Mechanisms as Constrained Systems George Kampis

Eötvös University Budapest Collegium Budapest

- Mechanism ≠ kind of explanation, but kind of system
- Accommodated/explained via D-N

But no D-N conservativism (and no physics envy)
 On the contrary, a way to understand and use mechanisms better

G. Kampis: "Mechanisms as Totally Constrained Systems", Center for Philosophy of Science, University of Pittsburgh, April 10, 2006

D-N, causal, mechanistic explanation

- D-N: conditions, "natural laws"; explanation as deduction ("logical necessity")
- Causal: event relations, explanation as a history of (contact) events
- Mechanism (mechanistic in the recent sense): components and operations based on entity relations
- So, mechanism = specific form, maybe a "better form" of the causal relation
- Generic, condition-free

But remember...

Mechanisms were historically "discovered" in

- Biology (Glennan, Machamer & Darden & Craver)
- Machines (Bechtel)
- > Social systems (Elster)
- □ Then, creative generalizations...

But why more so in some fields than in others (e.g. molecular mechanisms, but not quantum mechanics, epidemiology and electrodynamics?)

Instrumentalism vs. "materialism"

□ An important note

- Instrumentalism (anything goes as explanation as long as successful), e.g. Dennett's stances
- □ An alternative: "materialism"...
- ...or complex systems view: understand explanations in terms of systems, variables/observables

 "Relevant if adequate and interpretable" (Kampis 1991)

- Adequate: saves the phenomena
- Interpretable: pertains to a class of "permissible descriptions"
 - Levels, subspaces, aggregates etc etc.

Understanding mechanisms: why certain systems can be "simplified"

- Instead of high-complexity, high-dimensional (ie. many-variable) description, low complexity, utmostly reduced, minimalist (pure entity based) description
- This question has a distinguished history:
 - > M. Conrad: structural nonprogrammability
 - R. Rosen: activation-inhibition systems, material causation (Aristotle)
 - H. Pattee, M. Polanyi: constraints/boundary conditions
 - H. Morowitz: structual vs. dynamic information
- A cell is a mechanism, but by virtue of being member of a well-defined class of systems
 - Understand mechanisms: characterize this class -> conditions, limits, potential benefits of mechanistic descriptions

Constrained systems

Control the dynamics with extra-dynamical contingencies

D-N scheme	constraints and variables	totally constrained systems
C1 Cn contingencies	Φ (x1xn) = 0 constraints xi(o) = xio for all i initial c.'s	Φ (x1xn) = 0 constraints
<u>L1 Lm</u> "laws" E1 Ek explananda	<u>L1 Lm</u> "laws" E1 Ek explananda	E1 Ek explananda

- Φ a static (often graphically expressible) relation bw. xi-s
 - > if some xi-s are entity-bound, then bw. entitites
 - effect of Φ: removing variables (step-by-step, replacing "laws")
- Mechanisms = totally (or highly) constrained systems
 This can explain a number of their puzzling features
 E.g. Bechtel's visual diagrams are constraint maps

Hunting mechanisms

How to find mechanisms

- > Build a physical system
 - or a good enough model of it
- > Introduce and increase constraints

To the point that you can remove all the physics

□ "Stone soup" approach

An illustrative example

Jeff Tunnell's Toons (using "The Incredible Machine"), 1993

Simplest designs "unsolvable" (ie. takes physics, numbers)
 The more complex (ie. the more constraints) the easier
 Build mechanisms from physics

So,... (summary and outlook)

Claim: mechanisms are constraint based...

Counterfactual argument: no constraint, no mechanism

- Not all inductive generalizations over (processes of) entities are
- On the other hand: what is an entity? If constraints define mechanisms, this helps individuate entities (e.g. waves, fire)
- Constraint: in general, dimension reduction in complex systems
 - A suggestion: mechanisms via their relation to constraints help understand complex systems (when are they tractable, how they should be managed, etc.)

Thank you!