Lifetime Dependence Modelling using a Generalized Multivariate Pareto Distribution

Daniel Alai Zinoviy Landsman

Centre of Excellence in Population Ageing Research (CEPAR)

School of Mathematics, Statistics & Actuarial Science
University of Kent

Department of Statistics
University of Haifa

18 July 2017
Plan

- Introduction

- Multivariate Generalized Pareto Distribution
 - Parameter Estimation
 - Optimal Quantile Selection

- Bulk Annuity Pricing

- Conclusion
Introduction

- Motivation: Provide the means to assess the impact of dependent lifetimes on annuity valuation and risk management.
 - Basis: systematic mortality improvements induce dependence.
 - Could reframe as cohort, or pool of similar-risks, analysis.

- Investigate a multivariate generalized Pareto distribution because:
 - Interesting family with potential for more flexible dependence.
 - More suitable for older-age dependence due to presence of extremes.

- Resolve estimation in the presence of truncation (in a variety of ways).
 - Moment-based estimation (applied to the minimum observation).
 - Quantile-based estimation (with optimal levels).

- Assess the impact of dependence on the risk of a bulk annuity.
 - Dependence increases the risk.
Assume m pools of n lives. Suppose the lives within a pool are dependent.

Let $X_{i,j}$ be the lifetime of individual i in pool j.

We apply the following model for lifetimes:

$$X_j \sim h(\theta, \lambda_S), \quad \forall j,$$

where $\lambda_S = \sum_{i=1}^{n} \lambda_i$.

- This means pools are independent.
 - Each pool is one draw from the multivariate distribution.
- The magnitudes of m and n determine the application.
 - $n = 2 \Rightarrow$ joint-life products.

\[\downarrow \text{Small } m \text{ or } n \text{ might pose difficulties!} \]
Multiply Monotone Generated Distributions

Let $X = (X_1, \ldots, X_n)$ be a multivariate random vector with strictly positive components $X_i > 0$ such that its joint survival function is given by

$$P(X_1 > x_1, \ldots, X_n > x_n) = h\left(\sum_{i=1}^{n} \lambda_i x_i\right), \quad x_i \geq 0,$$

for $\lambda_i > 0, \forall i$, where h is d-times monotone, $d \geq n$. That is, for $k \in \{1, \ldots, d\}$,

$$(-1)^k h^{(k)}(x) \geq 0, \quad x > 0.$$

Two well-known examples include the Pareto and Weibull distributions.

{Pareto} \quad h(x) = (1 + x)^{-\frac{1}{\theta}}, \quad x \geq 0, \quad \theta \in \mathbb{R}^+,

{Weibull} \quad h(x) = \exp(-x^{\frac{1}{\theta}}), \quad x \geq 0, \quad \theta \in [1, \infty).

The Pareto generator resembles the Clayton copula generator $(1 + \theta x)^{-1/\theta}$.

The Weibull generator is just the Gumbel copula generator.
The multiply monotone condition on h ensures we have admissible densities for all possible subsets of X!

For example, the densities of X and X_i are given by,

\[f_X(x_1, \ldots, x_n) = (-1)^n \lambda_1 \cdots \lambda_n h^{(n)} \left(\sum_{i=1}^{n} \lambda_i x_i \right) \geq 0, \quad x_i > 0, \]

\[f_i(x_i) = (-1)\lambda_i h^{(1)}(\lambda_i x_i) \geq 0, \quad x_i > 0. \]

Survival functions are always given by h:

\[P(X_i > x_i, X_j > x_j) = h(\lambda_i x_i + \lambda_j x_j), \quad x_i, x_j \geq 0, i \neq j, \]

\[P(X_i > x_i) = h(\lambda_i x_i), \quad x_i \geq 0. \]

As such, we require that $h(0) = 1$ and $\lim_{x \to \infty} h(x) = 0$.

There is a clear link to Archimedean survival copulas.
Examples of h

Pareto, $\theta \in \left\{ \frac{1}{4}, \frac{1}{2}, 1, 2 \right\}$.

Clayton, $\theta \in \left\{ \frac{1}{4}, \frac{1}{2}, 1, 2 \right\}$.

Gumbel, $\theta \in \left\{ 1, 2, 4, 8 \right\}$.

Frank, $\theta \in \left\{ -4, -1, 1, 4 \right\}$.

AMH, $\theta \in \left\{ -\frac{19}{20}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right\}$.

Expo-Pareto, $\theta \in \left\{ 1, 2, 4, 8 \right\}$.
Bivariate Marginal Correlations

As well as exhibiting either light or heavy tails, each h produces a different correlation structure between marginals.

\[\text{Not surprisingly, heavy tailed examples permit only positive correlation, whereas light tailed distributions allow for negative correlation.} \]

For the Pareto and Clayton, \(\text{Corr}(X_i, X_j) = \theta, \) for \(i \neq j \).

For the remaining examples, the bivariate correlation involves either the incomplete gamma, dilogarithm or trilogarithm function.

\[
\Gamma(s, x) = \int_x^\infty t^{s-1} e^{-t} dt,
\]

\[
\text{Li}_2(z) = \int_z^0 \frac{\ln(1 - t)}{t} dt,
\]

\[
\text{Li}_3(z) = -\int_z^0 \frac{\text{Li}_2(t)}{t} dt.
\]

\[\text{More on correlation later, after we’ve addressed truncation!} \]
Parameter Estimation

We wish to make use of pool statistics to estimate model parameters.

- Mean and Variance;
- Minimum and Maximum;
- Quantiles!

⇒ Within-pool dependence is a clear obstacle, but not the only one!

⇒ We anticipate truncated observations.

We require some theoretical results before we can proceed.
Mixed Truncated Moments

Theorem (Mixed Moments)

Consider \(\mathbf{X} = (X_1, \ldots, X_n) \) with distribution generated by \(d \)-times monotone \(h \), \(d \geq n \). Let \(\tau X_i = \{X_i|X > \tau\} \). If finite,

\[
\mathbb{E}\left[\prod_{i=1}^{n} \tau X_i^{k_i} \right] = h(\lambda S \tau)^{-1} \sum_{j_1=0}^{k_1} \cdots \sum_{j_n=0}^{k_n} h(-\sum_{i=1}^{n} j_i) (\lambda S \tau) \prod_{i=1}^{n} \frac{(-1)^j \tau^{k_i-j_i} k_i!}{(k_i-j_i)! \lambda_i^{k_i}},
\]

where \(\lambda_s = \sum_{i=1}^{n} \lambda_i \), \(k = \sum_{i=1}^{n} k_i \), \(k \in \{1, 2, \ldots, d\} \), and \(k_i \in \{0\} \cup \mathbb{Z}^+ \); furthermore, where \(h^{(-k)}(x) = - \int_{x}^{\infty} h^{(-(k-1))}(y)dy \) and \(h^{(0)}(x) = h(x) \).

- Mean, variance and covariance results are especially relevant.
- This result can be used to find the moments of the minimum (and maximum).

⇒ Let’s take a look at the bivariate correlation plots.
 - They depend on \(\tau \)!
Correlation Plots for $\tau \in \{0, 1, 2, 5\}$

Pareto

Clayton

Gumbel

Frank

Ali-Mikhail-Haq

Exponential-Pareto
Comments on Mean-Variance Matching

Mean, variance and covariance results enable us to determine the expectation of the sample (pool) mean and variance.

- Averaging these, respectively, across pools yields \(\hat{\theta} \) and \(\hat{\lambda}_S \).

Consider the Pareto distribution with \(\lambda_i = \lambda, \forall i \); we have

\[
\mathbb{E}[a_1(\tau X_j)] = \frac{\lambda^{-1} + \tau(n + \theta^{-1} - 1)}{\theta^{-1} - 1},
\]

\[
\mathbb{E}[\tilde{m}_2(\tau X_j)] = \frac{(\lambda^{-1} + \tau n)^2}{(\theta^{-1} - 1)(\theta^{-1} - 2)},
\]

where \(a_1 \) and \(\tilde{m}_2 \) denote the unbiased sample (pool) mean and variance.

Note the relationship with pool size \(n \).

- Inseparable from the truncation point \(\tau \).
- No indication that large \(n \) will produce more accurate estimation.
- Perhaps ideal for a portfolio of many joint-life annuities.
Comments on Minimum-Maximum Matching

Sample moments of minima (or maxima) yield estimates $\hat{\theta}$ and $\hat{\lambda}$.

Focus on minimum, since it looks much more promising.

Consider the Pareto distribution with $\lambda_i = \lambda$, $\forall i$; we have

$$\mathbb{E}[a_1(\tau X_{(1)})] = \frac{\lambda^{-1}/n + \tau \theta^{-1}}{\theta^{-1} - 1},$$

$$\mathbb{E}[\tilde{m}_2(\tau X_{(1)})] = \frac{\theta^{-1}(\lambda^{-1}/n + \tau)^2}{(\theta^{-1} - 1)^2(\theta^{-1} - 2)}.$$

Contrast the relationship with pool size n to the mean-variance matching.

This time distinct from τ and indicative of more accuracy as $n \uparrow$.

Perhaps ideal for a portfolios of employer-based pension schemes.
Quantile Matching

The previous two estimation procedures require sufficiently light tails!
- For the Pareto, \(0 < \theta < \frac{1}{2}\).
- Quantile-based estimation procedures do not impose this restriction!

We apply quantile matching to the sample of pool minima!

\[
q_{\tau X(1)}(p) = \frac{h^{-1}((1 - p)h(\lambda_S \tau))}{\lambda_S}.
\]

- Our estimation procedure requires three \{optimal\} levels \(p_1, p_2, \text{and } p_3\).
Consider a sample of iid X_1, \ldots, X_n with density $f(x, \vartheta)$, $\vartheta \in \Theta \subset \mathbb{R}$, differentiable with respect to ϑ for almost all $x \in \mathbb{R}$.

The Fisher information about ϑ contained in statistic $T_n(X_1, \ldots, X_n)$ is

$$I_{T_n}(\vartheta) = \int_{\mathbb{R}} \left(\frac{\partial \ln f_{T_n}(x, \vartheta)}{\partial \vartheta} \right)^2 f_{T_n}(x, \vartheta) dx.$$

A higher Fisher information is indicative of more precise estimation.

The Fisher information contained in the sample quantiles, $I_{\hat{q}(p_1), \ldots, \hat{q}(p_k)}(\vartheta)$, $0 = p_0 < p_1 < \ldots < p_{k+1} = 1$, is asymptotically equal to $nI_k(p_1, \ldots, p_k)$;

$$I_k(p_1, \ldots, p_k) = \sum_{i=0}^{k} \frac{(\beta_{i+1} - \beta_i)^2}{p_{i+1} - p_i},$$

where $\beta_i = f(q(p_i), \vartheta) \partial q(p_i) / \partial \vartheta$, $\forall i$ and $\beta_0 = \beta_{k+1} = 0$.

⇒ Find optimal levels p_1^*, \ldots, p_k^*, such that I_k is maximized!
The Pareto Distribution

The optimal quantile selection procedure depends heavily on \(h \).

Let us focus on the Pareto distribution.

We want to estimate \(\theta \) (with \(\lambda_S \) unknown) using two quantiles (\(p_1 < p_2 \)).

\[
I_2(p_1, p_2) = \frac{\beta_1^2}{p_1} + \frac{(\beta_2 - \beta_1)^2}{p_2 - p_1} + \frac{\beta_2^2}{1 - p_2}.
\]

For the Pareto distribution, and letting \(\tilde{p}_i = 1 - p_i \), we obtain

\[
\beta_i = \theta \cdot \tilde{p}_i \cdot \ln \tilde{p}_i.
\]

The objective function may be rewritten as follows

\[
I_2(p_1, p_2) = \theta^2 \left(\frac{\tilde{p}_1 \ln^2 \tilde{p}_1}{p_1} + \frac{\tilde{p}_2 \ln \tilde{p}_2 - \tilde{p}_1 \ln \tilde{p}_1}{p_2 - p_1} + \tilde{p}_2 \ln^2 \tilde{p}_2 \right).
\]

Maximizing this does not require knowledge of \(\theta \) and \(\lambda_S \)!

Furthermore, it does not even depend on \(\tau \)!
Finding p_1^* and p_2^* for the Pareto Distribution

$p_2 = 0.25$.
$p_2 = 0.50$.
$p_2 = 0.75$.

$p_2 = 0.90$.
$p_2 = 0.95$.
$p_2 = 0.99$.

The optimal levels are $p_1^* = 0.6385$ and $p_2^* = 0.9265$.

D. H. Alai (CEPAR, Kent)
Finding p_3^*

Armed with $\hat{\theta}$, we consider the optimal quantile level p_3 used to estimate λ_5.

Following the same method, optimal p_3 is found by maximizing

$$\tilde{p}_3 \left(1 - \tilde{p}^{\theta}_3\right)^2,$$

This depends on θ, for which we luckily have an estimate!

(a) $\theta = \frac{1}{4}$.

(b) $\theta = \frac{1}{2}$.

(c) $\theta = 1$.

(d) $\theta = 2$.

The lighter the tail, the higher the optimal quantile level.
Optimal Quantiles in General

The Pareto distribution is quite unique!

- The truncation point does not affect the optimal quantile levels.
- \(\theta \) can be estimated optimally without knowledge of \(\lambda_S \).

In general, the truncation point complicates matters significantly.

- But even \(\tau = 0 \) does not imply optimal quantile-levels can always be found.

We can find optimal quantile levels \(p_1^* \) and \(p_2^* \) if we can write

\[
\beta^{(\theta)} = f(\theta, \lambda_S) \times g(p)
\]

for some functions \(f \) and \(g \).

- Achievable for the Pareto, Weibull and exponential-Pareto distributions.

\[
\beta^{(\theta)} \propto \tilde{p} \cdot \ln \tilde{p}, \quad \text{for the Pareto and exponential-Pareto},
\]

\[
\beta^{(\theta)} \propto \tilde{p} \cdot \ln \tilde{p} \cdot \ln(\ln \tilde{p}), \quad \text{for the Weibull}.
\]
Consider a pool of lives \(\tau X = (\tau X_1, \ldots, \tau X_n) \). A bulk annuity pays £1 to each survivor of the pool at the end of each year.

Let \(\tau A \) denote its value at inception \((t = \tau) \) and let \(\tau S_t \) denote the number of survivors in the pool at time \(t \geq \tau \).

In order to find the mean and variance of \(\tau A \), we need to find the distribution of \(\tau S_t \) and the joint distribution of \((\tau S_t, \tau S_s) \), \(s > t \).

If the lives are independent, these can readily be found.

What if the lives are dependent?
The Impact of Dependence ($\delta = 0.02, \mu = 60, \tau = 5$)

<table>
<thead>
<tr>
<th>n</th>
<th>Marginal Moments</th>
<th>Independent Pareto</th>
<th>Multivariate Pareto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$E[\tau X_1]$</td>
<td>$\text{Var}(\tau X_1)^{\frac{1}{2}}$</td>
<td>$E[\tau A]$</td>
</tr>
<tr>
<td>2</td>
<td>75.00</td>
<td>17.32</td>
<td>14.38</td>
</tr>
<tr>
<td>20</td>
<td>75.00</td>
<td>10.95</td>
<td>154.70</td>
</tr>
</tbody>
</table>

Truncation affects the marginal distributions!

Given n, we apply appropriate parameters for a fair comparison.
Conclusion

- **Motivation:** Provide the **means** to assess the impact of dependent lifetimes on annuity valuation and risk management.
 - **Basis:** systematic mortality improvements induce dependence.
 - Could reframe as cohort, or pool of similar-risks, analysis.

- Investigate a **multivariate generalized Pareto distribution** because:
 - Interesting family with **potential** for more **flexible** dependence.
 - More suitable for older-age dependence due to presence of **extremes**.

- Resolve estimation in the presence of truncation (in a variety of ways).
 - Moment-based estimation (applied to the **minimum** observation).
 - Quantile-based estimation (with **optimal** levels).

- Assess the impact of dependence on the risk of a **bulk annuity**.
 - Dependence increases the risk.
Thank you!