Communication and self control of a pension saver’s financial risk

Jens Perch Nielsen, Munir Hiabu, Russell Gerrard, Ioannis Kyriakou
This research is part of the grant ‘Minimising Longevity and Investment Risk while Optimising Future Pension Plans’ from the Actuarial Research Centre (ARC) of the Institute and Faculty of Actuaries (IFoA, UK).
Merton (2014):

Our approach to saving is all wrong.

- Monthly income, not net worth.
- Do not make employees smarter about investments. We need smarter communication.
- Balancing the portfolios.
 - Take risk out of the portfolio once the goal is achieved. Avoid achieving goal only to fall below if markets go down.
 - Minimum guaranteed income.
In this first talk of the project, we only consider the simple lump sum case.

Hence, we only consider the last two of Merton’s points.
We consider four different people:

• Lisa: The risk taker
• John: The moderate risk taker
• Susan: The moderate risk averse
• James: The risk averse
In a power utility world, Lisa, John, Susan, James would have parameters

\[\rho = -0.25, -1, -4, -10, \]

respectively.
In a non-hedged power utility world without guarantees and other safety measures the investment in stocks would be

<table>
<thead>
<tr>
<th></th>
<th>Lisa</th>
<th>John</th>
<th>Susan</th>
<th>James</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage in Stocks</td>
<td>75%</td>
<td>46%</td>
<td>19%</td>
<td>8%</td>
</tr>
</tbody>
</table>
We will suggest an approach where a simple question to Lisa, John, Susan and James will tell us what kind of risk they want.
We hedge by optimizing the median return given some guarantee.
All numbers are in 2017 - values, i.e., adjusted for inflation.
In later work to be presented next May 2018, we will argue how such an inflation-hedged lower bound is possible in our pension universe.
• We only consider the simple lump-sum case.
• Lisa, John, Susan and James want to invest £10,000.
• 30 years of investment
THE COMMUNICATION

• Your investment has a best-case (BC) and a worst-case (WC).

• You will never drop below your WC.

• Half-the-time you will get the BC and the other half-of-the-time you will get an investment result between WC and BC.

• Use a slider to see which WC suits you best.
 For every WC there is a link to a BC.
 And the BC increases when the WC decreases.
Which WC will the risk taker Lisa pick?

- £3,900
- £6,400
- £9,100
Which WC will the risk taker Lisa pick?

- £3,900
- £6,400
- £9,100
What is the corresponding BC?

- £12,320
- £15,320
- £16,470
What is the corresponding BC?

- £12,320
- £15,320
- £16,470
Lisa’s pick:

Goal: £16,470

Forecast: Half of the times you will achieve this goal.

More is not possible. Guarantee: £3,900.
Lisa’s median in the un-hedged world, where she holds 75% in stocks would be

\[
\text{Median} = £13,496
\]

With the new hedging strategy

Lisa’s median = £16,470

- Lisa has increased her median by £2,974.
- She also has a guarantee of £3,900 (Compare to no guarantee before)
- The price is no upside above £16,470.
In other words: Lisa has sold her upside above £16,470 to secure a guarantee and a higher median.
What did the others pick....
<table>
<thead>
<tr>
<th></th>
<th>Lisa</th>
<th>John</th>
<th>Susan</th>
<th>James</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC (Guarantee)</td>
<td>£3,900</td>
<td>£6,400</td>
<td>£9,100</td>
<td>£9,700</td>
</tr>
<tr>
<td>BC (Goal)</td>
<td>£16,470</td>
<td>£15,320</td>
<td>£12,320</td>
<td>£10,940</td>
</tr>
</tbody>
</table>
Note that Lisa, John, Susan and James self-selected their risk-profile through a simple exercise.
Do Lisa, John, Susan and James lose anything from this simple communication and hedging strategy?
Not really!
Look at this certainty equivalent table in terms of utility theory.
<table>
<thead>
<tr>
<th>Investors</th>
<th>Optimal Strategy</th>
<th>Hedged Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE</td>
<td>CE</td>
</tr>
<tr>
<td>Lisa</td>
<td>£12,756</td>
<td>£12,020</td>
</tr>
<tr>
<td>John</td>
<td>£11,643</td>
<td>£11,263</td>
</tr>
<tr>
<td>Susan</td>
<td>£10,627</td>
<td>£10,415</td>
</tr>
<tr>
<td>James</td>
<td>£10,280</td>
<td>£10,169</td>
</tr>
</tbody>
</table>

Certainty Equivalent (CE): For which certain amount would you exchange your uncertain terminal lump sum.
Now let us go back to the old world of un-hedged utility optimisation.
What can financial miss-understanding cost?
How much would it cost Lisa if the financial assessment thought she was James?

- Between 5% and 10%
- Between 10% and 15%
- Between 15% and 20%
How much would it cost Lisa if the financial assessment thought she was James?

- Between 5% and 10%
- Between 10% and 15%
- **Between 15% and 20%**
How much would it cost James if the financial assessment thought he was Lisa?

- Between 10% and 20%
- Between 30% and 40%
- Between 70% and 80%
How much would it cost James if the financial assessment thought he was Lisa?

- Between 10% and 20%
- Between 30% and 40%
- **Between 70% and 80%**
Certainty Equivalent (CE): For which certain amount would you exchange your uncertain terminal lump sum.

<table>
<thead>
<tr>
<th></th>
<th>Lisa Plan</th>
<th>John Plan</th>
<th>Susan Plan</th>
<th>James Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisa CE</td>
<td>£12,756</td>
<td>£12,326</td>
<td>£11,124</td>
<td>£10,536</td>
</tr>
<tr>
<td>John CE</td>
<td>£11,023</td>
<td>£11,643</td>
<td>£11,023</td>
<td>£10,516</td>
</tr>
<tr>
<td>Susan CE</td>
<td>£6,156</td>
<td>£9,268</td>
<td>£10,627</td>
<td>£10,437</td>
</tr>
<tr>
<td>James CE</td>
<td>£2,388</td>
<td>£5,958</td>
<td>£9,879</td>
<td>£10,280</td>
</tr>
</tbody>
</table>

20 July 2017
Now back again to the new Communication and Hedging Strategy...

What does the hedging strategy look like?
The hedging strategy is quite simple:

- Every year\(^1\), put your **initial amount** (here: £10, 000) **scaled by the probability that you do not hit the boundaries** (WC and BC) into a risky fund.
- Put the rest into a risk-free fund.

\(^1\)Technically, the strategy requires continuous trading.
Theorem. The optimal exponential hedge strategy

Assume no inflation, if $WC < 10,000 < BC$, then the optimal strategy π^*, i.e., the amount to put into the risky fund, is

$$\pi^*(t) = 10,000 \times P[WC < X(T) < BC | X(t)]$$
Conclusion

We have developed a pension system which is easy to understand:

• Risk is balanced via selecting a best-case and a worst-case.
• The pension saver is in control and understands the risk he is taking.
• In practice, one can develop an interface where the pension saver picks his risk-profile digitally without the need of meeting a financial adviser.
Research Outlook

Accumulation Phase

• Market timing
• A risk-free inflation fund

Decumulation Phase

• Monthly income, not net worth

In both cases

• A new risk sharing principle
The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].