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§1
Introduction

The major goals of medicine include predicting disease, controlling disease, and
explaining disease. The main way of achieving these goals proceeds by modelling.
In this chapter, we provide an introduction to the use of models in achieving the
goals of medicine. To begin with, we introduce the notion of a model in medicine,
and distinguish experimental models from theoretical models. Then we provide an
overview of the extensive array of these models by giving an account of animal
models, which are a kind of experimental model, as well as association models,
causal models, and mechanistic models, which are kinds of theoretical model. Next,
we argue that in order to achieve the goals of medicine we need all of the latter three
kinds of theoretical model—none are redundant. We go on to provide a framework
for systematising the production of theoretical models. Lastly, we present an example
involving benzene and leukemia to illustrate the approach of this chapter.

§2
Models in medicine

The use of models is an important feature of scientific practice. Accordingly, sci-
entific models have received a good deal of attention from philosophers of science.
This attention has tended to focus on general problems such as the nature of models,
how models are related to scientific theories, and how scientists can learn about the
world by using models (Frigg and Hartmann, 2005). The scope of this chapter is
much narrower, concerning only models in medicine. Given this, we shall set aside a
number of important general issues in order to focus on those matters most pertinent
to medicine.

Broadly speaking, we take a model to be a structure that represents some target
system and that is used as a means of drawing conclusions about that target system.
It is difficult to draw conclusions directly about a target system where that target
system is inaccessible or very complicated. Usually, in such cases, it is more straight-
forward to reason instead about a model, since the model may involve considerable
simplifications. The utility of models lies in the fact that conclusions drawn from the
model can carry over to the target system, as long as the model is a sufficiently good
representation of that target system.



As far as models in medicine are concerned, the target system is typically an in-
dividual or population of biomedical interest. The aim is to draw conclusions about
such an individual or population. The conclusions that are relevant to medicine
include claims about associations and causal relationships between exposures and
diseases, as well as claims about biological mechanisms. On the one hand, it is
important to establish associations and causal relationships in medicine since the
goals of medicine include predicting and controlling disease, and it is not possible
to achieve these goals without information about associations or causal relationships
(Russo and Williamson, 2007). On the other hand, it is important also to find out
about biological mechanisms, since another of the goals of medicine is to explain
disease, and it seems that explanations are best given by appealing to mechanisms
(Williamson, 2013).

There have been a number of attempts to classify the different types of model
in science, but none of them seems entirely satisfactory (Mäki, 2001). However, for
our purposes, models in medicine can be usefully classified into two types, viz.,
experimental models and theoretical models.

An experimental model is typically a concrete object that is experimented upon
in order to draw conclusions about the model. This experimentation also licenses
conclusions about a target system, insofar as the experimental model adequately
represents the target system. The experimentation is intended to gather brand new
information about the target system. A theoretical model is a more abstract con-
struct which systematizes information that has already been gathered about the tar-
get system. This systematization allows further conclusions to be drawn from that
information more straightforwardly than would be possible if the information were
not systematized in a model.

We shall shortly fill in the details of this classification by presenting animal mod-
els as examples of experimental models, and then presenting association models,
causal models, and mechanistic models as examples of theoretical models. The aim
is to show exactly how all these models help to achieve the major goals of medicine,
viz., predicting and explaining the occurrence of diseases, as well as providing rec-
ommendations about the control of such diseases.

§3
Animal models

One kind of model is an animal model, e.g., an experimental organism. An experi-
mental organism, at least as far as medicine is concerned, is a non-human organism
that is experimented upon in order to gather information relevant to the prediction,
explanation, and control of disease in humans. A particular experimental organ-
ism is typically chosen on the grounds of its tractability to experimentation and its
suitability to the biomedical phenomenon under investigation. Often, practical con-
siderations also inform the selection of experimental organism, considerations such
as the availability of the organism for investigation (Kohler, 1994).

An experimental organism is a means of gathering biomedical information about
humans in cases where it is not possible to gather this information by directly con-
ducting experiments involving human subjects, e.g., where such experiments would
be unethical or difficult to carry out. As long as the experimental organism is
representative of humans in the appropriate respects, conclusions arrived at by ex-
perimenting upon the organism also license further conclusions about humans. The



conclusions may include claims about associations between exposures and disease,
as well as claims about biological mechanisms.

A famous example of a model from the history of experimental physiology is the
frog, which was studied in order to learn about the biological mechanisms of muscle
contraction in humans and mammals more generally (Holmes, 1993). In this case,
it was difficult to learn about muscle contraction in humans directly, since it was
not possible to carry out the relevant experiments on humans. Instead, the frog was
experimented upon as a representative model of the mechanisms of human muscle
contraction. The conclusions drawn about muscle contraction in frogs were taken
to apply also to muscle contraction in humans, insofar as the frog was appropriately
representative of human muscle contraction.

A further example is the use of experimental organisms in preclinical animal
trials for toxicology testing. Such tests are often conducted using mice or rats in
order to assess the safety or efficacy of a drug before comparative clinical trials in
humans are attempted. A comparative clinical trial in humans is carried out only if
it has been established that the drug is not associated with adverse outcomes in the
experimental organism. This is because establishing the safety of the drug in the
experimental organism is taken to support the conclusion that the drug is safe also
in humans, to a sufficient extent that it is deemed safe for comparative clinical trials
in humans to go ahead.

As these examples make clear, the use of experimental organisms can help with
all of the main goals of medicine. Firstly, experimental organism research can help
with explanation because it allow claims about biological mechanisms in humans to
be established (as long as the experimental organisms are appropriately representa-
tive). Secondly, it can help with predicting and controlling disease since it enables
claims about associations and causal relationships between exposures and disease to
be established (again, as long as the organisms are representative).

There have been a number of debates about experimental organism research.
Claude Bernard (1865) believed that the results of animal experiments were straight-
forwardly applicable to humans, since the differences between animals and humans
were only a matter of degree. However, Hugh LaFollette and Niall Shanks (1997)
have argued that evolutionary theory casts doubt on the claim that it is justified to
extrapolate from experimental organisms to humans, and that this makes experi-
mental organism research morally questionable. Recently, it has been argued that
significant findings in preclinical animal trials rarely lead to successful treatments
in humans (Djulbegovic et al., 2014). Some have suggested that this may be because
many animal trials are poorly conducted (Hirst et al., 2014).

Rachel Ankeny and Sabina Leonelli (2011) have argued that model organisms
should be distinguished from the broader class of experimental organisms. Some
examples of model organisms include the fruit fly, the nematode worm, and certain
strains of mouse. Among other things, Ankeny and Leonelli argue that model or-
ganism research is unlike experimental organism research in that it aims to provide
a detailed account of the model as a whole organism, in terms of its genetics, physi-
ology, evolution, and so on. Arnon Levy and Adrian Currie (2015) have argued that
model organisms are not models in the traditional sense. In traditional modelling,
conclusions about the target system are supported by assessing whether the model is
sufficiently analogous to the target system. In model organism research, they argue,
the models are not analogues of some target system but instead are samples from a
broader class of organisms. They maintain that the conclusions drawn from model
organisms are the result of empirical extrapolation mediated by indirect evidence



concerning the similarity of members of a broader class, where this broader class
includes both the model organism and its target system. This indirect evidence
might be that the broader class of organisms have a shared evolutionary ancestry
or shared phylogeny. Marcel Weber (2005) argues that extrapolations from model
organisms to humans can be reasonably sound, as long as they are based on known
phylogenetic relationships.

This concludes our discussion of animal models. Now we survey the principal
kinds of theoretical model: association models, causal models, and mechanistic
models.

§4
Association Models

One simple kind of theoretical model employed in medicine is an association model.
This charts the main correlations amongst variables measured in a dataset, so that
one can use the observed values of certain measured variables to predict the value
of an unmeasured variable in a new patient.

When applied to diagnosis, for example, an association model might be used
to determine the probabilities of a range of possible diseases, given a particular
combination of symptoms observed in a particular patient. These probabilities can
then be used to motivate a particular treatment decision. An association model for
prognosis, on the other hand, will usually be used to predict severity of disease,
given observed clinical features of the patient and any observed biomarkers of the
disease in question. Either way, the main use of the association model is prediction.

By way of example, we shall present two kinds of association model: a Markov
network model and a Bayesian network model.

From a qualitative point of view, an association model can typically be rep-
resented by an undirected graph, sometimes called a Markov network, with nodes
corresponding to variables and edges corresponding to the significant associations:

C

A B D

Separation in the graph can be used to denote probabilistic independence. In the
above graph, B separates A from C and D, in the sense that all paths from A to
C or D proceed via B. This separation relationship can be used to signify that A
is probabilistically independent of C and D, conditional on B. (A is probabilisti-
cally independent of C and D, conditional on B, written A ⊥⊥ C,D|B, just when
P(a|bcd) = P(a|b) for all values a,b, c,d, of A,B,C,D respectively.) Thus if one
wants to predict A and one can observe B, it would make no sense to also observe
C and D, because these would provide no further information about A. For example,
suppose that a blockage in the main coronary artery (A) raises the probability of a
heart attack (B), which in turn raises the probability of particular electrocardiogram
results (C and D), in such a way that can be charted by the above association model.
Then, to predict that the patient has had a blockage in the main coronary artery, one
need only observe that the patient has had a heart attack, since learning in addition
that the patient had certain electrocardiogram results provides no more information
about the blockage.



From a quantitative point of view, in order to determine the probability of any
variable conditional on any given combination of values of the other variables, one
needs to specify the joint probability distribution, defined over all the variables
of interest. In the above example, one would need to specify P(abcd) for each
combination of values a,b, c,d, of A,B,C,D respectively. In a Markov network this
is achieved by specifying the probability distribution over variables in each clique
of the graph. A clique is a maximal subset of nodes of the graph such that each
pair of variables in the subset is connected by an edge. The cliques in the above
graph are {A,B}, {B,C,D}, so one would need to specify P(ab) and P(bcd) for all
combinations of values a,b, c,d, of A,B,C,D respectively.

Alternatively, one can use a Bayesian network model to represent the joint prob-
ability distribution. A Bayesian network has a qualitative and a quantitative compo-
nent. The qualitative component of a Bayesian network consists of a directed acyclic
graph—i.e., a graph with arrows such that there is no path in the direction of those
arrows from a node to itself. In our example, one possible directed acyclic graph
would be:

C

A B D

The directed acyclic graph needs to be constructed in such a way that each
variable is probabilistically independent of its non-descendants, conditional on its
parents. (A non-descendant of a variable is any node that cannot be reached by a
directed path from the variable in question. A parent of a variable is any node from
which there is an arrow to the variable in question. For example, in the graph below,
A is a parent of B, and B is a parent of C and D. This means that C and D are
descendants of B, and so B is a non-descendent of both C and D.) The quantitative
component of a Bayesian network consists of the probability distribution of each
variable conditional on its parents. The probability of a particular combination of
values of variables is then a product of specified conditional probabilities:

P(abcd)= P(a)P(b|a)P(c|b)P(d|cb).

There are a wide range of algorithms for producing a Bayesian network that repre-
sents the observed probability distribution of a set of variables measured in a dataset
(see, e.g., Neapolitan, 2004). There are also many algorithms for drawing predictions
from a Bayesian network (see, e.g., Darwiche, 2009). Note that the directions of the
arrows in the Bayesian network do not represent causal relationships in this sort of
association model—the arrows are merely a technical device for representing certain
probabilistic independencies.

Another kind of association model, called a classifier , is often used when it is
only necessary to predict the value of a single variable, such as severity of disease.
Many such models have been devised in the fields of machine learning and statistics
(see, e.g., Alpaydın, 2010).



§5
Causal Models

A second kind of theoretical model widely used in medicine is a causal model. A
causal model seeks to chart the causal connections between the variables of interest.
Such a model has three uses: prediction, explanation and control. Like an associa-
tion model, a causal model can be used for prediction, since it can be used to infer
the probability of one variable conditional on others taking certain observed values.
It can also be used to construct rudimentary explanations, since one can explain the
fact that a particular variable takes the value that it does in terms of the causes of
the variable in question taking certain values. Most importantly, perhaps, it can be
used for control: it can be used to predict the effects of interventions and so can be
used to decide how best to intervene in order to control the disease or symptoms of
a particular patient.

A causal model can represent causal connections qualitatively by means of a
directed acyclic graph. E.g.,

C

A B D

In contrast to the arrows of directed acyclic graph presented in the previous section,
which featured in an association model, in a causal model the arrows have signifi-
cance in that they represent direct causal connections. For example, the above graph
says that A is a cause of C, but only via a single pathway that proceeds through B.

A causal Bayesian network or causal network is a Bayesian network model built
around a causal graph such as the above. Formally, it is a Bayesian network, but now
the arrows in the graph have causal significance. Because it is a Bayesian network,
it can be used to define a joint probability distribution over the variables in the
graph, and thus can be used for prediction. But because the arrows have causal
significance, it can also be used to predict the effects of interventions, as follows (see
Pearl, 2000). When an intervention is performed to fix a variable to a certain specific
value, one modifies the Bayesian network by deleting all arrows into this variable in
the graph, and updating the conditional probability distribution of each variable
conditional on its parents in the graph to take into account the new value of the
intervened upon variable. Then this modified network can be used to infer changes
to the probabilities of variables of interest, given the intervention. For example,
intervening to fix the variable C to a specific value c will lead to a modified network
in which the arrow from B to C is deleted:

c

A B D

There are other sorts of causal model besides causal Bayesian networks (Illari
et al., 2011); such models tend to portray causal processes in a similarly schematic
way, representable by means of a directed acyclic graph. The explanations offered by
such models can be superficial in that they only pick out key variables—milestones



on the causal pathways to the effect in question—rather than the detailed structure of
the underlying mechanisms that are responsible for the phenomena to be explained.

§6
Mechanistic Models

Mechanistic models are used to generate explanations that are less superficial than
the explanations yielded by causal models, in that they tend to include a richer set
of explanatory features. There are two principal sorts of mechanism. A complex-
systems mechanism consists of entities and activities organised in such a way that
they are responsible for some phenomenon of interest (Machamer et al., 2000; Il-
lari and Williamson, 2012). Examples include the mechanism for the circulation of
the blood (which includes the features responsible for operation of the heart as well
as the organisation of the other components of the cardiovascular system), and the
mechanism in an artificial pacemaker for producing electrical impulses to stimulate
the heart (which includes its power source, clock, sensors and pulse generator, and
the features of their arrangement that ensure its correct operation). On the other
hand, what one might call a mechanistic process is a spatio-temporally contiguous
process along which a signal is propagated (Reichenbach, 1956; Salmon, 1998). Ex-
amples include the process of an artificial pacemaker’s electrical signal being trans-
mitted along a lead from the pacemaker itself to the appropriate part of the heart,
and the process by which an airborne environmental pollutant reaches the lining of
the lung. While complex-systems mechanisms are often multi-level—e.g., involving
coordinated activity at the levels of the organism, the organ, the cell and the gene—
mechanistic processes usually take place at a single level. Furthermore, whereas
complex-systems mechanisms typically operate in a regular way, repeatedly produc-
ing the phenomenon of interest, mechanistic processes are often one-off, transmitting
a single signal on a single occasion. In either case, however, the mechanism’s struc-
ture and its organisation—particularly its spatio-temporal organisation—tends to be
crucial to its operation.

A mechanistic explanation will often appeal to both sorts of mechanism. An
explanation of the circulation of the blood in a particular individual may appeal to
the complex-systems mechanism by which the heart pumps the blood, as well as
the complex-systems mechanism of the individual’s pacemaker and the mechanistic
process linking the two. An explanation of a failure of blood to circulate may appeal
to the same mechanisms, any faults of these mechanisms, and any pathophysiological
mechanistic processes that these faults give rise to.

Mechanistic models are used to model the salient features of mechanisms in
order to explain phenomena of interest. They differ from causal models in that
they appeal to a richer set of features: entities, activities, organisation, hierarchical
structure, processes etc., instead of simply variables or events. Some of these features
cannot be easily incorporated into a causal model—spatio-temporal organisation
and hierarchical structure, for example, are not naturally represented using the nodes
and arrows that typically characterise causal models. However, these features are
often essential components of an adequate explanation. Only in cases where these
features are not essential to the explanation will an explanation generated from a
causal model be adequate, in the sense that it picks out all the main features of an
adequate mechanistic explanation (Williamson, 2013).

We noted above that a single mechanistic model may seek to represent two
kinds of mechanism: complex-systems mechanisms and mechanistic processes. In



Figure 1: Caspases coordinate demolition of key cellular structures and organelles
(Taylor et al., 2008).

addition, mechanistic models themselves can be classified into two kinds: qualitative
and quantitative.

Qualitative mechanistic models fill textbooks and research papers in medicine.
They usually take the form of diagrams which highlight the main features of the
mechanism. For example, Fig. 1 portrays a part of the mechanism for apoptosis (cell
death). Increasingly, animations are employed as qualitative mechanistic models, in
order to portray activities and processes developing over time. Agent-based models
are another kind of qualitative mechanistic model. Such a model represents a target
system, e.g., a human population, in terms of a large numbers of similar individuals
that interact in a restricted set of ways, e.g., coloured cells in a grid that influence
the colours of their neighbours. Computer simulations are used to determine the
typical behaviour of such a system. To the extent that this simulated behaviour
tallies with some observed phenomenon, such as the spread of a contagious disease,
the agent-based model can be used to explain the occurrence of phenomenon.

Qualitative mechanistic models can be used to point to the underlying structure
of reality that is responsible for producing the phenomenon to be explained, but
normally cannot, on their own, explain why certain quantities within the mechanism
take the values that they do, or explain the probability of a certain phenomenon. For
this sort of explanation, a quantitative mechanistic model is required. A quantitative
mechanistic model might, for example, consist of a diagram that portrays the quali-
tative structure of the mechanism, together with differential equations which can be
used to model the changes in certain quantities over time. Another example of a
quantitative mechanistic model is a recursive Bayesian network, which can represent
a hierarchically structured mechanism by means of a collection of causal Bayesian



networks, and which can be used to infer the probability of variables in the mecha-
nism, given the observed values of other variables (Casini et al., 2011; Clarke et al.,
2014b).

§7
Combinations of Theoretical Models

Given this extensive array of theoretical models—association, causal and mech-
anistic—, two questions arise. Do we really need all these kinds of model in
medicine? If so, is there any way of systematising and unifying the production
of these models? We will argue in this section that both these questions should be
answered affirmatively.

Do we need all these models? As we hope to have made clear in the above discussion,
different kinds of theoretical model are put to different uses. Association models are
for prediction; causal models are for prediction, explanation and control; mechanis-
tic models are primarily for explanation. One might think, then, that in medicine we
should strive to produce good causal models, which can be put to the widest variety
of uses, and we should avoid association and mechanistic models. There are three
main reasons why this is not a sensible suggestion.

First, as we have mentioned, causal models generate more impoverished expla-
nations than do mechanistic models. Causal models abstract away from the details
of mechanistic structure, generating explanations that invoke only variables and the
‘thin’ causing relation, i.e., explanations that invoke only claims of the form ‘X causes
Y ’. Mechanistic models, on the other hand invoke entities; ‘thick’ activities such as
dilating and osmosing (i.e., a rich variety of kinds of causing); organisational features
such as the structure and location of the cell wall; constitutive relations between
components at different levels of a hierarchical mechanism; and spatio-temporally
contiguous processes. Therefore, mechanistic models are far from redundant in
situations in which a detailed explanation is required.

Second, causal and mechanistic models tend to be less reliable than associa-
tion models. It is relatively easy to build an association model from some given
data: one merely needs to model the joint probability distribution that generates
the data. Often, in cases in which there are ample, good quality data and no rea-
son to suspect bias in the way the data were sampled, one simply models the joint
distribution of the data and treats that data distribution as an approximation to
the data-generating distribution. In a causal model, however, one needs not only
to model the associations in the data but also the causal relationships amongst all
the measured variables. Determining causal relationships is a harder problem than
determining associations, so a causal model will normally be more speculative than
an association model. Harder still is the task of establishing the details of the un-
derlying mechanisms. This has long been the primary goal of biomedical science,
and while great progress has been made, many mechanistic models are either very
speculative or ‘gappy’, with important features missing. This is less the case with
a causal model: one needs to establish causal connections between those variables
that are in the model, but there is no requirement to include in the model every
variable that represents a component of one of the pertinent mechanisms. A causal
model that omits some salient variables can still generate useful inferences for pre-
diction and control, and capture some explanatory factors. In sum, there is a sense



in which association models are normally less speculative than causal models, which
are in turn normally less speculative than mechanistic models. Association models,
in particular, retain an important place in medical research.

Third, association and mechanistic models are epistemically prior to causal mod-
els. This is a consequence of the following epistemological thesis, put forward by
Russo and Williamson (2007). In order to establish a causal claim in medicine, one
normally needs to establish two things: first that the putative cause and putative
effect are appropriately correlated; second that there is some underlying mechanism
which links the cause to the effect in an appropriate way and which explains this
correlation.

Some points of clarification. First, the latter two claims are existence claims: in
order to establish causality one normally needs to establish the existence of a cor-
relation and the existence of a mechanism, not the precise extent of the correlation
nor all the details of the mechanism (Darby and Williamson, 2011, §2). Second,
the mechanism involved might be a complex-systems mechanism, or a mechanistic
process, or a combination of the two—whatever connects the putative cause to the
putative effect in such a way that can explain occurrences of the latter. Third, this
thesis concerns the evidence required to establish a causal claim, i.e., to settle the
question according to the standards of the community, in such a way that warrants
a high degree of confidence that the causal claim will not be overturned by any new
evidence.

This epistemological thesis is plausible for the following reason. Recall that in
medicine, causal claims are used for prediction, explanation and control. If the
putative cause and putative effect were not appropriately correlated, one would not
be predictive of the other, and one would not be able to intervene upon the cause
to control the effect. Moreover, if there were not some mechanism which links the
cause to the effect in an appropriate way, one would not be able to invoke the
cause to explain the effect. Why is establishing a correlation not normally sufficient
on its own for establishing causality? This is because many correlations are best
explained by relationships other than causal connection—such as semantic, logical
or mathematical relationships—or by confounding, bias or chance. Mechanistic
evidence steers the causal discovery process towards those connections that are
genuinely causal (Clarke et al., 2014a). Investigations of cases of causal discovery
that provide further evidence in favour the epistemological thesis include Clarke
(2011), Gillies (2011), Darby and Williamson (2011) and Russo and Williamson (2011,
2012).

This epistemological thesis applies to each causal claim in a causal model. One
therefore normally needs to establish the pattern of correlations, as represented by an
association model, as well as the pattern of mechanistic connections, as represented
by a mechanistic model, in order to establish the qualitative causal connections
posited by the causal model. Association and mechanistic models are epistemically
prior to causal models, since one needs to establish features of the former two
kinds of model in order to establish the claims made by the latter kind. (Since the
epistemological thesis merely requires one to establish existence of a correlation and
a mechanism for each causal connection, in order to determine the pattern of causal
relationships one only needs to establish the pattern of correlations and the pattern
of mechanisms, not other features of association and mechanistic models.)

For these three reasons, one should not seek to abandon association and mech-
anistic models in favour of causal models.



How can the production of models be systematised? The third of the above three rea-
sons suggests one way of systematising and unifying the production of these models.
First, consider an idealised case in which the available evidence is so extensive and
of such high quality that it allows one to establish the full pattern of associations
posited by an association model and the full pattern of mechanisms posited by a
qualitative mechanistic model. Then one is in a position to establish the full pattern
of causal claims made by a causal model, as well as the quantitative component
of the causal model, which determines the joint probability distribution over the
variables in the model. Having specified the quantitative component of a causal
model, one is then in a better position to augment a qualitative mechanistic model
by adding quantitative information.

Of course, in practice it is almost never the case that evidence is so plentiful and
of such high quality as to establish every association and every mechanistic connec-
tion. In practice, evidence is often inconsistent, some datasets are extensive, others
not, and items of evidence are of very varying quality. Thus some intermediate
steps are needed to evaluate the relative merits of the items of evidence, and to de-
termine which claims of association and mechanism can be considered established,
and which others are merely plausible or conjectural. It is possible, then, to establish
some causal claims on the basis of what can be established in an association model
and a mechanistic model. Other causal claims in the causal model will more tenta-
tive, in proportion the uncertainty of the corresponding association and mechanism
claims.

This epistemological picture is depicted in Fig. 2. Evidence of correlation (of
which datasets are key) needs to be evaluated and graded with regard to the sup-
port it provides for associations. For example, datasets arising from larger numbers
of observations will normally be more highly graded, and experimental studies will
normally be favoured over observational studies. Evidence of mechanisms informs
this evaluation process because such evidence is crucial to determining whether tri-
als are well-designed and their results correctly interpreted (Clarke et al., 2014a).
This will lead to an association model. On the other hand, evidence of mechanisms
(which can also be gained from basic lab research, imaging, autopsy etc.) will need
to be evaluated in order to construct a qualitative mechanistic model. Here, evi-
dence of correlation is important in identifying the most salient components in the
mechanisms and in determining the net effect of several interacting mechanisms or
components of a mechanism. With an association model and a qualitative mechanis-
tic model in place, one is in a position to construct a causal model and to determine
whether each claim made by the model can be considered established or more con-
jectural. The quantitative causal causal model will go on to inform a quantitative
mechanistic model.

The Bayesian network family of models can be used as a unifying formal frame-
work that dovetails with this epistemological picture. As discussed above, a standard
Bayesian network can be used as an association model. One way of constructing a
Bayesian network from a range of datasets is provided by the objective Bayesian
network approach: an objective Bayesian network represents the probability distri-
bution that best fits the range of data available, where this optimal distribution is
determined by the principles of objective Bayesianism (Williamson, 2005; Nagl et al.,
2008). Next, a causal Bayesian network can be constructed from the Bayesian net-
work association model and a qualitative mechanistic model. Finally a recursive
Bayesian network might be employed as a quantitative mechanistic model.

We should conclude this section by noting that the unified account presented
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Figure 2: Relationships amongst theoretical models.

above is not the standard way to approach the problem. Where causal Bayesian
networks are advocated, it is usually in the context of a data mining approach: the
idea is to learn a causal Bayesian network directly from data, in a similar way to
the way in way association models are often constructed directly from data (e.g.,
Spirtes et al., 1993). In contrast, we advocate developing a qualitative mechanistic
model on the way to producing a causal model. This is because we hold that causal
relationships track mechanistic connections as well as associations, and that one
needs to establish that a posited causal connection does indeed track these two
things before one can consider the causal claim itself to be established.

§8
An example: Benzene and Leukemia

One example that illustrates the approach of this chapter concerns benzene and
leukemia. Benzene is a clear and highly flammable liquid. Among other things,
benzene is added to gasoline in order to reduce engine knocking, and it is also
used in the manufacture of organic chemicals. A number of studies established
a relationship between benzene exposure and leukemia in humans (Infante et al.,
1977; Rinsky et al., 1981). These results are corroborated by studies in mice and
other rodents (Cronkite et al., 1984; Goldstein et al., 1982). The association between
benzene exposure and leukemia can be charted in an association model, which can
be used to predict the disease given the environmental exposure. The relationship
may even be charted in a causal model, e.g., a causal Bayesian network, insofar as the



relationship is causal. But such a causal model could not yet provide anything other
than an impoverished explanation, since it claims only that there exists a mechanism
linking benzene exposure and leukemia, rather than providing the details of that
mechanism.

This is an example of a more general problem in epidemiology, which is the
study of health and disease in defined populations. A key working hypothesis in
epidemiology is that diseases are often the result of environmental exposures. How-
ever, despite much epidemiological research, the biological processes linking many
environmental exposures and diseases remain unknown. This is the case despite
the technological advances in measuring certain biomarkers, i.e., biological mark-
ers of events at the molecular and physiological levels. Unfortunately, it is precisely
the details of these biological processes that are required in order to provide less
impoverished explanations of the occurrence of disease.

Molecular epidemiology is a response to this state of affairs (Schulte and Per-
era, 1993). Molecular epidemiology is a branch of epidemiology that makes use
of advances in biomarker technology in order to elucidate the biological mecha-
nisms between environmental exposures and diseases. An important methodology
in molecular epidemiology involves utilizing complementary studies in order to val-
idate biomarkers that mediate between environmental exposures and disease out-
comes (Vineis and Perera, 2007). For example, some studies may provide informa-
tion associating a certain biomarker to a particular environmental exposure. Other
studies may provide information relating a disease outcome to the same biomarker.
By bringing together the results of these studies, the disease may be associated with
the environmental exposure while at the same time providing some insight into the
biological processes responsible for this association by highlighting the intermediate
biomarkers (Russo and Williamson, 2012).

In the case of benzene and leukemia, studies revealed that certain chromosome
aberrations were predictive of cancer in humans (Bonassi et al., 2000). In other
case-control studies, those same chromosome aberrations were seen to be more fre-
quently present in leukemia patients that had been exposed to benzene (Zhang et al.,
2007). These results are corroborated by animal models (see, e.g., Eastmond et al.,
2001). Not only, then, was a chain of associations established between benzene and
leukemia but also some insight was provided into the biological mechanism under-
lying this chain, viz., the role of chromosomal aberrations (Vineis and Perera, 2007).
These insights can be represented in a mechanistic model, and the model may be
used to provide a less impoverished explanation of leukemia in terms of exposure to
benzene. Furthermore, details of the mechanism underlying the association between
benzene exposure and leukemia, along with the details of the association, can all be
charted in a quantitative mechanistic model.
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