Dr. Chieh Hsu, Eastern ARC Research Fellow, School of Biosciences, University of Kent
Wednesday 1st April, 4.00 p.m., Stacey Lecture Theatre 1
To conduct and maintain specific functions of membrane compartments in the cell, the identity of a specific membrane region needs to be established before assembling functional molecular machineries. Small GTPases, amount other major molecular families, define the identity of membrane regions by forming domain structures in processes such as cell polarisation and endocytic cargo trafficking. It has been widely proposed that these membrane domains are formed and maintained via positive feedback loops – the membrane bound form of the small GTPases enhances the recruitment of the same form onto the surrounding membrane. Supporting this hypothesis, several mathematical models have been proposed to describe how loops result in domain structures. Yet, there remains a missing link between quantitative models and qualitative findings from experimental data. Synthetic approaches provide simplified and controllable systems by building up molecular processes in the cell based on theoretical models. With this strategy, one can pinpoint the core reactions/elements and quantify the determinants in a process. In this talk, I will discuss the current models and their limitations as well as present a design with synthetic approaches to study feedback loops in membrane domain formation.