
Volume 17, Number 4
July 2023

thereasoner.org
ISSN 1757-0522

Contents

Editorial 32

Features 32

Dissemination Corner 33

What’s Hot in . . . 36

Courses and Programmes 37

Jobs and Studentships 37

Editorial

Dear Reasoners,
most of us are or will be soon free to administrative and

teaching duties for the summer break. So this is a perfect time
to remind you how you can contribute to and get involved in
The Reasoner.

Last year we inaugurated a new format which we term Fo-
cussed issue – a collection of solicited contributions highlight-
ing the state of the art of a field. So far we have covered a va-
riety of topics, spanning Evidential Pluralism, History of Log-
ical Reasoning and Infinitary Reasoning and Philosophy of Fi-
nance. And an issue on Rationality is currently in the pipeline.
Those issues are great opportunities to let the wider commu-
nity know about emerging topics or innovative takes on consol-
idated topics, so why not edit one? We’d be particularly inter-
ested in the reasoning-related issues raised by machine learning
and AI, from scientific reasoning, to individual and institutional
decision-making.

Our Dissemination corner is another relatively recent feature
which has been popular in the last couple of years. It allows the
wider reasoning community to keep up with the developments
of reasoning-related projects,read about your latest books, pa-
pers, open positions, and hopefully get inspired for the next
successful reasoning-related project.

Last, but certainly not least, you may contribute by inter-
viewing someone in your own field or by contributing regular
“What’s hot in. . . ” columns.

Hykel Hosni
University of Milan

Features

Logical approaches to ignorance representation

Several current works in epistemic logic focus on finding a
way to model the notion of ignorance. One of the difficulties
in achieving this task is that there is no agreement on exactly
which notion one is trying to model. Even from an epistemo-
logical perspective, there exist at least two different definitions
of ignorance. The Standard View takes ignorance as the ‘ab-
sence of knowledge,’ while the so-called New View takes it as
the ‘absence of true belief’ (see Le Morvan & Peels, 2016, “The
nature of ignorance: two views.” The epistemic dimensions of
ignorance, Peels, R., Blaauw, M. (eds), Cambridge University
Press, pages 12-32). Besides this debate on the definition of
ignorance, one should observe that ignorance is a multi-layered
notion that embodies various types. Some examples include
disbelieving ignorance and suspending ignorance. One of the
most elusive types of ignorance is considered to be deep igno-
rance, which is when an agent neither believes a proposition
nor its negation, nor suspends judgment on it. Epistemologists
aim to lay out a comprehensive taxonomy of types of ignorance,
which underscores the importance of analysing the specific fea-
tures of each type of ignorance. The objective of this short note
is twofold: to provide a comparative analysis of the existing

32

http://www.thereasoner.org
http://sites.unimi.it/hosni

formal approaches to ignorance and to investigate further de-
velopments of ignorance representation.

The first definition we consider is the one of van der Hoek &
Lomuscio (2014, “A logic for ignorance”, Electronic Notes in
Theoretical Computer Science, 85(2): 117-133) , who provide a
system for representing ignorance whether. Syntactically, they
represent ignorance as a primitive modality (we call it Iw) de-
finable via K as ¬Kφ∧¬K¬φ. Semantically, they use standard
Kripke semantics, in which Iw is defined as follows:

◦ M,w |= Iwφ iff there exists w′ such that Rww′ and
M,w′ |= φ and there exists w′′ such that Rww′′ and
M,w |= ¬φ.

An important observation should be made concerning the use
of Iw as an operator representing ignorance. It does not permit
the distinguishing of two distinct types of ignorance: deep and
suspending ignorance. In particular, suspending ignorance is
the one in which an agent is aware of the content of the propo-
sition but suspends judgment on the truth-value of the proposi-
tion. Deep ignorance means that they are unaware of the con-
tent. The semantic definition of Iwφ presupposes that there is
an accessible world in which φ holds and an accessible world
in which ¬φ holds. How should this be interpreted from the
agent’s point of view? An intuitive answer is that the agent
considers φ as possibly true and possibly false, thus suspending
judgment on φ. However, this shows that Iw does not represent
deep ignorance. Another natural language interpretation of the
definition of Iwφ can be that the agent considers neither φ nor
¬φ as a true proposition. This is the case for both suspend-
ing and deep ignorance. However, in this case, the semantics
proposed for Iw is too unexpressive to distinguish deep and sus-
pending ignorance.

The second definition was introduced by Steinsvold (2008,
“A note on logics of ignorance and borders”, Notre Dame Jour-
nal of Formal Logic, 49(4): 385-392), who considers ignorance
as unknown truth, formalized as φ ∧ ¬Kφ. We call his operator
Iu, and one can define it on Kripke frames as follows:

◦ M,w |= Iuφ iff M,w |= φ and there exists w′ such that
Rww′ andM,w′ 6|= φ.

Similarly to the case of Iw one can question the natural lan-
guage interpretation of the semantic clause for Iu. This leads
to two possible conclusions: either the Iu operator cannot rep-
resent deep ignorance, or it cannot distinguish deep ignorance
from other types of ignorance.

The third option for ignorance representation is provided by
the authors, Kubyshkina & Petrolo (2021, “A logic for factive
ignorance”, Synthese, 198: 5917-5928). We dub this ignorance
operator I f and define it as follows:

◦ M,w |= I fφ iff for all w′ , w if Rww′ thenM,w′ 6|= φ and
M,w |= φ.

Unfortunately, as it is the case for Iw and Iu, I f does not
permit one to represent deep ignorance, or, at least, it does not
permit one to distinguish deep ignorance from other cases of
ignorance.

The three operators, Iw, Iu, and I f are the only proposals
currently available in the literature. While epistemologists re-
fine their analysis of the notion of ignorance by considering
its various types, the current logical frameworks are unable

to distinguish between these forms of ignorance. In particu-
lar, Iw, Iu, and I f represent three types of ignorance, none of
which constitutes an exclusive case of deep ignorance. Deep
ignorance is characterized by an absence of an attitude towards
both a proposition and its negation. Therefore, a crucial point
in the formal representation of deep ignorance is the charac-
terization of this absence. To solve this problem, we see at
least two strategies. First, one can reinterpret ignorance opera-
tors on Kripke models supplemented with an awareness func-
tion, similarly to the work proposed by Fagin & Halpern (1988,
“Belief, Awareness and Limited Reasoning”, Artificial Intelli-
gence, 34(1): 39-76) for knowledge representation. The sec-
ond option is to interpret ignorance operators on Kripke se-
mantics with possibly incomplete worlds. In this framework,
the absence of an attitude towards a proposition can be ex-
pressed by neither validating this proposition nor its negation.

Ekaterina Kubyshkina
University of Milan

Mattia Petrolo
University of Lisbon and Federal University of ABC

Dissemination Corner

BRIO:
Low-Level Analysis of Trust in Probabilistic and
Opaque Programs
The project BRIO aims at developing formal and conceptual
frameworks for the analysis of AI systems and for the advance-
ment of the technical and philosophical understanding of the
notions of Bias, Risk and Opacity in AI, with the ultimate ob-
jective of generally contributing to the development of trust-
worthy AI. Overviews of the BRIO project and of its main ob-
jectives can be found in The Reasoner, Vol.16 Num. 1, Vol. 16
Num. 3, and Vol. 16 Num. 5. One of BRIO’s technical research
directions concerns the formal analysis of reasoning and trust
assessment with regard to probabilistic and opaque processes.
One of the most challenging aspects of modern AI systems, in-
deed, is the fact that they do not operate in a deterministic way,
namely they do not simply implement a function that associates
a unique output to each input, and they are not transparent, in
the sense that a general formal description of their behaviour
might not be available.

A new line of work which can be subsumed under this re-
search direction recently yielded the first results. This work
aims at a low-level analysis of probabilistic processes in gen-
eral, of opaque probabilistic processes in particular, and of the
computational processes involved in the analysis of their be-
haviour and in the assessment of their trustworthiness. As op-
posed to the previous work conducted in the context of BRIO,
the focus is not on the inferences that can be drawn by observ-
ing the external behaviour of programs, but on what lies below
the surface of computation and on the mechanisms underlying
the computational practices that we can follow to conclude that
a program is worth of our trust. This glimpse into the internal
workings of programs and of computational practices related to
the assessment of trust is also meant as a first step towards the
development of methods for explaining the doing of highly un-
predictable machines such as probabilistic programs. The hope
is hence to bring a formal contribution also to the development
of explainable AI.

33

Several formalisms for the low-level analysis of compu-
tational processes have been introduced and abundantly em-
ployed in the theoretical computer science literature, but one
of the most versatile is certainly λ-calculus. This calculus has
been devised by Alonzo Church in the 1930s in order to pro-
vide a foundation to mathematical reasoning that would give
to the notion of function, a fundamental mathematical entity
that essentially relate to the notion of change and of proce-
dure, the place that it deserves. The portion of this original sys-
tem that is nowadays employed for the theoretical analysis of
computational processes has been isolated by Church in 1936,
after the original system was shown to be inconsistent due to
the Kleene–Rosser paradox. This is how pure λ-calculus was
born, a model of computation that precisely formalises the intu-
itive notion of computable function. Another formal framework
which tightly tied to λ-calculus is type theory. The first ver-
sions of type theory have been developed by Russell between
1902 and 1908 in order to avoid Russell’s paradox, and the sys-
tem that Church defined in order to keep using λ-calculus for
foundational purposes after the discovery of the Kleene–Rosser
paradox was precisely a type theory which has come to be
known, not surprisingly, as Church’s theory of types.

One might wander now how type theory is relevant to the
analysis of computational processes. Well, type theory, after its
original employment in the context of the foundations of math-
ematics, became an extremely fruitful and versatile instrument
to enrich programming languages in order to gain more control
over computations and formal insights about the behaviour of
programs. But, lest this short article becomes as opaque as the
opaquest AI system, some more insights on the nature of types
and on what good do they do for programming is due. A type is
simply a high-level input/output description of what a program
does. A program of typeN×N→ N, for instance, expects as in-
put a pair of natural numbers, as specified by N×N, and yields
as output a natural number, as specified by the occurrence of
N to the right of→. A computer program implementing addi-
tion, for instance, will precisely be of type N × N → N. The
type of a program, nevertheless, does not only tell us explicitly
what the program is supposed to do, but it also forces the pro-
gram to do it: to only accept certain inputs and to always yield
outputs of a certain kind. As types were used by Russell and
Church to constrain the behaviour of functions in order to avoid
paradoxes, they can be used to constrain computer programs in
order to avoid undesired behaviours.

This is clearly very useful since λ-calculus can be used to
formally encode and study computer programs and types can
be used in combination with it—by using, for instance, sim-
ply typed λ-calculus—to restrict our attention to computer pro-
grams that behave well by definition with respect to our expec-
tations. It is perhaps still rather obscure, though, what all this
has to do with probabilistic processes and opacity. After all,
λ-calculus is supposed to formalise functions. And functions,
by definition, always yield the same result given the same set
of inputs. In other words, functions are very essentially de-
terministic objects. While this is certainly true, λ-calculus in
the last decades took a road that took it very far away from its
original form. It started roaming in the depths of the realm of
applied computer science, taking forms that are far more gen-
eral and versatile that the original one. Probabilistic λ-calculus
is one of the many offsprings of these peregrinations. As for
types, they followed eagerly and adapted to many of the new,
different forms of λ-calculus. The kind of analysis that can be

conducted by λ-calculus and type theory for traditional, deter-
ministic computer programs can then be extended also to prob-
abilistic programs.

Opacity’s story is a completely different one. Indeed, the
basic idea of λ-calculus is to analyse processes through a com-
plete syntactic representation of them. A fully transparent def-
inition of programs is, in a sense, presupposed by it. Radi-
cally new ideas are hence required to conduct a low-level anal-
ysis of opaque probabilistic programs and of the computational
processes involved in the assessment of their trustworthiness.
These ideas are currently under development and borrow from
the literature on computability theory. In particular, the no-
tion of oracle seems to be extremely promising. In brief, an
oracle can be described as the formal tool used to represent a
black box which is able to solve a given problem in a single,
unanalysed operation. Thus, so far as computing theory is con-
cerned, oracles are, as their very name suggests, as obscure as it
gets: a perfect starting point for the study of opaque programs.

Francesco Genco
University of Milan

GoA:
The Geometry of Algorithms

The Geometry of Algorithms (GoA) is an ongoing 4-year
(2020-2024) research project, funded by the French National
Research Agency - ANR with a grant of 252,024 euros (ref.
ANR-20-CE27-0004). The project is hosted by the Institute for
the History and Philosophy of Science and Technology (IH-
PST) in Paris. Its primary aim is to answer to the question:
what is an algorithm?

Algorithms have an increasingly significant role in our daily
lives. We use algorithms not only for everyday tasks, such as
web research, but also for more complex and delicate opera-
tions such as medical diagnosis. The general feeling is that we
are entrusting algorithms with not only a significant amount of
our decisions but also our lives. However, there is no real con-
sensus among experts today about what an algorithm is.

The GoA project aims to clarify this question by studying
the epistemological and logical foundations of the notion of an
algorithm. The main issue is to examine whether this notion
is well-founded from both a philosophical and formal perspec-
tive. Specifically, the project seeks to determine whether it is
possible to assign the status of scientific entities to algorithms
by providing them with a precise mathematical representation.

The starting point of the GoA project is the observation that
it is not possible to answer the question “what is an algorithm?”
by means of a stipulative definition, since the meaning of this
notion has been embedded in our language practice long before
the birth of computer science. Indeed, the word “algorithm”
can be found in mathematical discourse, but also in our ordi-
nary discourse long before the first computers. To assign a pre-
cise and formal definition to the notion of an algorithm, one
needs to perform a preliminary work of conceptual analysis. In
particular, following the approach pioneered by G. Kreisel, the
idea is that before undertaking a rigorous formalization step,
one needs to perform a preliminary epistemological analysis to
ensure some degree of “informal rigour.”

It was this sort of conceptual analysis that led, in the early
20th century, to the introduction of formal notions of general
recursive functions, lambda-calculus, Post machines, and Tur-

34

ing machines by K. Gödel, A. Church, E. Post, A. Turing, and
others based on the informal notion of “effective computabil-
ity.” This formalization eventually led to the development
of the theory of computability and the Church-Turing thesis,
which provides a mathematically precise definition of the no-
tion of “effective computable function.” Since an algorithm is
broadly conceived as an effective procedure for computing, one
might be tempted to conclude that the theory of computabil-
ity is enough to settle what an algorithm is. However, there
are two main obstacles to this view. Firstly, there are algo-
rithms that are non-deterministic as they associate multiple so-
lutions with the same input and, therefore, cannot be analyzed
directly in terms of functions. Secondly, even if we restrict
to functions, the theory of computability views them from an
extensional perspective, not an intensional one. To show that
a function is computable, it is enough to show that its graph
(i.e., its set of inputs-outputs) can be computed by one of the
formalisms mentioned above. For instance, the Fibonacci func-
tion can be formalized by means of a recursion scheme when
general recursive functions are used. But the same function has
to be defined differently in lambda calculus, as recursion is not
a primitive operation of this computational model. The choice
of one formalism over the other could lead to different compu-
tational costs. However, from the perspective of the Church-
Turing thesis, what matters is that a function is computable by
an algorithm, not the comparison of different algorithms for
computing it. The theory of computation does not provide a
general framework for discussing all possible ways of comput-
ing a function, regardless of the specific primitive operations
tied to a particular computational formalism. Defining such a
general framework and thus developing a general theory of al-
gorithms is the goal of the GoA project.

The conceptual analysis undertaken by GoA is based on the
analysis of computer science practice and on the idea that the
notion of an algorithm has to be understood in conjunction with
two other notions characterizing such practice, computation,
and program.

A computation is understood here as a physical process –
whether mechanical, electronic, quantum, etc. – that takes
place every time a computer program is run on some physi-
cal device (e.g., a computer). Conceived in this way, a com-
putation is deterministic by nature: although the laws describ-
ing the evolution of the (e.g., quantum) system may be non-
deterministic (e.g., probabilistic), a computation determines
only one of the possible evolutions of the system. Moreover,
although a computation is linked to a physical theory, in fact,
it can be described independently of it and formalized via the
theory of dynamical systems, as done, e.g., in Sieg & Byrnes
(1999, “An abstract model for parallel computations: Gandy’s
thesis”, The Monist, 82(1): 150–164).

Unlike computations, programs need not be deterministic
and have a modal dimension. For instance, computer practice
reveals the existence of non-deterministic programs, such as
probabilistic programs, concurrent programs, and quantum cir-
cuits. To capture this modal dimension, specific formal systems
called computational models are used. These models are char-
acterized by a set of basic programming instructions that give
rise to multiple possible computations (i.e., “executions” of
these instructions). A program (with respect to a given model)
is a formal arrangement of these basic instructions specifying a
number of possible computations.

The GoA project will utilize an abstract notion of model of

computation, inspired by the work of Seiller, (2017, “Interac-
tion graphs: graphings”, Annals of Pure and Applied Logic,
168(2): 278–320), which corresponds to the action of a monoid
M on a space. The elements of the monoid are generated by a fi-
nite set of instructions. This is where the geometric perspective
underlying the GoA project emerges. Similar to the Erlangen
program developed by F. Klein in the late 19th century, which
aims to classify various types of geometry based on the action
of a group of transformations on a space (along with the in-
variants generated by these transformations), the GoA project
seeks to classify computer programs based on the action of a
monoid of instructions on a space. Then, the algorithms can be
characterized as more general structures implemented by the
programs. Specifically, by using tools from the Curry-Howard
correspondence between proofs and programs, and particularly
from J.-Y. Girard’s Geometry of Interaction, one can view a
program as a graphing. In other words, a program is the geo-
metrical realization of a graph on a measurable space X, where
the vertices of the graph correspond to subspaces of X (e.g. sets
of configurations of a machine) and the edges are elements of a
monoid M (e.g., the instructions of a machine).

This brings us to the main original proposal of the GoA
project: defining algorithms as specifications. Since programs
are defined as (some kind of) graphs, the idea is to define al-
gorithms as (i) finite labelled graphs, (ii) together with a spec-
ification of the labels. Point (i) concerns the syntactic struc-
ture of an algorithm. Specifically, the idea that a given pro-
gram implements the syntactic structure of a certain algorithm
will be witnessed by some notion of graph homomorphism in
which two distinct edges with the same label are mapped to
isomorphic images. This notion of graph homomorphism can
be adapted to allow some edges to be mapped to whole sub-
graphs. In this way, certain algorithmic operations would be
encoded by program subroutines, and this opens the way to at-
tribute an epistemic character to an algorithm. This means that
an algorithm can be described with respect to the operations
that the users consider to be relevant in order to understand and
communicate it, although these operations are not necessarily
in a one-to-one correspondence with the primitive instructions
of a specific programming language or model of computation.
For instance, in Figure 1, the four programs all implement a
given algorithm A in which the part in purple corresponds to
a single labelled edge. But only the two programs on the right
implement a more detailed algorithm B specifying the use of
an inner while loop. Point (ii) concerns the kind of operation
performed by each edge of the labelled graph and is formalized
as a specification for each label. The idea is that to correctly
implement an algorithm, a program should not only satisfy the
above condition, but also interpret the labelled edge by a pro-
gram (or an instruction) realising this specification. The GoA
project aims to formalize such a specification by means of the
logical system associated with a given set of programs (thus
exploiting the Curry-Howard correspondence). Looking again
at Figure 1, the specification should allow one to distinguish
between the programs gdc1 and f, as they differ on the opera-
tion realising the purple edge (one computes the remainder, the
other computes a substraction). Similarly, it should allow one
to distinguish between gcd2 and g, but it should also allow one
to check that gcd1 and gcd2 implement the same algorithmA
(with specifications) since the purple chunks perform the same
operations.

One aim of the GoA project is to show that the proposed for-

35

def gcd1(x, y):

while(y):

z = x

x = y

y = z % y

return x

(a) RealisesA

def f(x, y):

while(y):

z = x

x = y

y = z - y

return x

(b) RealisesA

def gcd2(x, y):

while(y):

z = x

x = y

while z>= y:

z = z - y

y = z

return x

(a) RealisesA and B

def g(x, y):

while(y):

z = x

x = y

while z>= y:

z = z \ y

y = z

return x

(b) RealisesA and B

Figure 1: Four programs to illustrate algorithmsA and B

malization of the notion of algorithm is more flexible and en-
compassing than existing proposals. To achieve this, the project
compares the geometrical approach described earlier with other
proposals based on the generalization of models of computa-
tion, in order to analyze how they explain traditional algorith-
mic techniques such as Euclid’s constructions, and identify the
algorithmic components of contemporary procedures such as
those used in machine learning and deep learning.

Alberto Naibo
University Paris 1 Panthéon-Sorbonne

Mattia Petrolo
Centre for Philosophy of Science of the University of Lisbon

Thomas Seiller
CNRS, University Sorbonne Paris Nord

What’s Hot in . . .

Statistical Relational AI

In the last column in this series, which appeared now a full
four months ago in the March issue, the use of logic in statis-
tical relational AI was explored. We saw that logic was used
in different ways in different approaches, either as (soft) con-
straints on possible worlds, or as definitions of predicates in
terms of other predicates. However, the logical formalisms em-
ployed in these different ways was always a variant of of the
classical, first-order predicate calculus. Sometimes it is ex-
tended by some fixed-point operator, as in probabilistic logic
programming, and sometimes it is restricted to exclude existen-
tial quantifiction (as in many implementations of Markoc logic
networks). Essentially, though, the logic employed is classi-
cal, and seems entirely unrelated to the many formalisms of
reasoning under uncertainty that have proliferated over the past
decades. Particularly curious is that there seems to be little re-
semblance to probability logic, logical frameworks that directly
adress probability themselves.

Probability logic has already been brought to wider philo-
sophical attention by Rudolf Carnap, who discusses them ex-

tensively in his influential 1950 monograph The logical foun-
dations of probability, and they have been received into artifi-
cial intelligence at least since Joseph Halpern’s fundamental
1990 paper on An analysis of first-order logics of probabil-
ity. Halpern distinguished two fundamentally different types of
probability logic, corresponding to a similar distinction made
by Carnap earlier. Type I logics are evaluated over a single
structure, much like a sentence of first-order logic would be,
but its domain is additionally equipped with a probability mea-
sure over its elements. It can answer questions such as What
is the probability of a given sheep to be black? evaluated as
the probability of {x ∈ ω | ω |= Black(x)} on the probability
space of domain elements. Type II logics, on the other hand,
are evaluated not over a probability space of domain elements,
but over a probability space of possible worlds. In other words,
rather than a measure on the domain of a single structure, such
a logic would be evaluated on a measure on a space of struc-
tures. It would answer questions such as Given that the three
sheep observed have all been black, what is the probability that
every sheep is black? evaluated as the conditional probability

P (ω |= ∀xBlack(x) | ω |= Black(a) ∧ Black(b) ∧ Black(c)) .

Halpern also found that these notions of probability could
easily be combined, leading to a Type III logic whose mod-
els are probability distributions over worlds, each of whose do-
mains is itself equipped with a probability measure.

Compare this to what we know about statistical relational
artificial intelligence. For any specified domain, a statistical re-
lational specification defines a probability distribution over the
possible worlds with that domain. In this sense, statistical re-
lational languages such as probabilistic logic programming or
Markov Logic Networks are Type II probability logics. They
are declarative, syntactical specifications whose semantics is
given by a probability measure over possible worlds. From this
point of view, the defining factor of statistical relational frame-
works within Type II probability logics is that they arrive at a
Type II formalism that they complement classical logic with an
essentially separate probabilistic layer of either graphical mod-
els or simple probabilistic facts.

There is another key difference to traditional probability log-
ics, though: While in traditional probability logic, a sentence
is evaluated with respect to a measure on the possible worlds,
which may or not be a model of the sentence, a statistical re-
lational framework defines but a single probability measure for
any domain. This reminds strongly of the traditional relation-
ship between classical logic and logic programming, where a
sentence of first-order logic can have any number of models,
while the meaning of a logic program is defined as its one
unique minimal model. This analogy is surely not incidental,
but while there has been some interesting work on the rela-
tionship between maximum entropy models and Markov logic
networks, much remains to be understood.

So, what does that mean for the value of more traditional
probability logic for statistical relational artificial intelligence?
Firstly, there seems to be a lot of untapped potential in utilising
Type I probability logics in precisely those roles that classical
logics know have: As definitions in directed approaches, and
as soft constraints in undirected approaches to statstical rela-
tional modelling. Beyond various computational advantages,
this would lift the expressivity of such frameworks from a Type
II to a Type III probability logic, with all the same benefits as
in the traditional setting of probability logic. There have been

36

some recent attempts in this direction in the context of frame-
works built on Bayesian networks, as well as some work on in-
tegrating such statements into probabilistic logic programming.
As far as I know there has not been any work on probabilistic
constraints in undirected approaches.

Secondly, more traditional Type II probability logics could
be used as a powerful logical language to interact with statisti-
cal relational models. For instance, current query languages for
statistical relational models do not make any use of their proba-
bilistic semantics. While the details vary, queries are usually as
ordinary quantifier-free formulas. They can be supplemented
by additional formulas as “evidence”, and by a command word
to indicate the type of query desired, e. g. the conditional prob-
ability or the single most likely truth values given the evidence.
This could be supplemented very effectively with queries ex-
pressed in a full Type II probability logic.

Finally, Type II probability logics could be used to reason
about statistical relational approaches. Just to mention a one
avenue, there has recently been an upsurge in interest around
the asymptotic behavious of statistical relational approaches on
large datasets. Wouldn’t it be great to have not just nebulous
convergence results, but a complete axiomatisation of their lim-
iting behaviour? And which formalism could be more suitable
for this task than probability logic?

FelixWeitkämper
Computer Science, LMU Munich

Courses and Programmes

Programmes
MA in Reasoning, Analysis andModelling: University of Mi-
lan, Italy.
APhil: MA/PhD in Analytic Philosophy, University of
Barcelona.
Master Programme: MA in Pure and Applied Logic, Univer-
sity of Barcelona.
Doctoral Programme in Philosophy: Language, Mind and
Practice, Department of Philosophy, University of Zurich,
Switzerland.
Doctoral Programme in Philosophy: Department of Philoso-
phy, University of Milan, Italy.
LogiCS: Joint doctoral program on Logical Methods in Com-
puter Science, TU Wien, TU Graz, and JKU Linz, Austria.
HPSM: MA in the History and Philosophy of Science and
Medicine, Durham University.
LoPhiSC: Master in Logic, Philosophy of Science and Epis-
temology, Pantheon-Sorbonne University (Paris 1) and Paris-
Sorbonne University (Paris 4).
Master Programme: in Artificial Intelligence, Radboud Uni-
versity Nijmegen, the Netherlands.
Master Programme: Philosophy and Economics, Institute of
Philosophy, University of Bayreuth.
MA in Cognitive Science: School of Politics, International
Studies and Philosophy, Queen’s University Belfast.
MA in Logic and the Philosophy ofMathematics: Department
of Philosophy, University of Bristol.
MA Programmes: in Philosophy of Science, University of
Leeds.
MA in Logic and Philosophy of Science: Faculty of Philosophy,
Philosophy of Science and Study of Religion, LMU Munich.

MA in Logic and Theory of Science: Department of Logic of
the Eotvos Lorand University, Budapest, Hungary.
MA in Metaphysics, Language, and Mind: Department of Phi-
losophy, University of Liverpool.
MA inMind, Brain and Learning: Westminster Institute of Ed-
ucation, Oxford Brookes University.
MA in Philosophy of Biological and Cognitive Sciences: De-
partment of Philosophy, University of Bristol.
MA programmes: in Philosophy of Language and Linguistics,
and Philosophy of Mind and Psychology, University of Birm-
ingham.
MRes in Methods and Practices of Philosophical Research:
Northern Institute of Philosophy, University of Aberdeen.
MSc in Applied Statistics: Department of Economics, Mathe-
matics and Statistics, Birkbeck, University of London.
MSc in Applied Statistics and Datamining: School of Mathe-
matics and Statistics, University of St Andrews.
MSc in Artificial Intelligence: Faculty of Engineering, Uni-
versity of Leeds.
MSc in Cognitive& Decision Sciences: Psychology, University
College London.
MSc in Cognitive Systems: Language, Learning, and Reason-
ing, University of Potsdam.
MSc in Cognitive Science: University of Osnabrück, Germany.
MSc in Cognitive Psychology/Neuropsychology: School of
Psychology, University of Kent.
MSc in Logic: Institute for Logic, Language and Computation,
University of Amsterdam.
MSc inMind, Language& Embodied Cognition: School of Phi-
losophy, Psychology and Language Sciences, University of Ed-
inburgh.
MSc in Philosophy of Science, Technology and Society: Uni-
versity of Twente, The Netherlands.
MRes in Cognitive Science and Humanities: Language, Com-
munication and Organization: Institute for Logic, Cognition,
Language, and Information, University of the Basque Country
(Donostia San Sebastián).
OpenMind: International School of Advanced Studies in Cog-
nitive Sciences, University of Bucharest.
ResearchMaster in Philosophy and Economics: Erasmus Uni-
versity Rotterdam, The Netherlands.
Doctoral Programme in Philosophy: Language, Mind and
Practice, Department of Philosophy, University of Zurich,
Switzerland.
MA in Philosophy: Dept. of Philosophy, California State Uni-
versity Long Beach.

37

https://www.unimi.it/en/education/philosophical-sciences
http://www.ub.edu/aphil/
http://www.ub.edu/masterlogic/
http://www.philosophie.uzh.ch/news/allgemein/doktoratsprogrammfs2010.html
http://www.unimi.it/ENG/courses/111617.htm?dott=R16of1&anno=2018
http://logic-cs.at/
http://www.dur.ac.uk/hpsm.ma/
http://www.lophisc.org/?page_id=123
http://www.ru.nl/masters/master'-programmes/man-society/master-artificial/
http://www.pe.uni-bayreuth.de/studieninteressierte/studium/master
http://www.educationindex.co.uk/course/queens-university-belfast/cognitive-science
http://www.bristol.ac.uk/prospectus/postgraduate/2014/prog_details/ARTF/656
http://www.leeds.ac.uk/arts/info/125152/postgraduate/1984/07_taught_courses
http://www.mcmp.philosophie.uni-muenchen.de/students/ma/index.html
http://www.elte.hu/en/master/logic
http://www.liv.ac.uk/study/postgraduate/taught/metaphysics-language-and-mind-ma/overview/
http://www.educationindex.co.uk/course/oxford-brookes-university/mind-brain-and-learning
http://www.bristol.ac.uk/prospectus/postgraduate/2014/prog_details/ARTF/999
http://www.ptr.bham.ac.uk/postgraduate/bysubject.shtml
http://www.abdn.ac.uk/philosophy/nip/studies/mres/
http://www.ems.bbk.ac.uk/courses/msc_pgdip/msc_statistics
http://www.creem.st-and.ac.uk/datamining/
http://www.engineering.leeds.ac.uk/pg/pgt/MSC-CGS-FT.shtml
http://www.psychol.ucl.ac.uk/courses/MSc_CoDeS_courses.html
http://www.ling.uni-potsdam.de/en/students/msc-cogsys
http://ikw.uni-osnabrueck.de/en/cogsci/master/contents
http://www.kent.ac.uk/psychology/msc/cognitive/index.html
http://www.illc.uva.nl/MScLogic
http://www.philosophy.ed.ac.uk/phil_students/postgraduate/msc_in_mind_language_and_embodied_cognition.php
http://www.graduate.utwente.nl/psts/
http://www.ehu.es/en/web/ilcli/post-graduate
http://www.ehu.es/en/web/ilcli/post-graduate
http://www.unibuc.ro/e/n/cercetare/stii-cogn/
https://www.eur.nl/fw/english/education/philosophy_and_economics/
http://www.philosophie.uzh.ch/news/allgemein/doktoratsprogrammfs2010.html
https://cla.csulb.edu/departments/philosophy/graduate_program/

	Editorial
	Features
	Dissemination Corner
	What's Hot in …
	 Courses and Programmes
	 Jobs and Studentships

