
- Ignoring some information is a "No no".
- ...
- Reasonable, ... really?

- Carnap1947: A rational agent ought to take all available evidence into account when forming beliefs.
- Reasonable.
- So, the doctor has to take all background knowledge and the patient's individual properties into account.
- Ignoring some information is a "No no".
- ...
- Reasonable, ... really?

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

- Finite propositional language L
- Variables v_1, \ldots, v_n
- Connectives $\land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow$
- Sentences of L, SL
- 0
- No funny business, self-reference, truth predicates, self-fulfilling

- Finite propositional language L
- Variables v₁,..., v_n
- Connectives $\land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow$
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling

- Finite propositional language L
- Variables v_1, \ldots, v_n
- Connectives $\land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow$
- Sentences of L, SL
- No funny business, self-reference, truth predicates, self-fulfilling

- Finite propositional language L
- Variables v₁,..., v_n
- Connectives $\land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow$
- Sentences of L, SL

 No funny business, self-reference, truth predicates self-fulfilling

- Finite propositional language L
- Variables v_1, \ldots, v_n
- Connectives $\land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow$
- Sentences of L, SL
- •
- No funny business, self-reference, truth predicates self-fulfilling

- Finite propositional language L
- Variables v₁,..., v_n
- Connectives $\land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow$
- Sentences of L, SL

•

 No funny business, self-reference, truth predicates, self-fulfilling

Outline

- - Motivation
 - Problem
- **Formalities**
 - Language
 - Uncertainty
 - Knowledge
- - The Gist

Probabilities

Probabilistic framework

- Probability function, F
- Subjective degrees of belief Dutch Book
- $P: SL \to [0, 1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \vee \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \wedge \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \vee \theta) = P(\varphi) + P(\theta) P(\varphi \wedge \theta)$
- Set of probability functions P

Probabilities

- Probabilistic framework
- Probability function, P

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0,1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \vee \theta) = P(\varphi) + P(\theta) P(\varphi \wedge \theta)$
- ullet Set of probability functions ${\mathbb P}$

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0,1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \vee \theta) = P(\varphi) + P(\theta) P(\varphi \wedge \theta)$
- ullet Set of probability functions ${\mathbb P}$

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0, 1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta) P(\varphi \land \theta)$
- Set of probability functions P

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0,1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta) P(\varphi \land \theta)$
- Set of probability functions P

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0,1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \vee \theta) = P(\varphi) + P(\theta) P(\varphi \wedge \theta).$
- Set of probability functions P

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0,1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta) P(\varphi \land \theta)$.
- Set of probability functions P

- Probabilistic framework
- Probability function, P
- Subjective degrees of belief Dutch Book
- $P: SL \to [0,1]$
- $P(\tau) = 1$ for all tautologies $\tau \in SL$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta)$, if $\models \neg(\varphi \land \theta)$.
- $\varphi \models \theta$ implies $P(\varphi) \leq P(\theta)$.
- $P(\varphi \lor \theta) = P(\varphi) + P(\theta) P(\varphi \land \theta)$.
- Set of probability functions P

Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

- Set of possible worlds Ω .
- Proposition $F \subseteq \Omega$

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \vdash \omega}} P(\omega).$$

Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

- Set of possible worlds Ω.
- Proposition $F \subseteq \Omega$.

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \omega}} P(\omega).$$

Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

- Set of possible worlds Ω.
- Proposition $F \subseteq \Omega$.

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \varphi}} P(\omega).$$

Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

- Set of possible worlds Ω.
- Proposition $F \subseteq \Omega$.

•

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \varphi}} P(\omega).$$

Possible world, states

$$\omega = \mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \neg \mathbf{v}_3 \wedge \ldots \wedge \mathbf{v}_{n_1} \wedge \neg \mathbf{v}_n$$

- Set of possible worlds Ω.
- Proposition $F \subseteq \Omega$.

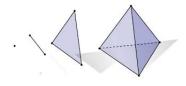
•

$$P(\varphi) = \sum_{\substack{\omega \in \Omega \\ \omega \models \varphi}} P(\omega).$$

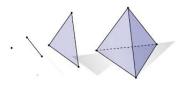
Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

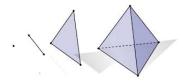
Think of P as some set of function
 Spanned by the possible worlds ω



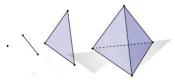
- Think of P as some set of functions
- Spanned by the possible worlds ω .
- It can be represented by a simplex
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- ullet Identify K with a set $\mathbb{E}\subseteq\mathbb{P}$



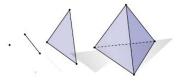
- Think of P as some set of functions.



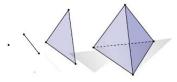
- Think of \mathbb{P} as some set of functions.
- Spanned by the possible worlds ω .
- It can be represented by a simplex
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- Identify K with a set $\mathbb{E} \subseteq \mathbb{P}$



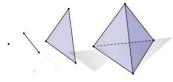
- ullet Think of ${\mathbb P}$ as some set of functions.
- Spanned by the possible worlds ω .
- It can be represented by a simplex.
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- Identify K with a set $\mathbb{E} \subseteq \mathbb{P}$



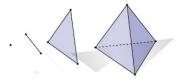
- Think of \mathbb{P} as some set of functions.
- Spanned by the possible worlds ω .
- It can be represented by a simplex.
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- Identify K with a set $\mathbb{E} \subseteq \mathbb{P}$



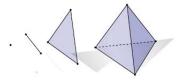
- Think of \mathbb{P} as some set of functions.
- Spanned by the possible worlds ω .
- It can be represented by a simplex.
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- Identify K with a set $\mathbb{E} \subseteq \mathbb{P}$



- Think of \mathbb{P} as some set of functions.
- Spanned by the possible worlds ω .
- It can be represented by a simplex.
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- Identify K with a set $\mathbb{E} \subseteq \mathbb{P}$



- Think of \mathbb{P} as some set of functions.
- Spanned by the possible worlds ω .
- It can be represented by a simplex.
- Dimension equal to the number of possible worlds/states.
- Doctor's background knowledge K
- Identify K with a set $\mathbb{E} \subseteq \mathbb{P}$



- \bullet The set $\mathbb E$ contains all the doctor's knowledge.
- If you don't formalise all knowledge, then you should not be surprised by our answer.
- Garbage in, garbage out.
- This course is *not* about the highly relevant and non-trivial problem of obtaining \mathbb{E} from K.
- ullet We will assume that $\mathbb{E}
 eq \emptyset$.

- \bullet The set $\mathbb E$ contains all the doctor's knowledge.
- If you don't formalise all knowledge, then you should not be surprised by our answer.
- Garbage in, garbage out.
- This course is *not* about the highly relevant and non-trivial problem of obtaining \mathbb{E} from K.
- We will assume that $\mathbb{E} \neq \emptyset$.

- \bullet The set $\mathbb E$ contains all the doctor's knowledge.
- If you don't formalise all knowledge, then you should not be surprised by our answer.
- Garbage in, garbage out.
- This course is not about the highly relevant and non-trivial problem of obtaining E from K.
- ullet We will assume that $\mathbb{E}
 eq \emptyset$

- ullet The set ${\mathbb E}$ contains all the doctor's knowledge.
- If you don't formalise all knowledge, then you should not be surprised by our answer.
- Garbage in, garbage out.
- This course is *not* about the highly relevant and non-trivial problem of obtaining \mathbb{E} from K.
- We will assume that $\mathbb{E} \neq \emptyset$.

- ullet The set ${\mathbb E}$ contains all the doctor's knowledge.
- If you don't formalise all knowledge, then you should not be surprised by our answer.
- Garbage in, garbage out.
- This course is *not* about the highly relevant and non-trivial problem of obtaining \mathbb{E} from K.
- We will assume that $\mathbb{E} \neq \emptyset$.

Example Knowledge

- Symptom S_1 is a very good indicator of condition C.
- 10% of migraines are triggered by stress.
- In 23% of cases in which patients complain about symptom S₂, migraines will spontaneously cease within half a day.

Example Knowledge

- Symptom S_1 is a very good indicator of condition C.
- 10% of migraines are triggered by stress.
- In 23% of cases in which patients complain about symptom S₂, migraines will spontaneously cease within half a day.

Example Knowledge

- Symptom S_1 is a very good indicator of condition C.
- 10% of migraines are triggered by stress.
- In 23% of cases in which patients complain about symptom S_2 , migraines will spontaneously cease within half a day.

Outline

- - Motivation
 - Problem
- - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Poin
 - Right
- Desiderata for Inference Processes

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K
- We are not fabricating knowledge out of thin air.
- We do the best we can, given limited information.
- Some information is lost in this process

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air
- We do the best we can, given limited information.
- Some information is lost in this process

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air.
- We do the best we can, given limited information.
- Some information is lost in this process

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air.
- We do the best we can, given limited information.
- Some information is lost in this process

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air
- We do the best we can, given limited information.
- Some information is lost in this process

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air.
- We do the best we can, given limited information
- Some information is lost in this process

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air.
- We do the best we can, given limited information.
- Some information is lost in this process.

- Idea:
- Input knowledge K
- Output belief function $P^+ \in \mathbb{P}$
- Adopt this function P⁺ for decision making.
- P⁺ reflects the doctor's knowledge K.
- We are not fabricating knowledge out of thin air.
- We do the best we can, given limited information.
- Some information is lost in this process.

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them.
- Properties ψ_1, \ldots, ψ_r
- \bullet $\psi := \psi_1 \wedge \ldots \wedge \psi_r$
- ullet Consider conditional probability ($P^+(\psi)>0$)

$$P^+(\varphi|\psi) := rac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$
 .

ullet Roughly, assume that ψ is true

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them
- Properties ψ_1, \ldots, ψ_r
- Consider conditional probability $(P^+(\psi)>0)$

$$P^+(\varphi|\psi) := rac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$
.

ullet Roughly, assume that ψ is true.

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them.
- Properties ψ_1, \ldots, ψ_r
- $\bullet \ \psi := \psi_1 \wedge \ldots \wedge \psi_t$
- Consider conditional probability $(P^+(\psi) > 0)$

$$P^+(\varphi|\psi) := \frac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$
.

ullet Roughly, assume that ψ is true

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them.
- Properties ψ_1, \ldots, ψ_r
- Consider conditional probability $(P^+(\psi) > 0)$

$$P^+(\varphi|\psi) := \frac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$

Roughly, assume that ψ is true.

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them.
- Properties ψ_1, \ldots, ψ_r
- $\bullet \ \psi := \psi_1 \wedge \ldots \wedge \psi_r$
- Consider conditional probability $(P^+(\psi) > 0)$

$$P^+(\varphi|\psi) := rac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$

Roughly, assume that ψ is true.

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them.
- Properties ψ_1, \ldots, ψ_r
- $\psi := \psi_1 \wedge \ldots \wedge \psi_r$
- Consider conditional probability ($P^+(\psi) > 0$)

$$P^+(\varphi|\psi) := rac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$
.

• Roughly, assume that ψ is true.

- What about the properties of the patient?
- Yes, what about them??
- I have not forgotten about them.
- Properties ψ_1, \ldots, ψ_r
- $\psi := \psi_1 \wedge \ldots \wedge \psi_r$
- Consider conditional probability ($P^+(\psi) > 0$)

$$P^+(\varphi|\psi) := rac{P^+(\varphi \wedge \psi)}{P^+(\psi)}$$
.

• Roughly, assume that ψ is true.

- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P⁺.

- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P⁺.

- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: P+.

- Formally, an *inference process* is a map from a set of probability functions (here \mathbb{E}) to the set of probability functions.
- An inference process is a map (or function)
- Input: E
- Output: *P*⁺.

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...
- 0
- 0

$$P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k \qquad \qquad \psi^7$$

Knowledge

Entailment Conclusion

• ? = $P^+(\psi)$, a single real number.

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...
- 0
- $P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k \quad \bowtie \quad \psi^*$
 - Knowledge Entailment Conclusion
- ? = $P^+(\psi)$, a single real number.

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...

$$\underbrace{P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k}_{\text{Knowledge}} \qquad \biguplus \qquad \biguplus \qquad \biguplus \qquad \biguplus^?$$

• ? = $P^+(\psi)$, a single real number.

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...

$$\underbrace{P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k}_{\text{Knowledge}} \qquad \qquad \bowtie \qquad \underbrace{\psi^?}_{\text{Entailment Conclusion}}$$

 $ullet \ ? = {\it P}^+(\psi)$, a single real number.

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...
- •

$$\underbrace{P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k}_{\text{Knowledge}} \qquad \qquad \bowtie \qquad \underbrace{\psi^?}_{\text{Entailment Conclusion}}$$

ullet ? = $P^+(\psi)$, a single real number.

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...
- •

$$\underbrace{P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k}_{\text{Knowledge}} \qquad \underbrace{ \bowtie \qquad \psi^?}_{\text{Entailment Conclusion}}$$

• ? = $P^+(\psi)$, a single real number.

- How strongly do uncertain premises entail a conclusion?
- Uncertain premises ...
- conclusion ...
- entail ...
- •

$$\underbrace{P^*(\varphi_1) \in I_1, P^*(\varphi_2) \in I_2, \dots, P^*(\varphi_k) \in I_k}_{\text{Knowledge}} \qquad \biguplus_{\text{Entailment Conclusion}} \psi^?$$

• ? = $P^+(\psi)$, a single real number.

Outline

- Motivation & Problem
 - Motivation
 - Problem
- 2 Formalities
 - Language
 - Uncertainty
 - Knowledge
- Inference Processes
 - The Gist
 - The Point
 - Right!
- Desiderata for Inference Processes

Obviously right – Tomorrow!

• Adopt the function, $P^{\dagger} = P^{+}$, which solve this optimisation problem

maximise:
$$-\sum_{\omega \in \Omega} P(\omega) \log(P(\omega))$$

subject to: $extbf{ extit{P}} \in \mathbb{E}$.

- Pick a "middling" function in \mathbb{E} .
- How formalise "middling"?
- Pick the centre of E
- Okay, yes, but how does one work out the centre?

- Pick a "middling" function in \mathbb{E} .
- How formalise "middling"?
- Pick the centre of E
- Okay, yes, but how does one work out the centre?

- Pick a "middling" function in \mathbb{E} .
- How formalise "middling"?
- •
- Pick the centre of E
- Okay, yes, but how does one work out the centre?

- Pick a "middling" function in \mathbb{E} .
- How formalise "middling"?
- •
- Pick the centre of E!
- Okay, yes, but how does one work out the centre?

- Pick a "middling" function in \mathbb{E} .
- How formalise "middling"?
- •
- Pick the centre of E!
- Okay, yes, but how does one work out the centre?

At the tip of a finger

- Centre of Mass
- Point of Balance

$$P_{CoM}^+ := rac{\int_{P \in \mathbb{E}} P \ dp}{\int_{P \in \mathbb{E}} \ dp}$$

Centre of Mass inference process

- Centre of Mass
- Point of Balance

a

$$P_{CoM}^+ := rac{\int_{P \in \mathbb{E}} P \ dp}{\int_{P \in \mathbb{E}} \ dp}$$

Centre of Mass inference process

- Centre of Mass
- Point of Balance

•

$$P_{\textit{CoM}}^+ := rac{\int_{P \in \mathbb{E}} P \; dp}{\int_{P \in \mathbb{E}} \; dp} \; .$$

Centre of Mass inference process.

- Centre of Mass
- Point of Balance

•

$$P_{\textit{CoM}}^+ := rac{\int_{P \in \mathbb{E}} P \; dp}{\int_{P \in \mathbb{E}} \; dp} \; .$$

Centre of Mass inference process.

Outline

- - Motivation
 - Problem
- - Language
 - Uncertainty
 - Knowledge
- - The Gist
- Desiderata for Inference Processes

....

- $P^+ \in \mathbb{E}$
- ..
- ...
- if E is not empty
- convex
- and closed

- $P^+ \in \mathbb{E}$
- ...
- ...
- if E is not empty
- convex
- and closed

- \bullet $P^+ \in \mathbb{E}$
- ...
- ...
- if E is not empty
- convex
- and closed.

- $P^+ \in \mathbb{E}$
- ...
- ...
- ullet if $\mathbb E$ is not empty
- convex
- and closed.

- ullet $P^+ \in \mathbb{E}$
- ...
- ...
- ullet if $\mathbb E$ is not empty
- convex
- and closed.

- $P^+ \in \mathbb{E}$
- ...
- ...
- if E is not empty
- convex
- and closed.

Careful, careful

- Open-mindedness
- Do not rule anything out, which you consider possible.
- If there exists a probability function $P \in \mathbb{E}$ with $P(\omega) > 0$, then $P^+(\omega) > 0$.

Careful, careful

- Open-mindedness
- Do not rule anything out, which you consider possible.
- If there exists a probability function $P \in \mathbb{E}$ with $P(\omega) > 0$, then $P^+(\omega) > 0$.

Careful, careful

- Open-mindedness
- Do not rule anything out, which you consider possible.
- If there exists a probability function $P \in \mathbb{E}$ with $P(\omega) > 0$, then $P^+(\omega) > 0$.

- For all such ω , pick an $P_{\omega} \in \mathbb{P}$
- and also pick an $r_{\omega} \in (0,1)$ such that $\sum r_{\omega} = 1$.
- Then the convex combination $\sum r_{\omega}P_{\omega}$ is a probability function. (\mathbb{P} is convex.)
- It is possible to satisfy open-mindedness
- If $\mathbb E$ is convex, then $\sum r_{\omega}P_{\omega}\in\mathbb E$.

- For all such ω , pick an $P_{\omega} \in \mathbb{P}$
- and also pick an $r_{\omega} \in (0,1)$ such that $\sum r_{\omega} = 1$.
- Then the convex combination $\sum r_{\omega}P_{\omega}$ is a probability function. (\mathbb{P} is convex.)
- It is possible to satisfy open-mindedness
- If $\mathbb E$ is convex, then $\sum r_\omega P_\omega \in \mathbb E$.

- For all such ω , pick an $P_{\omega} \in \mathbb{P}$
- and also pick an $r_{\omega} \in (0,1)$ such that $\sum r_{\omega} = 1$.
- Then the convex combination $\sum r_{\omega}P_{\omega}$ is a probability function. (\mathbb{P} is convex.)
- It is possible to satisfy open-mindedness.
- If $\mathbb E$ is convex, then $\sum r_\omega P_\omega \in \mathbb E$.

- For all such ω , pick an $P_{\omega} \in \mathbb{P}$
- and also pick an $r_{\omega} \in (0,1)$ such that $\sum r_{\omega} = 1$.
- Then the convex combination $\sum r_{\omega}P_{\omega}$ is a probability function. (\mathbb{P} is convex.)
- It is possible to satisfy open-mindedness.
- If \mathbb{E} is convex, then $\sum r_{\omega}P_{\omega} \in \mathbb{E}$.

- For all such ω , pick an $P_{\omega} \in \mathbb{P}$
- and also pick an $r_{\omega} \in (0,1)$ such that $\sum r_{\omega} = 1$.
- Then the convex combination $\sum r_{\omega}P_{\omega}$ is a probability function. (\mathbb{P} is convex.)
- It is possible to satisfy open-mindedness.
- If \mathbb{E} is convex, then $\sum r_{\omega}P_{\omega} \in \mathbb{E}$.

- What if we started with $v_1, v_2, \dots, v_n, v_{n+1}$
- the same knowledge and the same patient?
- Apply the above recipe and obtain P'.
- For a sentence in the original language $\varphi \in SL$, please complete the below

$$P'(\varphi) = ?$$

- What if we started with $v_1, v_2, \dots, v_n, v_{n+1}$
- the same knowledge and the same patient?
- Apply the above recipe and obtain P'.
- For a sentence in the original language $\varphi \in SL$, please complete the below

$$P'(\varphi) = ?$$

- What if we started with $v_1, v_2, \dots, v_n, v_{n+1}$
- the same knowledge and the same patient?
- Apply the above recipe and obtain P'.
- For a sentence in the original language $\varphi \in SL$, please complete the below

$$P'(\varphi) = ?$$

- What if we started with $v_1, v_2, \dots, v_n, v_{n+1}$
- the same knowledge and the same patient?
- Apply the above recipe and obtain P'.
- For a sentence in the original language $\varphi \in SL$, please complete the below

$$P'(\varphi) = ?$$

- What if we started with $v_1, v_2, \dots, v_n, v_{n+1}$
- the same knowledge and the same patient?
- Apply the above recipe and obtain P'.
- For a sentence in the original language $\varphi \in \mathit{SL}$, please complete the below

$$P'(\varphi) = ?$$

References I

Paris, J. B. (2006).

The Uncertain Reasoner's Companion: A Mathematical Perspective, volume 39 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2 edition.

That's it. Thank you! Questions?

