Independence Relations in Probabilistic Logic

Fabio G. Cozman - University of Sao Paulo, Brazil (fgcozman@usp.br) (joint work with Cassio Polpo de Campos, José Eduardo Ochoa Luna; also collaboration with Teddy Seidenfeld, CMU)

Some work on...

- Decision support with Bayesian networks, Bayesian network classifiers.
- Sets of probability distributions (credal sets, credal networks).

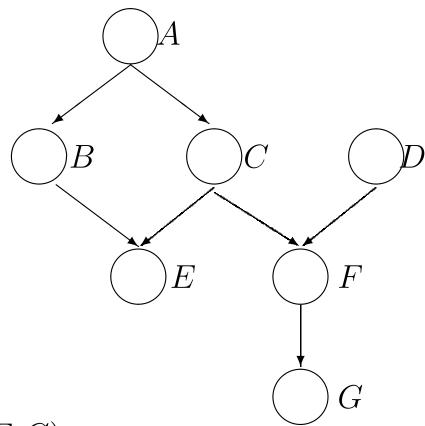
Bayesian Networks

- A Bayesian network encodes $P(X_1, \ldots, X_n)$.
 - This joint distribution is specified through a directed acyclic graph.
 - Each node represents a random variable X_i .
 - Parents of X_i : $pa(X_i)$.
- Markov condition: Every variable is independent of its nondescendants nonparents given its parents, implying factorization:

$$p(X_1,\ldots,X_n) = \prod_i p(X_i|\operatorname{pa}(X_i)).$$

Or is it the other way around? Should factorization imply Markov condition?

Example



P(A, B, C, D, E, F, G) = P(A) P(D) P(B|A) P(C|A) P(E|B, C) P(F|D, E) P(G|F)

Starting with Markov condition

- More intuitive (matter of taste?).
- Works in the infinite case (where conditional distributions may not exist).
- Easier to generalize.

This talk:

- 1. Propositional probabilistic logic.
- 2. A digression: the definition of independence.
- 3. PPL networks.
- 4. A digression: credal networks.
- 5. Extending (a bit) to relational languages.
- 6. A few applications and challenges.

The propositional case

- Back to Boole... and many others.
- **●** Formula ϕ with propositions, operators $(\neg, \land, \lor, \rightarrow)$.
- Take Ω as the set of 2^n truth assignments for n propositions.
- Interpret $P(\phi) \ge \alpha$ as

$$\sum_{\omega \models \phi} P(\omega) \ge \alpha.$$

Probabilistic satisfiability

- Given m assessments: Is there a probability measure over Ω ?
- Must satisfy $P(\omega) \geq 0$ and $\sum_{\omega \in \Omega} P(\omega) = 1$.
- This is a linear program.
 - Usually solved with the revised simplex method, where each step is a MAX-SAT problem.
 - Complexity: NP-complete.

Example (inspired by Jaeger 1994)

Take:

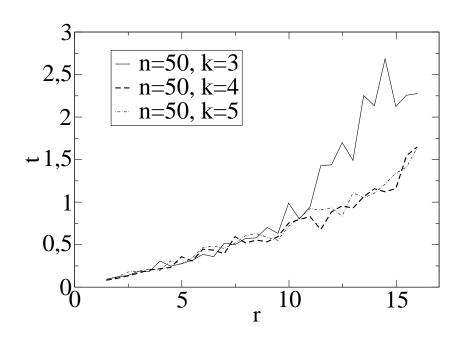
```
AntarticBird \rightarrow Bird,
Flying Bird \rightarrow Bird,
Penguim \rightarrow Bird,
Flying Bird \rightarrow Flies,
Penguim \rightarrow \neg Flies,
P(\mathsf{FlyingBird}|\mathsf{Bird}) = 0.95,
P(AntarticBird|Bird) = 0.01,
P(Bird) > 0.2,
P(FlyingBird \lor Penguim|AntarticBird) \ge 0.2,
P(\mathsf{Flies}|\mathsf{Bird}) \geq 0.8.
```

Then

 $P(\mathsf{FlyingBird}|\mathsf{Bird} \land \neg \mathsf{AntarticBird}) \in [0.949, 0.960],$ $P(\mathsf{Penguim}|\neg \mathsf{AntarticBird}) \in [0.000, 0.050].$

Difficulties

1. Computational complexity (no phase transition?)



2. Inferential vacuity:

A, B have no logical relation, P(A) = 1/2, P(B) = 1/2; then $P(A \wedge B) \in [0, 1/2]$.

Independence

- Introduce independence to reduce inferential vacuity.
 - Obvious example: A and B independent, P(A) = 1/2, P(B) = 1/2; then $P(A \wedge B) = 1/4$.

- "Unconditional" independence leads to
 - nonlinear constraints;
 - even higher complexity (satisfiability is ??-hard).

A digression: defining independence

We wish to introduce formulas such as

$$independence(\phi, \theta)$$

that indicate a believed "independence" between formulas ϕ and θ .

- But what is the translation for it?
- In probability theory, "independence" means that for our unique probability distribution we must have

$$P(\phi \wedge \theta) = P(\phi) \times P(\theta)$$
.

However, here we may have many distributions.

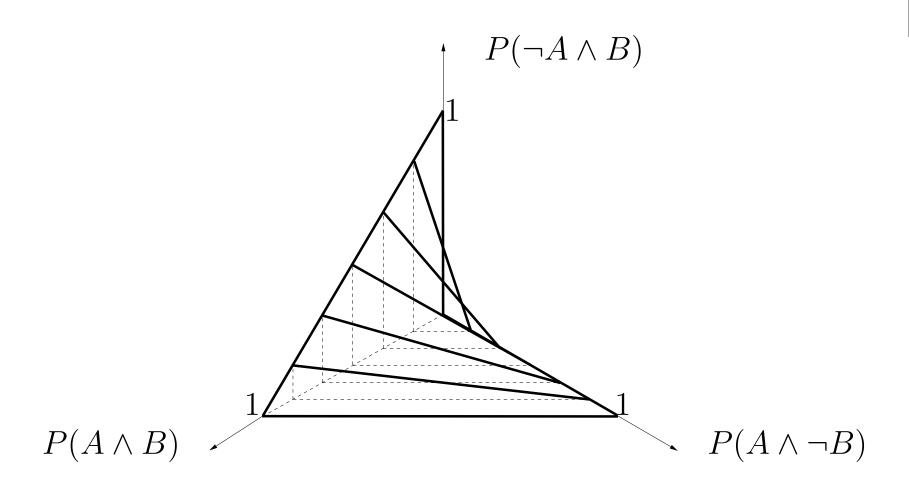
Concepts of independence

Problem: define independence for a set of probability distributions.

Or, rather: define independence for credal sets.

- Most straightforward: every distribution in credal set K(X,Y) factorizes.
- Levi's strong independence: Each vertex of our *convex* credal set K(X,Y) factorizes.

Lack of convexity



What is the matter with convexity?

Note linearity of constraints such as

$$P(A) \ge \beta$$
.

Indeed, theories of credal sets/imprecise probabilities usually attach behavioral meaning only to convex credal sets.

Similarly, constraints in "classic" probabilistic logic are all linear.

Other concepts

Walley's epistemic independence:

$$\underline{E}[f(X)|Y] = \underline{E}[f(X)]$$
 for all $f(X)$,

and

$$\underline{E}[g(Y)|X] = \underline{E}[g(Y)]$$
 for all $g(Y)$.

Kuznetsov's independence:

$$\mathbf{E}[f(X)g(Y)] = \mathbf{E}[f(X)]\mathbf{E}[g(Y)].$$

Some difficulties

The conditional version of Walley's epistemic independence fails the contraction property:

Contraction:

$$(X \perp\!\!\!\perp Y \mid Z) \& (X \perp\!\!\!\perp W \mid (Y, Z)) \Rightarrow (X \perp\!\!\!\perp (W, Y) \mid Z)$$

- The relationship between Markov condition and factorization fails (also d-separation, etc).
- The conditional version of Kuznetsov's independence also fails contraction.

The solution: Seidenfeld's theory

- Teddy Seidenfeld has presented a theory that allows for non-convex credal sets.
 - Seidenfeld's breakthrough: to consider a behavioral axiomatization of choice amongst sets of options (rather than just two options).
- Holy grail of the (post-?) Bayesian approach: beliefs can be translated into arbitrary sets of distributions.

Ok, problem solved, but...

- There are problems in dealing with zero probabilities.
- Namely, how do we interpret

$$P(\phi|\varphi)$$

when we find that $P(\varphi)$ may be equal to zero?

- There are several proposals...
 - ...discard the zero, opening the set?
 - ...cut probability at some ϵ ?
 - ...abort calculations?

A few points

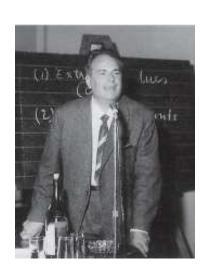
• Kolmogorov's theory simply ignores zero probabilities: P(A|B) is defined only if P(B) > 0.

Maybe reasonable for single-distribution theory, less appealing in probabilistic logic.

- Indeed, even for single-distribution theory, many voices have called for a better treatment of zero probabilities.
 - There is considerable interest in ways to learn an event of probability zero.
 - Also, Kolmogorov's approach generates a great deal of misery in infinite domains.

The alternative: full conditional measures

- A function P(A|B) where A belongs to a Boolean algebra, and B to the same algebra (minus the empty element \emptyset), such that
 - P(A|A) = 1;
 - $P(A|B) \ge 0$ for all A;
 - $P(A \lor B|C) = P(A|C) + P(B|C)$ whenever $A \land B \neq \emptyset$ (and C is not \emptyset);
 - $P(A \wedge B|C) = P(A|B \wedge C) P(B|C)$ for all A and B such that $B \wedge C \neq \emptyset$.



• Full probability measures allow P(A|B) to be defined even if P(B) = 0!

Very elegant, but...

- For independence, disaster strikes!
- The condition $P(A \wedge B) = P(A) P(B)$ seems too weak.
- The condition P(A|B) = P(A) is not symmetric.
- The condition

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$

fails

Weak union:
$$(X \perp\!\!\!\perp (W,Y) \mid Z) \Rightarrow (X \perp\!\!\!\perp W \mid (Y,Z))$$

A strenghtening (due to Hammond) fails

Contraction:

$$(X \perp\!\!\!\perp Y | Z) \& (X \perp\!\!\!\perp W | (Y, Z)) \Rightarrow (X \perp\!\!\!\perp (W, Y) | Z)$$

A summary on independence

- 1. For this talk, "independence" just means: usual "Kolmogorovian" independence for each distribution in our credal set K(X, Y)...
- 2. But this basic concept does deserve more discussion.
- 3. For much more: look at the International Symposium on Imprecise Probability: Theories and Applications...

Back to our problem

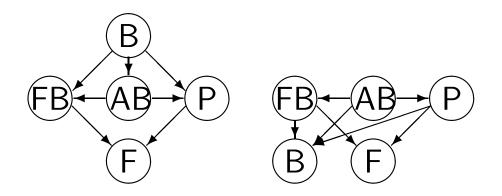
- We want to have propositional formulas, possibly associated with probabilistic assessments.
- We want to have independence (to avoid vacuity), but with enough structure so as to allow efficient reasoning.

Basic idea:

- Organize independence relations using graphs.
- But: do not require that assessments must follow the structure of the graph, nor the structure of the formulas.
- That is, we have: logical formulas, probabilistic assessments, and a directed acyclic graph with the usual Markov condition.

That is:

- Binary variables $\{X_1, \ldots, X_n\}$, one per proposition.
- A directed acyclic graph \mathcal{G} is associated with these variables.



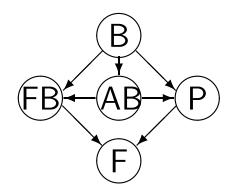
(FlyingBird and Penguim are parents of Flies.)

Markov condition

- Assume:
 - X_i is conditionally independent from its nondescendants nonparents given its parents.
- Implies:

$$P(\mathbf{X}) = \prod_{i} P(X_i | \text{pa}(X_i))$$

for every possible distribution.



Markov condition comes first...

- The graph imposes independence relations (through Markov condition).
- Probabilistic assessments need not "follow" the edges of the graph.

"PPL" networks

We have:

- 1. A set of variables X.
- 2. A graph \mathcal{G} .
- 3. Logical constraints (in CNF) for X.
- 4. Probabilistic assessments for X.
- 5. A Markov condition implying the factorization

$$P(\mathbf{X}) = \prod_{i} P(X_i | pa(X_i)).$$

Inference

• Inference: to compute the lower/upper probability for some formula ϕ given some other formula φ :

$$\min / \max P(\phi | \varphi)$$
.

- An inference now leads to a nonlinear program subject to factorization.
- Problem deals with $P(X_i|pa(X_i))$, not with 2^n values...
- Logical constraints and probabilistic assessments can still be arbitrary.

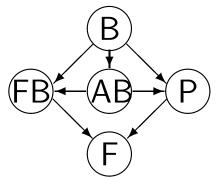
Complexity

- Complexity of inferences:
 - Still NP-complete on graphs with limited treewidth.
 - NP^{PP} -complete in general.
- However: the "graph" in these results is not the "real" graph, but a graph enlarged with connections for assessments.

Example

Recall:

AntarticBird \rightarrow Bird, FlyingBird \rightarrow Bird, Penguim \rightarrow Bird, FlyingBird \rightarrow Flies, Penguim \rightarrow \neg Flies, $P(\text{FlyingBird}|\text{Bird}) = 0.95, \\ P(\text{AntarticBird}|\text{Bird}) = 0.01, \\ P(\text{Bird}) \geq 0.2, \\ P(\text{FlyingBird} \lor \text{Penguim}|\text{AntarticBird}) \geq 0.2, \\ P(\text{Flies}|\text{Bird}) \geq 0.8.$



Nonlinear programming produces

 $P(\mathsf{FlyingBird}|\mathsf{Bird} \land \neg \mathsf{AntarticBird}) \in [0.949, 0.960] \\ P(\mathsf{Penguim}|\neg \mathsf{AntarticBird}) = 0.$

The possibilities...

- A PPL network may be
 - 1. unsatisfiable;
 - 2. satisfiable by a single distribution;
 - 3. satisfiable by a set of distributions.
- Just like "traditional" probabilistic logic: we have a deductive language, where we may even discover inconsistency.
- Without any additional effort, probability intervals, credal sets and qualitative probabilities can be directly represented in a PPL network.

Another point

- Inconsistency must obviously be detected.
- But there is also a subtle possibility:
 - Two propositions are independent (by the graph).
 - Yet they are logically dependent.
 - This usually leads one of them (or both) to get probability zero.
- Indeed, construction of a PPL network must be an interactive process, where inconsistencies (and other situations) are detected, corrected, etc.
- The development of useful support systems for modeling practical problems is a challenge.

A final point

Clearly, we are not making heroic efforts to make sure we always have a *unique* distribution.

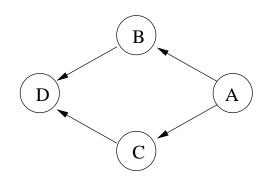
The question here is: with these formulas and assessments, what is the largest set of probabilities that is coherent with them?

But can we compute?

A digression: credal networks

Credal network: directed acyclic graph where each node is associated with

- ullet a random variable X_i ,
- sets of conditional probability distributions $K(X_i|pa(X_i))$



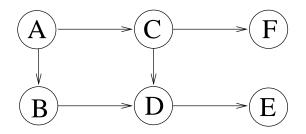
$$P(a) \in [0.6, 0.8]$$

$$P(b|a) \in [0.3, 0.5]$$

$$P(b|\neg a) \in [0.4, 0.7]$$

. . .

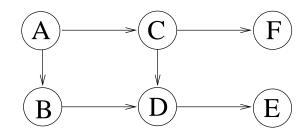
Example



Credal sets define the local probability distributions P(A), P(C|A), P(B|A), P(D|B,C), P(E|D), P(F|C).

Suppose one wants to evaluate $\overline{P}(e, f)$.

Naive inference



Using the joint distribution directly:

$$\max P(e, f) = \max \sum_{A,B,C,D} P(f|C) \cdot P(e|D) \cdot P(D|B,C) \cdot P(B|A) \cdot P(C|A) \cdot P(A),$$

subject to linear constraints (from local credal sets).

Inference by variable elimination

Write:

$$\max P(e, f) = \max \sum_{D} P(e|D) P(D, f)$$
 subject to

$$P(B,C) = \sum_A P(B|A) P(C|A) P(A) , \text{ for all } B,C$$

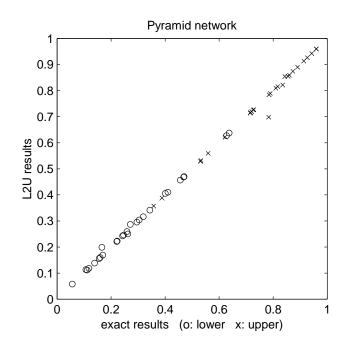
$$P(C,D) = \sum_{B} P(D|B,C) \, P(B,C) \, , \text{ for all } C,D$$

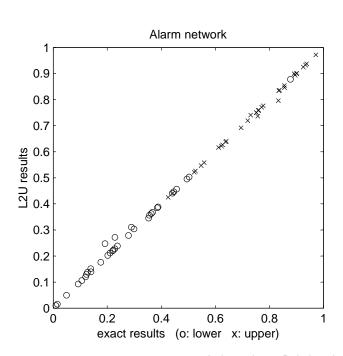
$$P(D,f) = \sum_{C} P(f|C) P(C,D)$$
, for all D

plus the linear constraints. There are many ways to write and to solve (exactly and approximately) such a nonlinear program.

Algorithms: variational and L2U

- Recent work suggests: excellent results with simple gradient-descent, and with branch-and-bound based on linear relaxations.
- Also, some recent work on producing variational approximations (such as a "Loopy Propagation" algorithm for probability intervals).





Main message:

 Algorithms developed for credal networks can be used for PPL networks.

• Much yet to improve, but current status is not so depressing.

Moving to a relational language

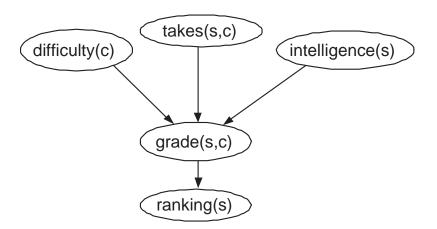
- Simple idea: use the graph-theoretical structure of Jaeger's relational Bayesian networks.
 - The graph is now representing just independence relations.
 - Assessments may be general (but complexity depends on the enlarged graph...).
- Again, no heroic efforts to guarantee
 - Consistency.
 - Uniqueness of probabilities.

Inference by propositionalization

- Well, we are assuming a finite domain...
- To do inference, propositionalize to a PPL network.
- Vast open issue is how to do inference (and assess complexity) directly on the relational level...

Example: The university domain

- A student is typically registered in several courses.
- The student's ranking depends on the grades that she receives in all of them.
- Grading depends on intelligence and difficulty.



The university domain

Consider:

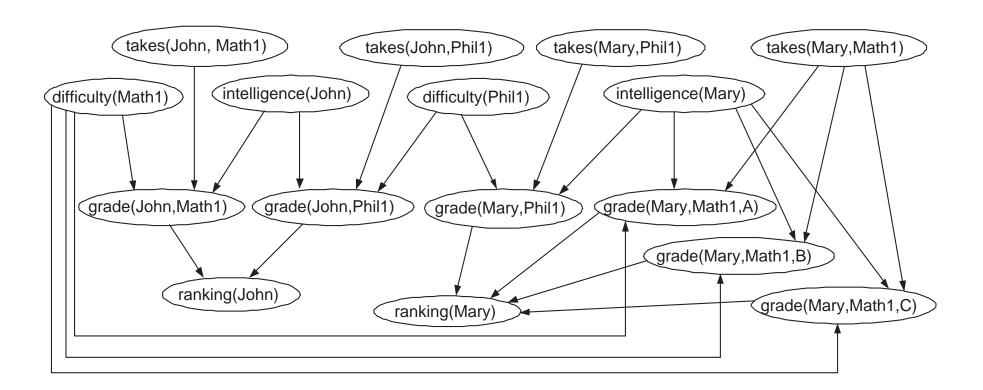
$$P(takes(John, Phil1)) \le 0.5$$
 (A_1)
 $P(\exists x \forall y \ grade(x, y, A)) \le 0.001$ (A_2)
 $0.1 \le P(\exists x \forall y \ takes(x, y)) \le 0.15$ (A_3)
 $0.05 \le P(\exists y \forall x \ takes(x, y)) \le 0.1$ (A_4)

Also, suppose:

```
\forall x, y \ (takes(x, y) \iff \exists z \ grade(x, y, z))
takes(John, Math1)
takes(Mary, Phil1)
intelligence(John, Low)
intelligence(Mary, High)
difficulty(Math1, High)
difficulty(Phil1, Low)
```

The university domain network

(Note: simplified network, without some nodes/edges!)



A few inferences

- As given, problem is inconsistent.
- Removing the assessment A_2 , we have a feasible problem.
- Some inferences:
 - The probability of John receiving grade A in Phil1 given he takes all courses:

$$P(grade(John, Phil1, A)|\forall\ y\ takes(John, y)) \in [0.0, 0.03].$$

The probability that Phil1 is taken only by smart students:

$$P(\forall x \ takes(x, Phil1) \rightarrow intelligence(x, High)) \in [0.9, 1.0].$$

Another inference

The probability of having a student that achieves grade A on all courses:

$$P(\exists \ x \ \forall \ y \ grade(x, y, A)) \in [0.003, 0.04].$$

Last inference shows why A_2 must be removed!

Example: planning

Blocks world in PPDDL.

```
(define (domain blocks-domain)
 (:requirements :probabilistic-effects :equality :typing)
 (:types block)
 (:predicates (holding ?b - block) (emptyhand) (on-table ?b - block)
               (on ?b1 ?b2 - block) (clear ?b - block))
  (:action pick-up
    :parameters (?b1 ?b2 - block)
    :precondition (and (not (= ?b1 ?b2)) (emptyhand)
                  (clear ?b1) (on ?b1 ?b2))
    :effect
      (probabilistic
        3/4 (and (holding ?b1) (clear ?b2) (not (emptyhand))
                 (not (clear ?b1)) (not (on ?b1 ?b2)))
       1/4 (and (clear ?b2) (on-table ?b1) (not (on ?b1 ?b2))))
```

Inserting disjunctions into PPDDL

• But suppose the effect is a disjunction (not allowed by PPDDL!): failure causes "release block b_1 " OR "nothing happens".

Result is entirely within the scope of previous discussion.

Some methodology is needed

Again, necessary to detect inconsistencies and other situations.

Need to have solid methodology and support systems.

To do...

- Inference algorithms, particularly approximate (and algorithms that operate on first-order).
- Deal with undirected graphs main problem here is failure of factorization from Markov condition in the presence of zero probabilities.
- All of this focuses on finite domains (in fact, this is propositional logic...). Move to infinite domains.

Conclusion

- Independence seems to be necessary for realistic probabilistic logic.
- The concept of conditional independence should get more discussion.
- Graph-theoretical models are useful and (relatively) efficient.
- PPL networks and their relational counterparts seem to be flexible and intuitive tools.
- Main strategy:
 - to have a graph, formulas, and assessments separately specified;
 - not to worry much about consistency and uniqueness;
 - and to have inference to check consistency.

Thank you

Acknowledgements:

FAPESP

Email:

- fgcozman@usp.br
- cassiopc@usp.br
- eduardo.ol@gmail.com