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This paper develops connections between objective Bayesian epistemology—which holds
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probabilistic logic. After introducing objective Bayesian epistemology over propositional
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probabilistic logic is formulated and then given a natural semantics in terms of objective
Bayesian epistemology. The machinery of objective Bayesian nets and objective credal nets
is introduced and this machinery is applied to provide a calculus for probabilistic logic that
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1. Introduction

Objective Bayesianism as developed in [9,10,20,21] is based around the following thesis:

Maximum Entropy Principle. An agent’s degrees of belief should be representable by a probability function, from all those
that satisfy constraints imposed by her evidence, that has maximum entropy.
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Here the entropy H of a probability function P is defined by

H(P ) = −
∑
ω∈Ω

P (ω) log P (ω)

in the case where Ω is a finite set of elementary outcomes.
Nilsson [15, §4] suggested that a maximum entropy probability function could be used to facilitate inference in a prob-

abilistic logic. One aim of this paper is to develop that idea in some detail: to show how objective Bayesian probability
provides a semantics for probabilistic logic. To this end the maximum entropy principle is motivated in Section 2, and
extended from finite to denumerable outcome spaces in Section 3. Probabilistic logic is introduced in Section 4 and the
objective Bayesian semantics is developed in Section 5.

A second aim of the paper is to show how one can answer questions posed in probabilistic logic. Section 6 introduces
the machinery of objective Bayesian nets and objective credal nets: these are used to represent and reason with objective
Bayesian probabilities. Section 7 shows how these nets can be used to provide a calculus for probabilistic logic.

2. Objective Bayesian epistemology

Objective Bayesian epistemology provides an answer to the following question:

◦ How strongly should an agent with evidence E believe the various propositions expressible in her language L?

Initially we shall suppose that L can express finitely many elementary (i.e., non-logically-complex) propositions A1, . . . , An ,
though we shall relax the finiteness condition when we consider predicate languages in Section 3. We shall also sup-
pose that L can express logically complex propositions formed by applying the usual connectives of propositional logic to
A1, . . . , An . An elementary outcome or atomic state ω is a proposition of the form ± A1 ∧ · · · ∧ ± An , where +Ai is just Ai and
−Ai is ¬Ai . Ω is the set of all 2n atomic states. The agent’s total evidence or epistemic background E is understood as con-
taining everything she takes for granted in her current operating context—including background knowledge, observations,
theoretical assumptions, and so on. We need not assume that the evidence E is expressible in an agent’s language L.

Objective Bayesian epistemology imposes three norms on the strengths of an agent’s beliefs: Probability, Calibration and
Equivocation.

Probability. The strengths of the agent’s beliefs should be representable by probabilities.

This norm posits that there is a probability function P on L such that P (θ) represents the degree to which the agent
should believe θ , for each proposition θ expressible in L. Here a probability function on L is a function P , from propositions
expressible in L to real numbers, that satisfies the properties (i) P (ω) � 0 for each ω ∈ Ω , (ii)

∑
ω∈Ω P (ω) = 1, and

(iii) P (θ) = ∑
ω|�θ P (ω) for each proposition θ expressible in L. We use PL to denote the set of probability functions on L.

The Probability norm is typically justified by betting considerations: degrees of belief are indicative of betting intentions, and
if the agent is to avoid bets that lose money whatever happens, her degrees of belief had better behave like probabilities.1

Calibration. The agent’s degrees of belief should satisfy constraints imposed by her evidence.

It is thus supposed that there is some set E ⊆ PL of probability functions on L that are compatible with evidence E
and that the probability function PE representing the agent’s degrees of belief should lie in that set. E is determined as
follows. First, if the evidence implies that the empirical probability function P∗ on L lies in some set P

∗ of probability
functions on L, then the agent’s belief function PE should lie in the convex hull [P∗] of P

∗ . Second, qualitative evidence of,
e.g., causal, logical, hierarchical or ontological structure imposes certain structural constraints which force PE to lie in a set
S of probability functions on L that satisfy those constraints. Thus E = [P∗] ∩ S. The rationale behind taking convex hulls
and the precise formulation of the structural constraints can be found in [21] and [26]. Note three things. First, E is always
non-empty: an agent is never prohibited from holding any beliefs at all.2 Second, E is always closed: it is hardly justifiable
to deem irrational the limit point of rational belief functions. Third, in the context of probabilistic logic E is always convex:
as will become apparent in Section 5, P

∗ is determined by the semantics of the logic and there are no structural constraints,
so E = [P∗] and we need not dwell on S in this paper. The motivation behind Calibration hinges on the use of degrees of
belief for inference: well-calibrated degrees of belief lead to more reliable inferences in the long run (see, e.g., [8, §13.e]).

1 See [16, Chapter 3] for this and other justifications of the Probability norm.
2 If the evidence is inconsistent in the sense that P

∗ = ∅ then some consistency maintenance procedure needs to be invoked. For example one might
take E to be the space PL of all probability functions on L; or the set of probability functions that satisfy maximally consistent subsets of evidence; or

the set of probability functions that satisfy the more entrenched evidence. For ease of exposition we shall take E = PL if P
∗ = ∅; letting [∅] df= PL , the

characterisation E = [P∗] ∩ S still applies. However the approach developed below can be adjusted to handle other consistency maintenance procedures, if
required.
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Equivocation. The agent’s degrees of belief should otherwise be as equivocal as possible.

Here ‘as equivocal as possible’ means as close as possible to the equivocator P= on L, which gives each atomic state the
same probability,

P=(ω) = 1

2n
.

Distance between probability functions is measured by what is sometimes called cross entropy or Kullback–Leibler divergence,

d(P , Q ) =
∑
ω∈Ω

P (ω) log
P (ω)

Q (ω)
,

where 0 log 0 is taken to be 0. Note that this is not a distance measure in the usual mathematical sense because it is not
symmetric and does not satisfy the triangle inequality. The motivation behind Equivocation exploits the fact that belief is a
basis for action: more extreme degrees of belief tend to trigger high-risk actions (where there is a lot to lose if the agent
misjudges) while equivocal degrees of belief are associated with lower risks; and the agent should only take on risk to the
minimum extent warranted by evidence [23].

In sum, the agent’s degrees of belief should be representable by a probability function PE on L that is in the set

↓E
df= {P ∈ E: d(P , P=) is minimised}. Since distance to the equivocator is minimised just when entropy is maximised, this

gives:

Maximum Entropy Principle. The agent’s degrees of belief should be representable by a probability function PE ∈ {P ∈ E:
H(P ) is maximised}.

Note that in the absence of structural constraints, PE is uniquely determined. This is because entropy is a strictly concave
function and it is being maximised over a closed and convex set of probability functions E = [P∗], so it has a unique max-
imum. As noted above, there are no structural constraints in the application of objective Bayesianism to probabilistic logic.3

3. Predicate languages

While objective Bayesian epistemology has hitherto been developed for use on finite domains, and, in Bayesian statistics,
on uncountable domains, it is also natural in the context of probabilistic logic to consider countably infinite domains, in
particular first-order predicate languages. We shall see in this section that the analysis of the last section, which dealt with
a propositional language, extends naturally to the case in which L is a predicate language.4

Accordingly we suppose now that L is a first-order predicate language (without equality). It is convenient to assume that
each individual is picked out by a unique constant symbol ti ; we shall suppose that there is a countable infinity t1, t2, . . .

of such constants, but only finitely many predicate symbols. For n � 1 let Ln be the finite predicate language involving the
symbols of L but with only finitely many constants t1, . . . , tn . Let A1, A2, . . . run through the atomic propositions of L, i.e.,
propositions of the form Ut where U is a predicate symbol and t is a tuple of constant symbols of corresponding arity. We
shall insist that the A1, A2, . . . are ordered as follows: any atomic proposition expressible in Ln but not expressible in Lm
for m < n should occur later in the ordering than those atomic propositions expressible in Lm . Let A1, . . . , Arn be the atomic
propositions expressible in Ln . An atomic n-state ωn is an atomic state ± A1 ∧ · · · ∧ ± Arn of Ln . Let Ωn be the set of atomic
n-states.

As before we base objective Bayesian epistemology on the norms of Probability, Calibration and Equivocation.

Probability. The strengths of the agent’s beliefs should be representable by probabilities.

This norm now requires that there be a probability function P on predicate language L such that P (θ) represents the
degree to which the agent should believe θ , for each proposition θ expressible in L. Here a probability function on a predicate
language L is a function P , from propositions expressible in L to real numbers, that satisfies the properties (i) P (ωn) � 0
for each ωn , (ii) for each n,

∑
ωn∈Ωn

P (ωn) = 1, (iii) for each quantifier-free proposition θ , P (θ) = ∑
ωn |�θ P (ωn) where n

is large enough that Ln contains all the atomic propositions occurring in θ , and (iv) quantified statements are assigned
probabilities via

3 Objective Bayesianism has been criticised on account of the fact that the Maximum Entropy Principle may disagree with the principle of Bayesian
Conditionalisation, which is a norm governing the updating of degrees of belief that is often advocated by subjective Bayesians; this objection is rebutted
in [27]. It has also been criticised on account of the fact that the results of the Maximum Entropy Principle depend on the agent’s language; this objection
is rebutted in [25, §16] and is further discussed in the next section.

4 This paper is not the first to extend objective Bayesianism to predicate languages. For example, [17] put forward an approach based on taking limits
of maximum entropy probability functions. That line of work, however, deals with restricted classes of predicate languages—e.g., languages in which there
are only unary predicates—and cases in which there is a restriction on the amount of evidence. For our application to probabilistic logic we need a more
general framework, and so base our approach around the three norms of Section 2 rather than limits of maximum entropy functions.
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P
(∀xθ(x)

) = lim
m→∞ P

(
m∧

i=1

θ(ti)

)
,

P
(∃xθ(x)

) = lim
m→∞ P

(
m∨

i=1

θ(ti)

)
.

Note in particular that a probability function on predicate language L is determined by its values on the quantifier-free
propositions of L.5

Calibration. The agent’s degrees of belief should satisfy constraints imposed by her evidence.

Again it is supposed that there is some set E of probability functions on L that are compatible with evidence E and that
the probability function PE representing the agent’s degrees of belief should lie in that set. As before we take E = [P∗] ∩ S.
In the context of probabilistic logic—and hence this paper—there are no structural constraints so E = [P∗]; this set is closed,
convex and non-empty.

Equivocation. The agent’s degrees of belief should otherwise be as equivocal as possible.

In the case of a predicate language we can define the equivocator P= on L by

P=(ωn) = 1

2rn

for all ωn . We consider the n-distance between probability functions,

dn(P , Q ) =
∑

ωn∈Ωn

P (ωn) log
P (ωn)

Q (ωn)
,

where as before 0 log 0 is taken to be 0. We say that P is closer to R than Q if there is some N such that for all

n � N , dn(P , R) < dn(Q , R). We write P ≺ Q if P is closer to the equivocator P= than Q . Now we define ↓E
df= {P ∈ E:

P is minimal with respect to ≺} as long as this set is non-empty, setting ↓E
df= E otherwise. Objective Bayesianism then

requires that the agent’s degrees of belief be representable by a probability function PE ∈ ↓E.
Define the n-entropy Hn(P ) by

Hn(P ) = −
∑

ωn∈Ωn

P (ωn) log P (ωn).

We say that P has greater entropy than Q , written P � Q , if there is some N such that for all n � N , Hn(P ) > Hn(Q ). We
then have:

Maximum Entropy Principle. The agent’s degrees of belief should be representable by a probability function PE ∈ {P ∈ E:
P is maximal with respect to �} in cases where there is such a maximiser.

Discussion

Having presented the principal definitions, we shall in the remainder of this section discuss the key properties of the
resulting framework. The reader primarily interested in the application of objective Bayesianism to probabilistic logics may
wish to skip directly to the next section.

5 Note too that (iv) ascribes probabilities to universally and existentially quantified propositions while, as mentioned in Section 2, these probabilities are
interpreted via betting considerations. One might think that there is a tension here, because bets on universally quantified propositions are unlikely to be
settled. If there are infinitely many elements of the domain then normally one cannot tell in a finite time whether a universally quantified proposition is
true (there are exceptions, though—for instance if the proposition is a tautology). In which case a bet on the truth of such a proposition won’t be settled
and so betting considerations can hardly motivate a particular value for the agent’s degree of belief in the proposition. Hence one can assign the proposition
any degree of belief at all, contrary to the constraint invoked in (iv) above.

There are two possible responses. First, it suffices to point out that (iv) can be motivated by semantics rather than betting. The identities invoked by (iv)
should hold in virtue of the meaning of ‘for all’ and ‘there exists’, given our assumption that each member of the domain is picked out by some constant
symbol. These identities need not be justified by a Dutch book argument and so their justification does not require that bets on universally quantified
propositions be settled in principle.

A second possible response involves denying the tension. The betting scenario is in any case a considerable idealisation of the following form: ‘assuming
an agent for whom the utility of money increases linearly with its size were compelled to bet for unknown positive or negative stakes, and assuming there
were a stake-maker with exactly the same evidence as the agent trying to force the agent to lose money, and assuming no mistakes were made over the
settling of the bets, and assuming that the agent cares equally about losses of the same magnitude whenever they are incurred in the future, . . . .’ Since
the last condition requires that the agent care about losses incurred after the end of universe, it doesn’t take much to change this condition to ‘assuming
that the agent cares equally about losses of the same magnitude whenever they are incurred in the finite or infinite future.’ In which case one could, if one
wished, justify (iv) by Dutch book considerations after all.
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Properties of the Closer Relation. First we shall investigate the closer relation defined above, showing that this notion does
what one would expect of a closeness relation.

Proposition 3.1. For fixed R the binary relation · is closer than · to R is irreflexive, asymmetric and transitive.

Proof. Irreflexivity is immediate from the definition: dn(P , R) < dn(P , R).
Asymmetry is also immediate: if dn(P , R) < dn(Q , R) then dn(Q , R) < dn(P , R). For transitivity, suppose P is closer

than Q to R and Q is closer than S to R . Then there is some L such that for n � L, dn(P , R) < dn(Q , R), and there is some M
such that n � M implies dn(Q , R) < dn(S, R). Take N to be the maximum of L and M . Then for n � N , dn(P , R) < dn(S, R),
so P is closer than S to R . �
Proposition 3.2. If P is closer than Q to R then any proper convex combination of P and Q , i.e., S = λP + (1 − λ)Q for λ ∈ (0,1),
is closer than Q to R.

Proof. In order to show that S is closer than Q to R we need to show that there is some N such that for n � N , dn(S, R) <

dn(Q , R).
Let L be the smallest n such that P (ωn) = Q (ωn) for some ωn . Let M be such that for n � M , dn(P , R) < dn(Q , R). Take

N to be the maximum of L and M . Now for n � N

dn(S, R) =
∑
ωn

[
λP (ωn) + (1 − λ)Q (ωn)

]
log

λP (ωn) + (1 − λ)Q (ωn)

λR(ωn) + (1 − λ)R(ωn)

<
∑
ωn

λP (ωn) log
λP (ωn)

λR(ωn)
+ (1 − λ)Q (ωn) log

(1 − λ)Q (ωn)

(1 − λ)R(ωn)

= λdn(P , R) + (1 − λ)dn(Q , R)

< λdn(Q , R) + (1 − λ)dn(Q , R) = dn(Q , R).

The first inequality is a consequence of the information-theoretic log-sum inequality:

k∑
i=1

xi log xi/yi �
(

k∑
i=1

xi

)
log

(
k∑

i=1

xi

)
/

(
k∑

i=1

yi

)

with equality iff xi/yi is constant, where x1, . . . , xk, y1, . . . , yk are non-negative real numbers. The second inequality is on
account of P being closer than Q to R . �
Definition of the ↓ Operator. Note that we defined ↓E

df= {P ∈ E: P is minimal with respect to ≺} if this set is non-empty,

and ↓E
df= E otherwise. The question therefore arises as to whether there are in fact any cases in which E has no minimal

elements, i.e., elements P ∈ E such that for all Q ∈ E, Q ≺ P . Suppose L is a language with a single unary predicate. Define
Pi by

Pi(A j |ω j−1) =
{

1
2 , j < i,

1, otherwise

for all j and all ω j−1 ∈ Ω j−1. Then we have an infinite descending chain: for all i, Pi+1 ≺ Pi . So if E = {P1, P2, . . .} then E

has no minimal elements.
But is it possible that E = {P1, P2, . . .}? Recall that it is a normative constraint that E be closed, so the question is

whether {P1, P2, . . .} contains its limit points—if not, E cannot be {P1, P2, . . .}. In fact, this question depends on the notion
of limit point that we invoke:

Definition 3.3 (Strong limit point). Probability function P is a strong limit point of E if for all ε > 0 there is some Q = P in E

such that dn(Q , P ) < ε for all n.

Definition 3.4 (Weak limit point). Probability function P is a weak limit point of E if for all ε > 0 and for all n there is some
Q = P in E such that dn(Q , P ) < ε.6

6 Strictly speaking Q must be zero wherever P is zero for dn(Q , P ) to be well-defined. We might use Euclidean distance for dn where this condition
does not hold. In fact since in the context of limit points we are considering small distances, it doesn’t much matter which notion of distance we use in
these definitions.
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Now if we consider the putative characterisation of E as {P1, P2, . . .}, we see that this set has no strong limit points,
but has the equivocator P= as a weak limit point. Plausibly, if P1, P2, . . . are appropriate candidates for a belief function
then P= is also an appropriate candidate. In which case the kind of closure required for objective Bayesianism on predicate
languages is closure under weak limit points. Then in fact E = {P=, P1, P2, . . .} and ↓E = {P=}.

Does every infinite descending chain have a weak limit point that is closer to the equivocator than any member of the
chain? No. Again let L be a language with a single unary predicate. Define Q i by

Q i(A j |ω j−1) =
{

1
2 , i < j � 2i,

1, otherwise

for all j,ω j−1. This defines an infinite descending chain: for all i, Q i+1 ≺ Q i . The only weak limit point is Q defined by
Q (A j|ω j−1) = 1 for all j,ω j−1. Hence in principle there might be some E = {Q , Q 1, Q 2, . . .}. But Q is a maximal element
of E: Q i ≺ Q for all i. So E has no minimal elements.

If such a pathological case arises, the question of how to determine an appropriate belief function PE becomes a concern.
Arguably the most natural recommendation is to take ↓E = E, for if ↓E were a strict subset F of E in cases with infinite
descending chains then idempotence could fail, ↓↓E = ↓E. (If F is an infinite strict subset of an infinite descending chain
then F itself would contain an infinite descending chain. On the other hand if F were a finite subset of an infinite descending
chain, then if E contained infinitely many infinite descending chains, the union

⋃
Fi of the finite subsets could itself contain

an infinite descending chain. Applying the ↓ operator again to an infinite descending chain would yield yet another strict

subset, so ↓↓E = ↓E.) This motivates defining ↓E
df= E in cases where E lacks minimal elements.

Note that where ↓E = E the Equivocation norm has no bite and we are essentially left with the Probability and Cali-
bration norms. Subjective Bayesian epistemology appeals to Probability and Calibration but not Equivocation: constraints are
weaker and the determination of an appropriate belief function is largely a question of subjective choice [8,19]. So objective
and subjective Bayesian epistemology agree in those cases where there are infinite descending chains in E with respect
to ≺. Since subjective Bayesian epistemology is already well studied, and since explicit mention of these pathological cases
would obscure the exposition of the main points of this paper, we shall, in subsequent sections of this paper, mainly restrict
our attention to evidence that does not admit infinite descending chains.

Let us now turn to two possible alternative characterisations of the Equivocation norm.

Limiting Distance. Define

d(P , Q )
df= lim

n→∞ dn(P , Q ).

As long as P is zero whenever Q is zero, d(P , Q ) ∈ [0,∞] since for m < n,

dn(P , Q ) = dm(P , Q ) +
∑

ωn∈Ωn

P (ωn) log
P (ω′

n|ωm)

Q (ω′
n|ωm)

� dm(P , Q ) � 0

where ωm is the m-state determined by ωn and ω′
n is the ‘remainder’, i.e., ωn is ωm ∧ ω′

n .
One might suggest that the agent’s degrees of belief should be representable by PE ∈ {P ∈ E: d(P , P=) is minimised}.

But as it stands this does not adequately explicate the concept of closeness to the equivocator, because in the case of a
predicate language there are probability functions P , Q such that although one is intuitively closer to the equivocator than
the other, d(P , P=) = d(Q , P=). Suppose for example that E imposes the constraints P (Ai |± A1 ∧ · · · ∧ ± Ai−1) = 1 for all
i � 2 (E is then non-empty, closed and convex). Thus only P (A1) is unconstrained. Now d(P , P=) = ∞ for all P ∈ E. Yet
intuitively there is a unique function in E that is closest to the equivocator, namely the function that sets P (A1) = 1/2
and P (Ai |± A1 ∧ · · · ∧ ± Ai−1) = 1 for all i � 2. Indeed this function is minimal with respect to ≺ . This motivates taking
PE ∈ {P ∈ E: P is minimal with respect to ≺}, as we did above, rather than PE ∈ {P ∈ E: d(P , P=) is minimised}.

Example 3.5. Suppose E = {P : P (∀xU x) = c} for some fixed c ∈ [0,1]. We have that d(P , P=) = ∞ for all P ∈ E. Define P
by

P (Ut1) = c + 1

2
,

P (Uti+1|Ut1 ∧ · · · ∧ Uti) = (2i+1 − 1)c + 1

(2i+1 − 2)c + 2
,

P (Uti+1|±Ut1 ∧ · · · ∧ ±Uti) = 1

2

otherwise. Then P is the member of E that is closest to the equivocator.

The closer relation agrees with comparative distance in the sense of the following proposition:

Proposition 3.6. d(P , R) < d(Q , R) implies that P is closer than Q to R.
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Proof. Choose N such that dN (Q , R) > d(P , R). Then for n � N , dn(P , R) � d(P , R) < dn(Q , R) so P is closer to R
than Q . �
Pointwise Limit of Distance Minimisers. There is a second possible alternative characterisation of the equivocation norm,

which proceeds as follows. Let E
n df= {P�Ln : P ∈ E}, the set of probability functions on Ln that are restrictions of probability

functions (on L) in E. Let Pn be a probability function in E
n that has minimum n-distance from the equivocator. (Equiva-

lently, Pn is a probability function in E that has maximum n-entropy Hn .) Recall that E is always closed; if E is convex then
Pn is uniquely determined: there is a unique minimiser of distance on a finite domain, from a non-empty, closed convex
set of probability functions. Define

P∞(ωn) = lim
n→∞ Pn(ωn).

If this leads to a well-defined probability function, one might suggest that one deem P∞ to be an appropriate choice for a
rational belief function PE .

In fact, where P∞ is well-defined it will be deemed appropriate by the approach taken here:

Proposition 3.7. If P∞ exists then P∞ ∈ ↓E.

Proof. First note that P∞ defines a probability function:

(i) P∞(ωn) = limn→∞ Pn(ωn) and Pn(ωn) � 0 so P∞(ωn) � 0,
(ii) for each n,∑

ωn∈Ωn

P∞(ωn) =
∑

ωn∈Ωn

lim
m→∞ Pm(ωn) = lim

m→∞
∑

ωn∈Ωn

Pm(ωn) = lim
m→∞ 1 = 1.

Then principles (iii) and (iv) can be used to assign probabilities to arbitrary sentences.
Next note that P∞ ∈ E since it is a weak limit point of members of E and E is closed under weak limits. One can see

this as follows. For each Pn defined as above on Ln let Pn be some function on L that extends it and is in E. By definition
of P∞ , given ωn and ε > 0, |Pm(ωn) − P∞(ωn)| < ε for sufficiently large m—say for m � Mωn . Letting M = maxωn∈Ωn Mωn

we see that given ε > 0 and m � M , |Pm(ωn) − P∞(ωn)| < ε for all ωn ∈ Ωn . Equivalently, given ε > 0, dn(Pm, P∞) < ε for
sufficiently large m.7 But this is just to say that P∞ is a weak limit point of the Pm .

If there are no minimal elements in E then ↓E = E and P∞ ∈ ↓E as required.
Otherwise, suppose for contradiction that P∞ /∈ ↓E. ↓E is non-empty so there is a Q ∈ ↓E such that Q ≺ P∞ . So for

sufficiently large n,

dn
(

Pm, P=
)
� dn(Q , P=) < dn

(
P∞, P=

)
so

dn
(

P∞, P=
) − dn

(
Pm, P=

)
� dn

(
P∞, P=

) − dn(Q , P=) > 0.

But dn(P∞, P=) − dn(Pm, P=) → 0 as m → ∞ so dn(P∞, P=) − dn(Q , P=) → 0 as m → ∞. But P∞ and Q are independent
of m, so dn(P∞, P=) = dn(Q , P=). This contradicts Q ≺ P∞ , as required. �

Note that P∞ is not the limiting function of [17] and [2]. There the procedure is to take pointwise limits of functions
that maximise n-entropy from all those satisfying evidence where the evidence is re-expressed using Ln . Here the procedure
is to take pointwise limits of functions that maximise n-entropy from all those satisfying evidence expressed using L. The
former case faces the finite model problem: while there may be probability functions that satisfy the evidence on an infinite
domain, there may be no probability function that satisfies that evidence when reinterpreted as saying something about a
finite domain. This problem arises when considering total orderings, for instance: if the evidence says that ∀x∃yRxy where
R is a strict total order then only an infinite language will yield probability functions that satisfy that evidence; hence one
cannot satisfy such a proposition by taking limits of probability functions on finite languages that satisfy the proposition
(but one can by taking limits of probability functions that are restrictions of functions on an infinite language that satisfy
the proposition). In the approach outlined here, the finite model problem does not arise.

Order Invariance. Next we turn to the question of whether the closer relation is well-defined.
There is some flexibility in the ordering of the A1, A2, . . . . Although atomic propositions expressible in Lm must occur

before those expressible in Ln but not in Lm , where m < n, there will typically be several orderings that satisfy this
requirement. However, the closer relation is well-defined:

7 As noted before, if for some ωn , Pm(ωn) = 0 but P∞(ωn) = 0, then dn is ill-defined but we can just appeal to Euclidean distance rather than cross
entropy here.



174 J. Williamson / J. Algorithms 63 (2008) 167–183
Proposition 3.8. The closer relation is independent of the precise ordering A1, A2, . . . of the atomic propositions.

Proof. Suppose for contradiction that there are two orderings such that P is closer to R than Q under ordering 1 but Q is
closer to R than P under ordering 2. Let N1 and N2 be the N for orderings 1 and 2 respectively.

Let n be the maximum of N1 and N2. Now Ln expresses the AN1 of ordering 1 and the AN2 of ordering 2 and all the
predecessors of these propositions under both orderings.

Ordering Ln according to order 1 we have that dn(P , R) < dn(Q , R) since n � N1. Similarly if we order Ln according
to order 2 we have that dn(Q , R) < dn(P , R) since n � N2. But this is a contradiction because cross-entropy distance is
independent of ordering on a finite language. �

Note that we have assumed a fixed ordering of the constant symbols in the language. Although closer is well-defined,
the question arises as to how this relation behaves on languages that differ only with respect to the ordering of the ti . In
fact in certain cases the closer relation does depend on the ordering of the ti . Suppose for instance that L and L′ have a
single predicate U which is unary, but that in L the constants are ordered t1, t3, t2, t5, t4, t7, t6, t9, . . . and in L′ they are
ordered t2, t4, t1, t6, t3, t8, t5, t10, . . . . Suppose that P and Q both render the Uti all probabilistically independent; let P be
defined by P (Uti) = 1 if i is odd and 1/2 otherwise, and let Q be defined by Q (Uti) = 1 if i is even and 1/2 otherwise.
Now on L we have that Q ≺ P but on L′ we have that P ≺ Q .

On the other hand there is much agreement across orderings, as can be seen from the following consideration. Call two
orderings commensurable if given any constant symbol there is a finite set of constants that contains that constant and is
closed with respect to taking ancestors under each ordering; an analogue of the proof of Proposition 3.8 shows that closer
is independent of ordering where the orderings under consideration are commensurable.

In our context it is important to point out that this dependence of the closer relation on the ordering of the constants
does not imply a dependence of the recommendations of objective Bayesian epistemology on the ordering of the constants.
The above example yields dependence on ordering because the probability functions are defined in terms of features of the
indices of the constants which are not expressible within the language. If the evidence E imposes finitely many constraints
on the probabilities of propositions in L (as is the case in the probabilistic logic considered in Sections 4, 5) then ↓E will
not be sensitive to the order of the constants. (This is because finitely many constraints can only mention finitely many
constant symbols, and hence can only distinguish finitely many atomic propositions. So sensitivity to order can only occur
for sufficiently small n. However the closer relation depends on sufficiently large n.)

While this is all well and good for the context of this paper, the question still remains as to what to do should ↓E be
sensitive to order of the constants in other situations. That different agents with different languages adopt different degrees
of belief is of course no problem in itself. What is more problematic is that in natural language there may be no natural
order of the constant symbols (i.e., names). If the agent’s natural language can be explicated by any one of a number of
predicate languages Li and rational degree of belief is sensitive to this choice of predicate language then some protocol
is required to handle this sensitivity. The natural protocol is to take ↓E to be

⋃
i ↓i

E where ↓i
E is the set of probability

functions satisfying evidence and closest to the equivocator with respect to language Li . If there is nothing in the agent’s
context that determines a most appropriate ↓i

E, then there is clearly no rational requirement that the agent’s beliefs be
representable by a function from one ↓i

E rather than another, and the agent is free to choose among the full range of
the ↓i

E.

Equidistance. Having discussed the question of indeterminacy with respect to the ordering of the constants, we now turn to
a second kind of indeterminacy: given a fixed language (and hence a fixed ordering of the constant symbols) is ↓E always
a singleton? Or are there cases in which evidence fails to uniquely determine the agent’s degrees of belief? We have seen
that ↓E can be a non-singleton if there are infinite descending chains (in which case ↓E is taken to be E); but there are
other kinds of non-uniqueness.

Definition 3.9 (Equidistant). P and Q are equidistant from R if neither is closer than the other to R .

Proposition 3.10. For fixed R the binary relation equidistant is reflexive and symmetric but not transitive in general and so not an
equivalence relation.

Proof. Reflexivity and symmetry follow directly from the definitions. To construct a counterexample to transitivity, choose
P , Q and S such that dn(P , R) and dn(Q , R) oscillate in magnitude, as do dn(Q , R) and dn(S, R), but where dn(P , R) and
dn(S, R) do not. �
Definition 3.11 (Stably equidistant). P and Q are stably equidistant from R iff there is some N such that for all n � N ,
dn(P , R) = dn(Q , R).

Proposition 3.12. For fixed R, stably equidistant defines an equivalence relation. If distinct P and Q are stably equidistant from R
then any proper convex combination S of P and Q is closer than either P or Q to R.
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Proof. That stably equidistant is an equivalence relation follows directly from the definitions.
We need to show that there is some N such that for n � N , dn(S, R) < dn(P , R),dn(Q , R). Let L be the smallest n such

that P (ωn) = Q (ωn) for some ωn . Let M be the smallest j such that for n � j, dn(P , R) = dn(Q , R). Take N to be the
maximum of L and M . For n � N ,

dn(S, R) < λdn(P , R) + (1 − λ)dn(Q , R)

= λdn(P , R) + (1 − λ)dn(P , R) = dn(P , R).

The inequality follows as in the proof of Proposition 3.2. The following equality is due to P and Q being stably equidistant
from R .

Similarly, dn(S, R) < dn(Q , R). �
Definition 3.13 (Unstably equidistant). P and Q are unstably equidistant from R if they are equidistant from R but not stably
equidistant from R .

Proposition 3.14. For fixed R, unstably equidistant is irreflexive, symmetric but not transitive in general. P and Q being unstably
equidistant from R does not imply that any proper convex combination S of P and Q is closer than either P or Q to R. But a proper
convex combination S of P and Q can be no further from R than P or Q . Nor can S and P (respectively S and Q ) be stably equidistant
from R.

Proof. Irreflexivity: P and P are stably equidistant from R . Symmetry: P and Q are unstably equidistant from R if neither
of dn(P , R) and dn(Q , R) dominate the other for sufficiently large n, nor are they equal for sufficiently large n; this is clearly
symmetric. Failure of transitivity follows from Proposition 3.10.

We shall show that a convex combination of unstably equidistant probability functions need not be closer to R by
providing a counterexample. Take L to have a single unary predicate, take R to be P= , the equivocator, and define two
families Pζ and Q ζ of probability functions parameterised by ζ ∈ N as follows. Take the atomic propositions Ai to be
probabilistically independent with respect to both Pζ and Q ζ . Given n let lζ (n) be such that ζ lζ (n) � n < ζ lζ (n)+1. Let

Pζ (An) =
{ 1

2 lζ (n) is odd,

1 lζ (n) is even,

Q ζ (An) =
{1 lζ (n) is odd,

1
2 lζ (n) is even.

We shall show first that for sufficiently large ζ , Pζ and Q ζ are unstably equidistant. We need to show that di(P , P=) >

di(Q , P=) for i in some infinite I ⊆ N, and also that d j(P , P=) < d j(Q , P=) for j ∈ J ⊆ N where J is infinite. Let I =
{ζ 2k+1 − 1: k ∈ N} and J = {ζ 2k − 1: k ∈ N}.

Recall that, for any probability function T and for m < n, if we let

d′
n(T , P=) =

∑
ωn∈Ωn

T (ωn) log
(
2n−m T

(
ω′

n|ωm
))

then

dn(T , P=) = dm(T , P=) + d′
n(T , P=) � dm(T , P=) � 0

where ωm is the m-state determined by ωn and ω′
n is the remainder, i.e., ωn is ωm ∧ ω′

n . Also, dm(T , P=) � m log 2.
Let n ∈ I so that n = ζ 2k+1 − 1 for some k. Let m = ζ 2k − 1, so n − m = (ζ − 1)ζ 2k . Consider the atomic states ωm

that Pζ awards positive probability. Pζ gives all these r states the same probability, 1/r. Moreover, for each such state ωm

there is only one state with positive probability that extends it, namely that in which ω′
n is Am+1 ∧ · · · ∧ An , i.e., ωn is

ωm ∧ Am+1 ∧ · · · ∧ An . Hence

d′
n(Pζ , P=) =

∑
ωm

Pζ (ωm) log 2n−m = r

r
(n − m) log 2 = (ζ − 1)ζ 2k log 2.

So dn(Pζ , P=) � (ζ −1)ζ 2k log 2 since dm(Pζ , P=) � 0. But Q ζ (ω′
n|ωm) = 2−(n−m) so d′

n(Q ζ , P=) = 0. Moreover, dm(Q ζ , P=) �
m log 2 = (ζ 2k −1) log 2. Consequently dn(Q ζ , P=) < ζ 2k log 2. Hence if ζ � 2, dn(Pζ , P=) > dn(Q ζ , P=) for all n ∈ I . Similarly,
dn(Pζ , P=) < dn(Q ζ , P=) for n ∈ J . Thus Pζ and Q ζ are indeed unstably equidistant for large enough ζ .

Letting Sζ = 1
2 Pζ + 1

2 Q ζ , we will see that Sζ and Q ζ are unstably equidistant for sufficiently large ζ (similarly Sζ

and Pζ ). Again take n ∈ I so that n = ζ 2k+1 −1 for some k, and let m = ζ 2k −1, so n−m = (ζ −1)ζ 2k . Define Ω P
n = {ωn ∈ Ωn:

Pζ (ωn) > 0} and Ω
Q
n = {ωn ∈ Ωn: Q ζ (ωn) > 0}. It will be convenient to take Ω P

n and Ω
Q
n to be disjoint for all n (this will be

used in Eq. (1) below): we can achieve this by creating a dummy variable A0 and stipulating that Pζ (A0) = 1 and Q ζ (A0) =
0, and that A0 is independent of all other Ai with respect to both Pζ and Q ζ . Note that Pζ assigns equal probability to
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each member of Ω P
n and similarly for Q ζ ((3) below). Also, if ωn ∈ Ω P

n then Sζ (ωn) = Pζ (ωn)/2 + Q ζ (ωn)/2 = Pζ (ωn)/2;

similarly, if ωn ∈ Ω
Q
n then Sζ (ωn) = Q ζ (ωn)/2 ((2) below). Now

d′
n(Sζ , P=) =

∑
ωn∈Ω P

n

Sζ (ωn) log
(
2n−m Sζ

(
ω′

n|ωm
)) +

∑
ωn∈Ω

Q
n

Sζ (ωn) log
(
2n−m Sζ

(
ω′

n|ωm
))

(1)

=
∑

ωn∈Ω P
n

Pζ (ωn)

2
log

(
2n−m Pζ (ωn)/2

Pζ (ωm)/2

)
+

∑
ωn∈Ω

Q
n

Q ζ (ωn)

2
log

(
2n−m Q ζ (ωn)/2

Q ζ (ωm)/2

)
(2)

=
∑

ωm∈Ω P
m

Pζ (ωm)

2
log

(
2n−m Pζ (ωm)

Pζ (ωm)

)
+

∑
ωn∈Ω

Q
m

2−(n−m) Q ζ (ωm)

2
log

(
2n−m 2−(n−m) Q ζ (ωm)

Q ζ (ωm)

)

= 1

2
log 2n−m + 2−(n−m)

2
log

(
2n−m2−(n−m)

)
(3)

= n − m

2
log 2

= (ζ − 1)ζ 2k

2
log 2.

Hence dn(Sζ , P=) � 1
2 (ζ − 1)ζ 2k log 2. But we saw above that dn(Q ζ , P=) < ζ 2k log 2. So for n ∈ I and ζ � 3, dn(Sζ , P=) >

dn(Q ζ , P=). Similarly when n ∈ J , dn(Sζ , P=) < dn(Q ζ , P=). Therefore Sζ , Q ζ are unstably equidistant.
In sum, one can show that P and Q being unstably equidistant from R does not imply that any proper convex combina-

tion S of P and Q is closer than either P or Q to R , by taking R = P= and P , Q , S to be Pζ , Q ζ , Sζ defined as above for
any fixed ζ � 3.

It remains to show that convex combination S = λP + (1 − λ)Q of unstably equidistant P and Q is no further from R
than P or Q , and neither are S, P (respectively S, Q ) stably equidistant from R . First note that since P and Q are equidis-
tant there are infinite sets I and J of natural numbers such that dn(P , R) � dn(Q , R) if n ∈ I , and dn(P , R) � dn(Q , R)

if n ∈ J . Since P and Q are unstably equidistant they are distinct, so, as explained in the proof of Proposition 3.12, for
sufficiently large n

dn(S, R) < λdn(P , R) + (1 − λ)dn(Q , R).

Now if such n ∈ I , dn(S, R) < dn(Q , R), so S is no further from R than Q , nor are S and Q stably equidistant from R .
Similarly, for large enough n ∈ J , dn(S, R) < dn(P , R), so the same is true of S and P . �
Corollary 3.15. If E is a convex set of probability functions then so is ↓E.

Proof. If P , Q ∈ ↓E then P , Q , S must be (unstably) equidistant from the equivocator for any convex combination S of P
and Q (since S cannot be closer to the equivocator by definition of ↓E, and neither can it be further from the equivocator
by Proposition 3.14). So S ∈ ↓E. �

While for a propositional language ↓E is a singleton (there any closed convex set of probability functions contains a
single function that is closest to the equivocator), with a predicate language this need not be the case. We have seen that
non-uniqueness can arise in the presence of unstably equidistant probability functions, as well as in the presence of infinite
descending chains.8 In this paper we make no presumption that ↓E is a singleton. Non-uniqueness of PE ∈ ↓E poses no
conceptual difficulty, but in some applications of Bayesian epistemology—including the application to probabilistic logic
considered in this paper—care needs to be taken to keep track of all the potential belief functions.9

4. Probabilistic logics

Broadly speaking there are three main kinds of probabilistic logic, or progic for short. In an internal progic, a logical
language L includes function symbols that are interpreted as probability functions. One then performs standard logical
inference in order to draw conclusions that say something about these probability functions. An internal progic—where
probabilities are internal to the language—is thus useful for reasoning about uncertainty [6]. In contrast, in an external progic
the logical language L does not involve probabilities but instead probabilities are ascribed to the propositions of L—the
probabilities are external to the language. One then performs probabilistic inference to draw conclusions that say something
about the probabilities of propositions. An external progic is thus used for reasoning under uncertainty [16]. The third case

8 Having said this, preliminary results indicate that ↓E is a singleton in the restricted environment of probabilistic logic on unary languages (Paris & Rad,
personal communication).

9 Of course uniqueness is much more rarely obtained with subjective Bayesian epistemology, the main rival to objective Bayesian epistemology.
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is that of a mixed progic, which contains probabilities internal to the language and external to the language; a mixed progic
can be used to reason about and under uncertainty.

In order to be fully general we shall consider a mixed progic in this paper. But for clarity of exposition we shall consider
a mixed progic of a fixed structure; the discussion of this paper can be generalised to other forms of mixed progic, or
indeed particularised to internal and external progics.

Let L be a propositional or predicate language of the kind considered in previous sections. (Recall that we considered
only predicate languages with no function symbols, so there are no probabilities internal to L.) We will be primarily
interested in inferences of the following form:

ϕ
X1
1 , . . . , ϕ Xn

n |≈ ψY . (4)

Here ϕ1, . . . , ϕn,ψ are propositions of L, and X1, . . . , Xn, Y are sets of probabilities that attach to these propositions. |≈ is
an unspecified entailment relation—in Section 5 we will give |≈ an objective Bayesian interpretation.

Thus far the probabilities are external to L. Note however that the entailment relation |≈ relates propositions together
with attached probabilities. So the premisses and conclusion are expressions in some language richer than L. Accordingly
consider a propositional language L
 whose propositional variables are expressions of the form ϕ X where ϕ is a proposition
of L and X is a set of probabilities. (Note that as it stands there are uncountably many propositional variables, though one
could always circumscribe the language L
 to reduce its cardinality.) By applying the usual connectives of propositional
logic, we can generate propositions μ of L
 of arbitrary logical complexity. The metalanguage L
 can be thought of as the
language of the entailment relation |≈, and this entailment relation can be extended to inferences of the more general form

μ1, . . . ,μn |≈ ν (5)

where μ1, . . . ,μn, ν are arbitrary propositions of L
 . Here the probabilities are internal to the language L
 , though they are
external to the language L. Thus the entailment relation |≈ yields a mixed progic.

Clearly Eqs. (4) and (5) might be interpreted in a variety of ways according to one’s understanding of the uncertainties
involved. In Section 5 we shall develop an interpretation that is motivated by objective Bayesian epistemology. Then we
shall turn to the practicalities of inference in probabilistic logic.

Classical logic faces an inferential question of the following form: given premisses and conclusion, do the premisses entail
the conclusion? A proof theory is normally invoked to answer this kind of question. But a progic of the sort outlined above
more typically faces a question of a rather different form: given premisses ϕ

X1
1 , . . . , ϕ Xn

n and a conclusion proposition ψ

of L, what set of probabilities Y should attach to ψ? This question can be represented thus:

ϕ
X1
1 , . . . , ϕ Xn

n |≈ ψ?. (6)

More generally, such a question may take the form:

μ1, . . . ,μn |≈ ψ? (7)

where μ1, . . . ,μn are arbitrary propositions of L
 and as before ψ is a proposition of L. Since these are primarily questions
about probability rather than logic, answering such a question will tend to invoke techniques from probability theory rather
than proof theory. In Section 6 we shall introduce the machinery of objective Bayesian nets that, as explained in Section 7,
can be invoked to answer such a question.

5. Objective Bayesian semantics

It is possible to interpret a question of the form of Eq. (6) by appealing to objective Bayesian epistemology as follows.
First interpret L as the language of an agent, and the left-hand side of Eq. (6) as characterising her evidence. Thus the

premisses ϕ
X1
1 , . . . , ϕ Xn

n are construed as facts about empirical probability determined by the agent’s evidence E : a premiss
of the form ϕ X is interpreted as P∗(ϕ) ∈ X , where P∗ is empirical probability, and the evidence E is taken to imply that
P∗(ϕ1) ∈ X1, . . . , P∗(ϕn) ∈ Xn .10 The Calibration principle then deems the set E of probability functions that are compatible
with this evidence to be the convex closure of the set P

∗ = {P ∈ PL: P (ϕ1) ∈ X1, . . . , P (ϕn) ∈ Xn}, i.e., E = [P∗].11

10 One may of course be sceptical about the existence of a single-case empirical probability function P∗ since any characterisation of P∗ will need to
overcome the metaphysical reference class problem. But, as argued in [21], one can cash out the Calibration principle in terms of general-case frequency
instead. The formulation of the Calibration principle will be more complicated in this case—it will need to tackle a more benign epistemological version
of the reference class problem for instance—but the details need not detain us here, since here we are simply given the constraints in the formulation of
Eq. (6).
11 Note that statistical theory may be required to draw out the consequences of E for P∗ . For example, if E contains evidence that the first hundred

observed ravens were black: B(t1), . . . , B(t100), together with certain statistical hypotheses about P∗ that are granted by the agent, then this evidence may
imply that P∗(B(ti)) is close to 1 for all i > 100. This consequence of E in turn imposes constraints on the agent’s degrees of belief. According to this point
of view, learning from experience is a result of evidential considerations rather than of probabilistic logic itself. See [27, §5] for the justification of this
point of view, and [3,22,24] for the opposing view, i.e., for attempts to integrate learning from experience into the agent’s belief function directly rather
than indirectly via her evidence.
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We can now go on to interpret Eq. (6) as asking how strongly an agent whose evidence is characterised by the premisses
should believe the conclusion proposition ψ . The objective Bayesian answer is that the agent’s degree of belief in ψ should
be representable by the probability PE (ψ) where the agent’s belief function PE ∈ ↓E, i.e., PE is a maximally equivocal
probability function from all those compatible with the premisses. Thus the optimal set Y of probabilities to attach to the
conclusion proposition is Y = {PE (ψ): PE ∈ ↓[P∗]}.

It is straightforward to extend this approach to handle questions of the form of Eq. (7), μ1, . . . ,μn |≈ ψ?. As before the
premisses are interpreted as statements about empirical probability and P

∗ = {P ∈ PL: μ1, . . . ,μn hold}. As before, the
optimal answer to the question is Y = {PE (ψ): PE ∈ ↓[P∗]}.

In turn we can interpret an entailment claim of the form of Eq. (4) as holding if and only if an agent with evidence
characterised by the premisses ϕ

X1
1 , . . . , ϕ Xn

n should believe the conclusion proposition ψ to some degree within the set Y .

Thus ϕ
X1
1 , . . . , ϕ Xn

n |≈ ψY iff {PE (ψ): PE ∈ ↓[P∗]} ⊆ Y . More generally we can consider an entailment claim of the form of
Eq. (5)—i.e., μ1, . . . ,μn |≈ ν where μ1, . . . ,μn, ν are propositions of L
—to hold if and only if the conclusion ν holds of the
degrees of belief of an agent with evidence characterised by the premisses μ1, . . . ,μn .

There is an important special case. We will call the set {μ1, . . . ,μn} of premiss propositions of L
 regular iff it gives
rise to a set P

∗ that is closed, convex and non-empty. Premisses are regular, for example, if they are mutually consistent,
they involve propositions of L that are all quantifier-free, and they involve sets of probabilities that are all closed and
convex. If the premisses are regular then E = P

∗ and the set of probabilities to attach to the conclusion proposition is
Y = {PE (ψ): PE ∈ ↓P

∗}. This case arises naturally when the premisses are observations of empirical probabilities (i.e.,
P∗(ϕi) = xi ; the Xi are singletons) or estimates of empirical probabilities (i.e., P∗(ϕi) ∈ [xi − ε, xi + ε]; the Xi are closed
intervals).

Example 5.1. Consider the question ∀xU x3/5 |≈ Ut?
1. Objective Bayesian epistemology interprets the expression on the left-

hand side as P∗(∀xU x) = 3/5; this premiss is regular, so E = [P∗] = P
∗ = {P : P (∀xU x) = 3/5}. There is one function P in E

that is closest to the equivocator, as described in Example 3.5. This function gives P (Uti) = 4/5 for each constant ti . Hence
the answer to the question is 4/5.

In the remainder of the paper we shall ignore cases in which premisses permit infinite descending chains with respect
to ≺ . As mentioned in Section 3, such cases trivialise in the sense that ↓P

∗ = P
∗; hence they are of less interest.

Discussion

Having presented the objective Bayesian semantics, we now investigate some of the properties of the resulting entailment
relation. The reader more interested in techniques for answering questions of the form of Eqs. (6) and (7) may wish to skip
to the next section.

First note that |≈ is a genuine semantic entailment relation in the sense that there are suitable notions of model and
satisfies such that μ1, . . . ,μn entails ν if and only if every model of μ1, . . . ,μn satisfies ν . For proposition μ of L
 let

P(μ)
df= {P ∈ PL: μ holds}. A probability function P is said to satisfy μ if P ∈ P(μ). Let the set of models of μ be defined

by M(μ)
df= ↓[P(μ)].12 Then indeed under the objective Bayesian semantics μ1, . . . ,μn |≈ ν iff every model of the left-hand

side satisfies the right-hand side, i.e., iff M(μ1, . . . ,μn) ⊆ P(ν).

Definition 5.2 (Decomposable). Let |≈ be an arbitrary entailment relation and let M(μ) be the corresponding notion of a
set of models of μ. |≈ is called decomposable iff for all propositions μ1, . . . ,μn of the language of the entailment relation,
M(μ1, . . . ,μn) = M(μ1) ∩ · · · ∩ M(μn).

Definition 5.3 (Monotonic). An entailment relation |≈ is monotonic iff for all propositions ν,μ1, . . . ,μm, . . . ,μn of the lan-
guage of |≈ (where m < n), we have that μ1, . . . ,μm |≈ ν implies μ1, . . . ,μm, . . . ,μn |≈ ν .

Proposition 5.4. A decomposable entailment relation is monotonic.

Proof. Suppose that |≈ is decomposable and that μ1, . . . ,μm |≈ ν . Now

M(μ1, . . . ,μn) = M(μ1) ∩ · · · ∩ M(μn)

⊆ M(μ1) ∩ · · · ∩ M(μm) = M(μ1, . . . ,μm) ⊆ P(ν).

So μ1, . . . ,μn |≈ ν , as required. �
12 As before we take [∅] = PL .
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Now entailment under the objective Bayesian semantics is nonmonotonic: A[0,1]
1 |≈ A{0.5}

1 but it is not the case that

A[0,1]
1 , A{1}

1 |≈ A{0.5}
1 , where A1 is a propositional variable (respectively atomic proposition) of propositional (respectively

predicate) language L. Hence objective Bayesian entailment is not decomposable.
Although nonmonotonic, this notion of entailment still satisfies a number of interesting and useful properties. In order to

characterise these properties we shall need to appeal to some notions that are common in the literature on nonmonotonic
logics—see, e.g., [12], [13, §3.2] and [7] for background. A probability function P on L can be construed as a valuation
on L
: P assigns the value True to proposition μ of L
 if P ∈ P(μ), i.e., if P satisfies μ. Define a decomposable entailment
relation |� by M|�(μ) = P(μ) for proposition μ of L
 . In particular, if μ is of the form ϕ X , then P ∈ M|�(μ) iff P (ϕ) ∈ X .
Recall that for probability functions P and Q , P ≺ Q iff P is closer to the equivocator than Q . Now (PL,≺, |�) is a
preferential model: PL is a set of valuations on L
 , ≺ is an irreflexive, transitive relation over PL , and |� is a decomposable
entailment relation. Moreover, this preferential model is smooth: if P ∈ M|�(μ) then either P is minimal with respect to ≺
in P(μ) or there is a Q ≺ P in P(μ) that is minimal. Hence this model determines a preferential consequence relation |∼ as
follows: μ |∼ ν iff P satisfies ν for every P ∈ PL that is minimal among those probability functions that satisfy μ. Wherever
{μ,ν} is regular, |∼ will agree with |≈ . Consequently on regular propositions |≈ will satisfy the properties of preferential
consequence relations, often called system-P properties—see, e.g., [12]:

Proposition 5.5 (Properties of entailment). Let |� denote entailment in classical logic and let ≡ denote classical logical equivalence.
Whenever {μ,ν, ξ} is regular,

Right Weakening: if μ |≈ ν and ν |� ξ then μ |≈ ξ .
Left Classical Equivalence: if μ |≈ ν and μ ≡ ξ then ξ |≈ ν .
Cautious Monotony: if μ |≈ ν and μ |≈ ξ then μ ∧ ξ |≈ ν .
Premiss Disjunction: if μ |≈ ν and ξ |≈ ν then μ ∨ ξ |≈ ν .
Conclusion Conjunction: if μ |≈ ν and μ |≈ ξ then μ |≈ ν ∧ ξ .

6. Objective Bayesian nets

The calculus for probabilistic logic developed in Section 7 will appeal to the concepts of objective Bayesian net and
objective credal net, which will be introduced in this section.

A Bayesian net is a representation of a probability function. Bayesian nets were developed to represent probability func-
tions defined over sets of variables [14,18], but they can equally be applied to represent probability functions over logical
languages, which are our concern here. Let Ln be a propositional language on the propositional variables A1, . . . , Arn (in
which case rn = n), or a finite predicate language with atomic propositions A1, . . . , Arn . Suppose P is a probability func-
tion defined on Ln . A Bayesian net representation of P consists of a directed acyclic graph whose nodes are A1, . . . , Arn ,
together with the conditional probability distribution P (Ai |Pari), induced by P , of each Ai conditional on its parents Pari in
the graph. The graph must be constructed in such a way that the following condition holds:

Markov Condition. Each Ai is probabilistically independent of its non-descendants in the graph, conditional on its parents,
written Ai ⊥⊥ NDi | Pari .

The Bayesian net determines P via the identity

P (ωn) =
rn∏

i=1

P
(

Aωn
i |Parωn

i

)
where Aωn

i and Parωn
i are the states of Ai and its parents that are consistent with ωn .

An objective Bayesian net (or obnet for short) is a Bayesian net representation of a function PE on Ln that, according to
objective Bayesian epistemology, represents appropriate degrees of belief for an agent with language Ln and evidence E .
An obnet can be constructed by (i) determining independencies that must be satisfied by PE , (ii) representing these in-
dependencies by a directed acyclic graph that satisfies the Markov Condition, and then (iii) determining the conditional
distributions PE (Ai |Pari).

Task (i) is straightforward as we shall now see:

Definition 6.1 (Constraint graph). The constraint graph for E on Ln is constructed by taking the A1, . . . , Arn as nodes and
linking two nodes with an edge if they occur in the same constraint in E . (In the case in which Ln is a predicate language
and constraints involve quantifiers, first substitute each occurrence of ∀xθ(x) by

∧
t θ(t), where the conjunction ranges over

k-tuples t of constants from t1, . . . , tn , k being the arity of the tuple x of variables; similarly substitute each occurrence of
∃xθ(x) by

∨
t θ(t).)

Proposition 6.2. For all PE ∈ ↓E, separation in the constraint graph implies conditional independence in PE : for X, Y , Z ⊆
{A1, . . . , An}, if Z separates X from Y in the constraint graph then X ⊥⊥ Y | Z for PE .
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Fig. 1. Constraint graph. Fig. 2. Graph satisfying the Markov Condition.

Proof. See [21, Theorem 5.1]. �
For example, suppose the evidence E takes the form: P∗(A1 ∧ ¬A2) ∈ [0.8,0.9], P∗((¬A4 ∨ A3) → A2) = 0.2, P∗(A5 ∨

A3) ∈ [0.3,0.6], P∗(A4) = 0.7. Then the constraint graph of Fig. 1 represents conditional independencies that must be satis-
fied by any maximally equivocal function compatible with this evidence.

Step (ii), representing these independencies by a directed acyclic graph, can be performed by the following algorithm13:

Algorithm 6.3.
Input: An undirected graph G .

◦ Triangulate G to give GT .
◦ Reorder the variables according to maximum cardinality search.
◦ Let D1, . . . , Dl be the cliques of GT , ordered according to highest labelled vertex.
◦ Let E j = D j ∩ (

⋃ j−1
i=1 Di) and F j = D j\E j , for j = 1, . . . , l.

◦ Construct a directed acyclic graph H by taking propositional variables as nodes, and
– Add an arrow from each vertex in E j to each vertex in F j , for j = 1, . . . , l.
– Add further arrows, from lower numbered variables to higher numbered variables, to ensure that there is an arrow

between each pair of vertices in D j, j = 1, . . . , l.

Output: A directed acyclic graph H.

When input a constraint graph this algorithm produces a directed acyclic graph that satisfies the Markov Condition with
respect to any maximally equivocal function compatible with this evidence [21, Theorem 5.3]. A graph produced by this
algorithm typically looks much like the constraint graph that is input: e.g., when input Fig. 1, Fig. 2 is one possible output
of the algorithm.

Step (iii) in the construction of an obnet is the determination of the conditional distributions P (Ai |Pari). Here any of a
variety of techniques (for instance, numerical methods or Lagrange multiplier methods) can be used to determine the values
of these parameters that maximise entropy subject to constraints imposed by evidence. As pointed out above, on a finite
language Ln there is a unique entropy maximiser. Hence these conditional distributions are uniquely determined. We will
not explore the determination of these conditional distributions in any detail in this paper; the importance of a Bayesian
net lies in the graph rather than the numerical parameters: by capturing probabilistic independencies graphically, they can
be exploited to render representing and reasoning with probability more tractable.

Bayesian nets and objective Bayesian nets are thus far defined over a finite language Ln . But in this paper we also
consider the case in which the agent’s language L is an infinite predicate language. Now as we saw in Section 3, an
infinite language L can be handled naturally by considering the sequence L1,L2, . . . of finite languages generated by the
ordering of the constant symbols: each Ln involves only constants t1, . . . , tn . A probability function P over L is determined
by its values over the Ln (n = 1,2, . . .) so it is determined by the sequence of Bayesian nets representing P over the Ln

(n = 1,2, . . .). These Bayesian nets can be constructed in such a way that each net contains its predecessor in the sequence
as a strict subnet; hence we can define the corresponding infinitary Bayesian net to be the Bayesian net on the infinite
domain A1, A2, . . . that has each member of the sequence of (finite) Bayesian nets as a subnet. In turn, then, PE ∈ ↓E

may be represented by a sequence of obnets, or an infinitary obnet. In practice, of course, one will at any stage only be
interested in propositions involving the symbols of some fixed Ln , so one can restrict attention to the finite subnet on that
particular Ln .

A second consideration arises with an infinite predicate language L: when the agent’s language is finite ↓E will be a
singleton, but this does not hold in general in the infinite case. So while a single obnet suffices to represent ↓E in the
finite case, a single (infinitary) obnet may not suffice to represent ↓E in the infinite case. Note, however, that thanks to
Proposition 6.2 all members of ↓E may be represented by (infinitary) obnets on the same graph. Furthermore, ↓E is convex
(Corollary 3.15). These two facts imply that ↓E can be represented by a credal net. A credal net, like a Bayesian net, contains
a directed acyclic graph. But where a Bayesian net uniquely specifies the conditional probability distributions, a credal net
only narrows down conditional probabilities to closed intervals. So the credal net can be thought of as the set of Bayesian

13 See, e.g., [14] for the graph theoretic terminology.
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Fig. 3. Constraint graph. Fig. 4. Graph satisfying the Markov Condition.

nets that have the graph of the credal net and whose conditional probability distributions satisfy the constraints in the
credal net. The credal net can thus be used to represent the set of probability functions that are determined by these
associated Bayesian nets.14 An objective credal net (or ocnet for short) is a credal net that represents the set ↓E that is of
fundamental interest to objective Bayesianism. In the case in which L is an infinite predicate language, the ocnet will be
infinitary and may be non-trivial in the sense that it represents more than one probability distribution. The graph of this
infinitary ocnet can be determined by Definition 6.1 and Algorithm 6.3.

7. A calculus for probabilistic logic

We now have all the tools we need to say how questions of the form of Eq. (6), and more generally Eq. (7), can be
answered.

The general strategy is as follows. We interpret a question of the form ϕ
X1
1 , . . . , ϕ Xn

n |≈ ψ? by means of the objec-
tive Bayesian semantics of Section 5. As we saw, this gives an answer in principle to the above question: the objective
Bayesian semantics attaches the set Y = {PE (ψ): PE ∈ ↓[P∗]} to the conclusion proposition ψ , where P

∗ = {P : P (ϕ1) ∈
X1, . . . , P (ϕn) ∈ Xn}. The question remains as to how to determine Y in practice. We answer this question by first repre-
senting E = ↓[P∗] by an objective credal net, and then using this net to calculate the probability interval Y that attaches
to ψ .

Example 7.1. Suppose we have a question of the form:

A1 ∧ ¬A2
[0.8,0.9], (¬A4 ∨ A3) → A2

0.2, A5 ∨ A3
[0.3,0.6], A4

0.7 |≈ A5 → A1
?.

This is short for the following question: given that A1 ∧¬A2 has probability between 0.8 and 0.9 inclusive, (¬A4 ∨ A3) → A2
has probability 0.2, A5 ∨ A3 has probability in [0.3,0.6] and A4 has probability 0.7, what probability should A5 → A1 have?
As explained in Section 5, this question can be given an objective Bayesian interpretation: supposing the agent’s evidence
says P∗(A1 ∧ ¬A2) ∈ [0.8,0.9], P∗((¬A4 ∨ A3) → A2) = 0.2, P∗(A5 ∨ A3) ∈ [0.3,0.6], P∗(A4) = 0.7, how strongly should she
believe A5 → A1? Now an objective credal net can be constructed to answer this question (in fact the net is an objective
Bayesian net: L is a finite propositional language so ↓E is a singleton). First construct undirected constraint graph Fig. 1
by linking variables that occur in the same constraint. Next, follow Algorithm 6.3 to transform the undirected graph into a
directed acyclic graph satisfying the Markov Condition, such as Fig. 2. The third step is to maximise entropy to determine the
probability distribution of each variable conditional on its parents in the directed graph. This yields the objective Bayesian
net. Finally we use the net to calculate the probability of the conclusion

P (A5 → A1) = P (¬A5 ∧ A1) + P (A5 ∧ A1) + P (¬A5 ∧ ¬A1)

= P (A1) + P (¬A5|¬A1)
(
1 − P (A1)

)
.

Thus we must calculate P (A1) and P (¬A5|¬A1) from the net, which can be done using standard Bayesian or credal net
inference algorithms.

Here is a simple example of a predicate language question:

Example 7.2. Suppose we have a question of the form:

∀x(U x → V x)3/5, ∀x(V x → W x)3/4, Ut1
[0.8,1] |≈ W t?

1.

Again, an objective Bayesian net can be constructed to answer this question. There is only one constant symbol t1, so
we can focus on a finite predicate language L1. Let A1 be Ut1, A2 be V t1 and A3 be W t1. Then the constraint graph G is
depicted in Fig. 3 and the corresponding directed acyclic graph H is depicted in Fig. 4. It is not hard to see that P (A1) = 4/5,
P (A2|A1) = 3/4, P (A2|¬A1) = 1/2, P (A3|A2) = 5/6, P (A3|¬A2) = 1/2; together with H, these probabilities yield a Bayesian
network. Standard inference methods then give us P (A3) = 11/15 as an answer to our question.

The general procedure for determining Y can be represented by the following high-level algorithm:

14 This set of probability functions is sometimes called the complete extension of the credal net. The strong extension of a credal net is the convex closure
of the complete extension. In our case the two coincide: ↓E can be represented by the complete extension of a credal net; since ↓E is closed and convex,
this is also the strong extension.
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Algorithm 7.3.
Input: A question of the form μ1, . . . ,μn |≈ ψ?, where μ1, . . . ,μn are propositions of L
 and ψ is a proposition of L.15

1. If L is an infinite predicate language let n be the smallest j such that μ1, . . . ,μn are propositions of L


j and ψ is a
proposition of L j . Otherwise let Ln =L.

2. Construct the constraint graph G for constraints μ1, . . . ,μn on Ln (Definition 6.1).
3. Transform this graph into a directed acyclic graph H by means of Algorithm 6.3.
4. Determine the corresponding conditional probability intervals for an objective credal net representation of ↓E:

(a) Determine the credal net on H that represents the functions, from those that satisfy the Markov Condition with
respect to H, that are in E (i.e., that satisfy the constraints μ1, . . . ,μn where these are consistent) [5, Algorithm 9.1].

(b) Use Monte-Carlo methods to narrow the intervals in this credal net to represent the probability functions, from
those in the above net, that are closest to the equivocator.

5. Use this credal net to determine the interval Y that attaches to ψ (Algorithm 7.4 below).

Output: Approximate Y such that μ1, . . . ,μn |≈ ψY .

In step 4(b), entropy is determined by the network parameters via the identity

H(P ) = −
rn∑

i=1

∑
ωi

( ∏
A j∈Anci

P
(

Aωi
j |Parωi

j

))
log P

(
Aωi

i |Parωi
i

)
,

where the ωi range over the states of Anci
df= {Ai and its ancestors in H}.

We now turn to step 5 of this algorithm: using the net to perform inference. In principle this step can be implemented
in a variety of ways, but here we advocate a particular approach based on the following considerations. Inference with
credal nets can be computationally much more complex than inference with Bayesian nets: the credal net may represent
a convex set of probability functions with a large number of extremal points, each of which needs to be kept track of to
perform inference. Hence it is natural to use numerical approximation methods, rather than exact inference methods, when
working with credal nets. Moreover, computational complexity can also be mitigated by a compilation methodology, i.e.,
by trying to do much of the computational work during a computationally expensive compilation phase that is performed
once offline, leaving a cheaper query answering phase that is performed online (perhaps many times, if answering several
queries with the same premisses but different conclusion propositions ψ ). Accordingly, hill-climbing numerical methods for
compiled credal nets, developed in [4] and applied to probabilistic logic in [5, §8.2], are well suited. There is only space to
outline these methods here—the reader is urged to consult these references for the details. These methods work perfectly
well in the extreme case in which the credal net is in fact a Bayesian net; since we may not know in advance whether this
case will arise, this is a distinct advantage.

In brief, step 5 of Algorithm 7.3 can be implemented by:

Algorithm 7.4.
Input: A credal net on Ln and a proposition ψ of Ln .

◦ Compilation phase:
– Transform the credal net into a d-DNNF (deterministic Decomposable Negation Normal Form) net.

◦ Inference phase:
– Transform ψ into ψ1 ∨ · · · ∨ ψl where the ψi are mutually exclusive conjunctions of literals—e.g., via Abraham’s

algorithm [1].
– Use hill-climbing in the d-DNNF net to calculate approximate bounds on each P (ψi).
– Calculate bounds on P (ψ) via the identity P (ψ) = ∑l

i=1 P (ψi).

Output: Y = {P (ψ): P is subsumed by the input credal net}.

We see then that, given a question of the form of Eq. (6) or Eq. (7), an objective credal net can be constructed to provide
an answer. Of course, in the worst case logical inference and probabilistic inference are each computationally intractable
(in the sense that computing answers takes time exponential in n), so their combination in a probabilistic logic is no more
tractable. But that is the worst case; if the constraint graph is sparse, the objective credal net calculus offers the potential
for efficient inference.

15 We make no assumptions about μ1, . . . ,μn here, other than that they admit no infinite descending chains (if they do then ↓E = E = [P∗] and step 1
is no longer appropriate). Recall that if the premisses are inconsistent then E = PL and ↓E = {P=}; if they are not regular then E = [P∗] = P

∗ .
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8. Summary

Objective Bayesian epistemology offers a systematic account of the normative constraints on an agent’s degrees of belief.
This account is based on three norms: Probability, Calibration and Equivocation (Section 2). Note that objective Bayesianism
is objective in the sense that these norms impose very strong constraints on degrees of belief. So strong, in fact, that there
is no need to impose any further norm (such as Bayesian conditionalisation) for updating degrees of belief [27]. In contrast,
under subjective Bayesian epistemology—which advocates only Probability and Calibration—degrees of belief are largely a
question of personal choice and further constraints are required to guide updating. As we saw, though, objective Bayesian
degrees of belief are not always uniquely determined—in some cases there remains an element of subjective choice. This is
a point in common with the subjective approach and this distinguishes objective Bayesianism from the logical interpretation
of probability [11], which construes probability to be a unique relation between propositions.

This account can be extended from the usual case of a propositional language to the case in which the agent’s language
is an infinite first-order predicate language (Section 3). The three norms carry over with minor modifications, and one can
even formulate a version of the maximum entropy principle. Subtleties arise to do with closeness of probability functions,
but the resulting theory does all that one might expect of it.

Objective Bayesian epistemology also provides a natural semantics (Section 5) for probabilistic logic (Section 4): simply
interpret the premisses as evidence and the conclusion as a claim about rational degree of belief; the conclusion follows
from the premisses if an agent with evidence explicated by the premisses ought to have degrees of belief that satisfy the
conclusion.

In a probabilistic logic it is natural to ask which set of probabilities attaches to a conclusion proposition, given a set of
premisses. Objective Bayesian epistemology provides the answer in theory, and an objective credal net (Section 6) can be
used to calculate the answer in practice (Section 7).
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