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Part I

Lecture Notes

1 Qubits

This section covers

� 2-state systems

Suggested reading (all references are from the module's o�cial reading list):

� Bransden & Joachain Chap. 5

� Zettili Chaps. 2-3

� Feynmann Lectures in Physics Vol. 3 Chap. 1 + Chap. 8

� Rae Chap. 4

� Chester Caps. 1-3

You saw last year that there is a need for a new theory, going beyond Classical Physics: Quantum Physics.

Quantum Physics can be quite counter-intuitive, so it is good to encapsulate the theory in some postulates.

The postulates tell us what the theory says at a very basic level. Some of that is counter-intuitive. The idea
is that we accept those postulates for the time being, and then deduce other things from them. Over time an
intuition develops which replaces our ordinary, �everyday� intuition (which doesn't help in a quantum world).
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Quantum Physics is not easy to learn: it gave these guys a headache! [1st Solvay Conference, 1911]

To make learning the postulates easier we will develop the quantum theory initially for the simplest kind of
physical system we could think of: a 2-state system.

In this section we will explain what such simple system might consist of; deduce, for a particularly simple
example, its classical behaviour; and describe without proof its (rather di�erent!) quantum behaviour.

In latter sections we will introduce the postulates and derive the behaviour described here from those postu-
lates.

Later in the course we will generalise and apply the postulates to other systems.
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A classical 2-state system can be used as a �bit�: if we use a state to represent �0� and another state to
represent �1�, we can use a string of 2-state systems to encode classical information, e.g. 110101 represents
the number 53 in binary code.1

Present-day computing technology is based on bits implemented through electronic devices such as transis-
tors:2

Quantum physics is necessary to understand the workings of the transistor.

Once we know how it works, though, it becomes just an electronic component in a circuit that can be
described using the laws of Classical Physics:

153=1× 25 + 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20.
2Transistor image from https://electrosome.com (accessed 29/Sep/2019).
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We are now at the start of a revolution in the way we process information. This is due to the advent of
quantum computing which is based not on bits, but on�qubits�: quantum 2-state systems.

Here is a photograph of the IBM Q System One, the �rst commercial quantum computer, unveiled in January
2019:

Unlike bits, qubits behave in a way that isessentially quantum-mechanical.

In 2015, CO2 emissions from data centres overtook the airline industry.

Quantum computers may be the key to much more energy-e�cient information processing.

Thus, the study of 2-state systems is not just purely academic.



1 QUBITS 5

1.1 2-state systems

A 2-state system is a system that, at some coarse-grained level of description, can only be in one of two
states.

Examples of 2-state systems:

� A classical capacitor: the two states are

� charged = 1

� empty = 0

� A single-electron (quantum) capacitor:

� 1 electron

� 0 electrons

� The electron in an H+
2 ion. This molecule has two protons. The two states correspond to the electron

being on the left proton or the right proton:

We have to assume that the molecule is�clamped� to some substrate i.e. the protons don't move and
only the electron can do so.
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� The ammonia (NH3) molecule. Here the two states correspond to the Nitrogen atom being above or
below the plan de�ned by the three Hydrogen atoms:

This is the basis of the MASER (Microwave Ampli�cation by Stimulated Emission of Radiation - the
precursor of the LASER).

There is an excellent discussion of two-state systems using the ammonia molecule as the chief example
in Feynmann Vol. 3.

� A superconducting �ux qubit. The two states correspond to left- and righ-circulating close-loop currents.
Superconductors have the advantage that they can behave quantum-mechanically even on the scale of
everyday objects, hence their use in quantum computers.
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� A particle that can be in one of two boxes. Here one state corresponds to the particle being in the
left-hand box and another state to the right-hand one.

or

The last example may seem a bit academic but it can be realised with current technologies - for example for
electrons in engineered nano-structures or for atoms in magneto-optical traps (also, the clamped H+

2 ion can
also be considered to be an example of the particle in two boxes). We will focus on this example in what
follows but most of what we will say will be valid quite generally for any 2-state system.
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Question:
What is a two-state (or two-level) system?
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1.2 Classical 2-state system

Let's see �rst what we expect from our system in the classical situation. The model can be described by the
potential

V (x) =


0 within the boxes

∆ within the barrier

∞ everywhere else

(1.1)

The allowed trajectories for the particle given its energyE are given by solving the equation for conservation
of energy:

p2

2m
+ V (x) = E (1.2)

Herex is the particle's position andp is its momentum.
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The �rst thing to note is that this equation has solutions for any energy E ≥ 0 i.e. there is a continuuum
spectrum of possible energies.

If x is in the left box (L) or the right box (R) we have V (x) = 0 and therefore Eq. (1.2) yields

p2

2m
= E ⇒ p = ±

√
2mE. (1.3)

For any positive energy (E > 0), this means the particle moves with constant momentum either to the right
(p > 0) or to the left (p < 0). For E = 0 the particle is sitting still. For E < 0 this is not a solution.

If x is in the barrier region we have

p2

2m
+ ∆ = E ⇒ p = ±

√
2m (E −∆). (1.4)

Again, the particle moves leftward or rightward with constant momentum, although for a given energy E > ∆
this is a smaller momentum than it had when it was in one of the boxes: when the particle enters the box, it
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is slowed down y the barrier energy ∆. If E < ∆ then the particle does not have enough energy to penetrate
the barrier so it bounces back into the box. This is seen in Eq. (1.4) in that for E < ∆ it yields an imaginary
value of p i.e. there are no solutions in the barrier region for such low energies.

Finally, for x outside the above ranges (i.e. neither in the boxes or in the barrier region) the potential is
in�nity and therefore there are no solutions.

The following phase-space diagrams summarise the particle's motion depending on its energy:

For low energies (0 ≤ E ≤ ∆) the particle bounces back and forth between the walls of either the L box
or the R box, depending on the initial conditions (i.e. the initial value ofx andp at timet = 0). For higher
energies (E > ∆) the particle oscillates between one box and the other, moving more slowly as it traverses
the intermediate, barrier region.
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Exercise: Classical two-box particle trajectories
Consider the two phase-space diagrams from the previous page:

Use them as your starting point, deduce di�erent plots showing position vs time and momentum vs time for
E < ∆ and for E > ∆. Assume that the particle starts somewhere inside the right-hand side box moving
towards the right.
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Faced with such system experimentally, here are a few things we could always do, at least in principle:

1. We could measure the position x, energy E and direction of travel (the sign of p) at any given time
independently and without perturbing the system.

2. The above measurements could be carried out in any order and could determine the sought values
with certainty.

3. Once x, E, and sign (p) are known at t = 0, the state of the system is completely determined, allowing
us to predict future values of those variables at any subsequent times.

As we shall see shortly, none of the above three statements hold for a quantum system. Moreover, the energy
is not a continuum either.



1 QUBITS 14

Assignment: tackle Problem5.

Note: This problem is optional. It is a more realistic description of a classical two-state system, so it further illustrates the
preceding discussion.

Before moving on to discuss what the quantum version of our �toy model� does, let us consider in more
detail the case when the energy E < ∆. The magnitude of the particle's momentum|p| is then constant and
the particle stays in the box where it was found at time t = 0 for all t > 0. If we adopt a coarse-grained
description of the particle's position where we only say whether it is on the L box or the R box, then for such
low energies the position of the particle is constant: if it is found in L, it will remain in L, and vice versa, as
it does not have enough energy to overcome the barrier between the two boxes. This is also not correct in
the quantum case.#

"

 

!

Exercise: Classical two-state period
How long does it take for the particle to move from the left-hand box to the right-hand box? Assume E & ∆
so the velocity in the barrier region is much less than inside the boxes, so that time spent in the boxes can
be negelcted. The time is T/2, where T is the preiod with which the particle oscillates between the two
boxes.
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1.3 Quantum 2-state system

We now describe what happens in a quantum system that behaves according to the laws of Quantum Physics.
In this section we will do this descriptively; in latter sections we will introduce a few simple principles (the
Postulates) from which that behaviour can be deduced.

As before, we consider a simple 2-state system consisting of a particle that can be in one of two boxes,
separated by an energy barrier:

In a quantum system, just as in a classical system, we can always measure the energy E and positionx of
the particle.

As in the classical case, energy is conserved: if I measure the energyE and �nd a given valueEn subsequent
measurements of energy will always yield the same value.
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The �rst di�erence we �nd with the classical case is that the energy is quantised: only certain values
E0, E1, E2, ... are allowed.

The details of how many energy values are allowed within a certain energy range depend on parameters of
the system: barrier height ∆, and the distance between the two boxes, etc.

Let us assume E < ∆, so the particle has zero probability (at least from a classical point of view) of being
found in the barrier region.

Let us also take a coarse-grained view of the variable x and say that all we are interested in is whether the
particle is in the L box or the R box:

x ≈ xL or x ≈ xR (1.5)

For simplicity, let us focus on the case where there are only two energies lower than the energy barrier:

E0, E1 < ∆ , E2, E3, ... > ∆

We will assume the energy of the particle always takes one of these two values. This is called a two-level
system (or two energy-level system). Clasically-speaking, this is the boring situation, where the particle is
stuck in one of the boxes. The quantum case, however, is more interesting...
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We now come to another, even more stark di�erence between the classical and quantum cases called quantum
tunnelling:

� We recall that in the classical case for E < ∆ the particle is �trapped� in one of the boxes.

� In the quantum case, if we measure x and �nd, for example, xL, subsequent measurements of x will
yield xL with certainty only if carried out immediately after the �rst measurement.

� If we instead wait a �nite time t > 0 before the second measurement is carried out then we can �nd
either xL or xR. In other words, sometimes the particle appears to have �tunnelled� through the barrier,
even though it did not have enough energy to do so!

A further di�erence with the classical case is that the process is probabilistic i.e after a known time t we can
not know for certain whether the particle will be found at xL or at xR. Even if we repeat the experiment again
in exactly the same initial conditions, with the same measurements carried out at exactly the same times,
the values of t at which the particle will be found at xL and xR will vary. There is an intrinsic uncertainty
in the particle's position.�

�

�

�
Question: normalisation
Suppose that by repeatedly carrying out the same experiment with our quantum 2-level system we �nd that
at the end of the expeirment the particle is found on the left %62 of the time, on averge. How often will it
be found on the right?
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Not everything is totally random, though. We can record the statistical frequency with which the particle
is found at xL andxR at di�erent times, over many identical experiments, and work out the corresponding
probabilities, P (xL) and P (xR). We �nd that they depend on time in a reproducible way �so the
probabilities themselves can be predicted with certainty.

Speci�cally, if x = xL at t = 0, then the time evolution of P (xL) and P (xR) is given by harmonic functions
(a sin and a cosine) with period

τ =
h

E1 − E0

. (1.6)

Note that τ depends on the energy di�erence E1 − E0 and on Planck's constant h.�
�

�


Exercise: Planck's constant
Look up Planck's constant, h. Show that the units of the LHS and RHS of Eq. (1.6) are the same.

Assignment: tackle Problem 6.
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The last special feature about the quantum problem is that measurement unavoidably perturbs the
system:

� Suppose we measure the energy and �nd the value E0. Subsequent measurements of the energy still
yield the value E0 (see above).

� Suppose we then measure x. We get xL or xR with 50% probability. Let us assume that we get xL.

� Suppose we then measure the energy again. This time we can obtain E0 or E1, with 50% probability for
each energy value. After the energy is measured, however, the position becomes uncertain once more.

Thus, measuring one property (in our example, x) alters the probability distribution for another (in our
example, E): when E is �xed, x is completely uncertain; when x is �xed (i.e. immediately after it's measured)
E becomes completely uncertain. This is an instance of Heisenberg's uncertainty principle.

(The more common instance of the Heisenberg Uncertinaty Principle refers to the position and momentum
of a particle that is moving freely in a vacuum.)
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Summary table: Comparison of classical and quantum behaviour
(particle in two boxes, E < ∆)

Classical Quantum

� Energy, position can be
measured with certainty.

� Energy, position can be measured with certainty.

(Meaning if we measure the same quantity twice, with no delay
between measurements, we obtain the same result.)

� Allowed energy values vary
continuously.

(We focused on the case E
<∆.)

� Energy values are quantised.

(We focused on the case E0 < E1 < ∆ < E3 < E4 < . . . and
E = E0 or E1: the 2-level system.)

� Energy and position both
conserved.

(If particle is found at xL,
it remains at xL.)

� Energy is conserved: measurement of energy yields E = E0 at
some time (say, t = 0) then subsequent measurements of energy
yield E = E0 for all t > 0.

In contrast, position is not conserved: following a measurement
�nding x = xL at t = 0, subsequent measurements at t > 0 yield
sometimes xL and sometimes xR � called quantum tunnelling.

� Energy, position can be
predicted with certainty.

� The actual values x takes at t > 0 are uncertain i.e. cannot be
predicted before the measurement takes place.

However, their probability distribution is well-de�ned and evolves
in time in a predictable way [period τ = h/(E1 − E0)].

� The uncertainties in x and E are related: a measurement of E
makes x uncertain while measurement of x makes E uncertain.
This is called Heisenberg's uncertainty principle.
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Exercise: Classical or Quantum?
You are tasked with evaluating whether a certain device works by using quanutm physics or it can be
considered classical. Which of the following features can only be compatible with quantum behaviour.
Assume that the system can be described by a particle-in-two-boxes model like the one we have been
cosnidering (either the classical or the quantum version).

� The energy stored in the device is always one of a series of discrete values.

� Sometimes you �nd the particle in one of the boxes, but when you check again you �nd it in a di�erent
box.

� The energy soterd in the device is always below a certain limiting value.

� The particle oscillates periodically between the L and R boxes.

� Repeated measurements of the energy always yield the same value, however when you measure position
subsequent measurtements of energy can yield di�erent values.
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2 Quantum States

This section covers

� Bras and kets.

� Eigenstates and Eigenvalues; Superposition Principle; Probability Amplitudes; Change of basis; Oper-
ators.

We now start to describe the postulates of Quantum Mechanics from which the behaviours that we described
before can be deduced.

For the time being we will give our postulates for a 2-level system and use this simple case for all our examples.
The generalisation of the postulates to more complex situations will come later.

A box will signal the introduction of each new postulate. Later on we will use it to denote any important
result.
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2.1 Eigenstates and eigenvalues

States with where a given observable (i.e. measurable property) takes a �xed, well-de�ned value are called
eigenstates of that property. The value the property takes is called the eigenvalue.Such eigenstate isdenoted
by

|value of the property〉

This is called a�ket� and it is part of Paul Dirac's�bra-ket� notation, which we will use throughout.

Here are a few examples of kets which denote eigenstates of di�erent properties:

Eigenstates of position Eigenvalue
|xL〉 xL
|xR〉 xR

Eigenstates of energy
|E0〉 E0

|E1〉 E1
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2.2 Superposition principle

The eigenstates of a given property can be taken as basis unit vectors of an abstract space: the Hilbert
space.

For example,|xL〉 and|xR〉 can be used as the basis unit vectors de�ning a 2-dimensional Hilbert space:

Now comes our �rst postulate:

Every possible state of the system is represented by a point in the Hilbert space.

In the picture,

� (1, 0) represents |xL〉;

� (0, 1) represents |xR〉;

�

(√
2/3,−1/

√
3
)
represents |ψ〉 =

√
2
3
|xL〉 − 1√

3
|xR〉.
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Nomenclature:

� 〈xL|ψ〉 =
√

2/3 is the�projection� of |ψ〉 onto |xL〉;

� 〈xL|ψ〉 = −1/
√

3 is the�projection� of |ψ〉 onto |xR〉.
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2.3 Probability amplitudes

Now, what does it mean when a state |ψ〉 has �nite projection onto two states with di�erent values of the
same property?

The projection 〈xL|ψ〉 is also called theprobability amplitude that if the particle is in the state |ψ〉 a
measurement of its position x will �nd it at xL. Likewise 〈xR|ψ〉 is called the probability amplitude that it
�nds it at xR. The corresponding probabilities are given by

P (xL) = |〈xL|ψ〉|2

P (xR) = |〈xR|ψ〉|2

This is valid for any state |ψ〉 in the Hilbert space.

So a state with projections onto more than one basis vector is one with �nite probability of more than one
value of the corresponding property.

For our particular example

〈xL|ψ〉 =

√
2

3
⇒ P (xL) =

2

3
≈ 67% probability

〈xR|ψ〉 = −
√

1

3
⇒ P (xL) =

1

3
≈ 33% probability

Evidently
P (xL) + P (xR) = 2/3 + 1/3 = 100% probability

since in our model the particle can only be on the Left or on the Right.
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More generally the set of amplitudes (
〈xL|ψ〉
〈xR|ψ〉

)
are called the state vector or, equivalently, the wave function of the system in the state |ψ〉.3

The state vectors must be normalised:∑
x=xL,xR

P (x) = 1⇒ |〈xL|ψ〉|2 + |〈xR|ψ〉|2 = 1

Thus, not every point in the Hilbert space corresponds to a possible state of the system:

Assignment: tackle Problem7.

3From here onwards we will write state vectors as 2× 1 matrices
(
∗
)
rather than 1× 2 matrices(∗, ∗).
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2.4 Change of basis (= change of representation)

We now discuss changes of basis, also called changes of representation.

This is not an additional postulate �it is merely a consequence of the previous two.

Take an arbitrary state e.g.

|ψ〉 =

√
2

3
|xL〉 −

1√
3
|xR〉. (2.1)

The corresponding state vector is

( √
2/3

−1/
√

3

)
in the {|xL〉, |xR〉} basis. This gives the probabilities P (xL)

and P (xR) that a measurement ofx will yield the values xL or xR, respectively.

What if we measure energy, E? What are the corresponding probabilities P (E0) and P (E1)?
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Write the energy eigenstates in terms of position eigenstates e.g.

|E0〉 =
1√
2

(|xL〉+ |xR〉) (2.2)

|E1〉 =
1√
2

(|xL〉 − |xR〉) (2.3)

From (2.2,2.3) we deduce

|xL〉 =
1√
2

(|E0〉+ |E1〉) (2.4)

|xR〉 =
1√
2

(|E0〉 − |E1〉) (2.5)
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Substitute (2.4,2.5) in (2.1) to express |ψ〉 in terms of{|E0〉, |E1〉}:

|ψ〉 =

√
2

3
|xL〉 −

1√
3
|xR〉

=

√
2

3

[
1√
2

(|E0〉+ |E1〉)
]
− 1√

3

[
1√
2

(|E0〉 − |E1〉)
]

=
1√
3
|E0〉+

1√
3
|E1〉 −

1√
3

1√
2
|E0〉+

1√
3

1√
2
|E1〉

⇒ |ψ〉 =
1√
3

(
1− 1√

2

)
|E0〉+

1√
3

(
1 +

1√
2

)
|E1〉, (2.6)

i.e. state vector of|ψ〉 is ( √
2/3

−1/
√

3

)
in {|xL〉, |xR〉} basis;

1√
3

(
1− 1/

√
2

1 + 1/
√

2

)
in {|E0〉, |E1〉} basis.

(2.7)

Assignment: tackle Problem8.
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2.5 Complex amplitudes

We now note an important consequence of the SE (3.11): since it involves the imaginary uniti ≡
√
−1 the

amplitudes of probability

A (t) = 〈xL|ψ (t)〉
B (t) = 〈xR|ψ (t)〉

are in general complex numbers, each with amagnitudeand aphase.

This means the Hilbert space has to be generalised to allow forcomplex coordinates.

This requires us to generalise theprojectionoperation as aninner product:

Given two states

|φ〉 = φL|xL〉+ φR|xR〉 (2.8)

|ψ〉 = ψL|xL〉+ ψR|xR〉 (2.9)

theprojection of|ψ〉 onto|φ〉 i.e. thebra-ket, orinner product,〈φ|ψ〉 is de�ned as

〈φ|ψ〉 ≡
(
φ∗L φ∗R

)( ψL
ψR

)
= φ∗LψL + φ∗RψR . (2.10)
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When the amplitudes of probabilityφL, φR, ψL, ψR are all real, this is the same as a projection in the usual,
geometric sense:

〈φ|ψ〉 ≡ φLψL + φRψR for real amplitudes.

This is a particular case of the inner product (2.10) but is not valid in general.

More generally we are dealing withcomplex numbers:
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A quick recap: complex numbers

If z = x+ iy with x, y real

then z = |z| eiθ

where |z| =
√
x2 + y2 is the magnitude, or modulus of z

and θ is its phase

We then have x = |z| cos θ

and y = |z| sin θ.
The complex conjugate of z is z∗ = x− iy = |z| e−iθ.

We thus have |z|2 = x2 + y2 = z∗z, which o�ers a practical way to calculate

the squared modulus to obtain probabilities.

The real part of z is R (z) = x and can be obtained using R (z) =
1

2
(z + z∗).

The imaginary part of z is I (z) = y and can be obtained using I (z) =
1

2i
(z − z∗).
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Example: Given the two states

|ψ〉 =
1√
2

(|xL〉+ |xR〉)

|φ〉 =
1√
2

(|xL〉+ i|xR〉)

compute the projections/inner products〈φ|ψ〉 and〈ψ|φ〉.

Solution:

The state vectors in position basis are

|ψ〉 =
1√
2

(
1
1

)
and |φ〉 =

1√
2

(
1
i

)
,

therefore

〈ψ|φ〉 =
1√
2

(
1∗ 1∗

) 1√
2

(
1
i

)
=

1

2

(
1 1

)( 1
i

)
=

1

2
(1 + i) ;

〈φ|ψ〉 =
1√
2

(
1∗ i∗

) 1√
2

(
1
1

)
=

1

2

(
1 −i

)( 1
1

)
=

1

2
(1− i) .�
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Note〈ψ|φ〉 6= 〈φ|ψ〉 i.e. the inner product is not commutative.

However, in our example

〈ψ|φ〉 = 〈φ|ψ〉∗ . (2.11)

This is true in general: inner product reversal is equivalent to complex conjugation.

Assignment: tackle Problem 9.

This allows us to easily reverse a change of basis.

For instance, take the transoformation from eigenstates of energy to eigenstates of position in the example
on page 29, Eqs. (2.4,2.5):

|xL〉=
1√
2

(|E0〉+ |E1〉) and |xR〉 =
1√
2

(|E0〉 − |E1〉) .

From it we can read o� the projections

〈E0|xL〉 =
1√
2

; 〈E1|xL〉 =
1√
2

; 〈E0|xR〉 =
1√
2

; 〈E1|xR〉 = − 1√
2
. (2.12)

Using Eq. (35) we can deduce

〈xL|E0〉 =
1√
2

; 〈xL|E1〉 =
1√
2

; 〈xR|E0〉 =
1√
2

; 〈xR|E1〉 = − 1√
2

(2.13)

from which the inverse of Eqs. (2.4,2.5) follows:

|E0〉 =
1√
2

(|xL〉+ |xR〉) and |E1〉 =
1√
2

(|xL〉 − |xR〉) (2.14)

Assignment: tackle Problem 10.
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2.6 Bras, kets and completeness

We now derive some further consequences of the de�nition of the inner product.

The de�nition of the inner product for two arbitrary states|φ〉, |ψ〉, Eqs. (2.8-2.10), suggests that we de�ne
the bra〈φ| corresponding to a ket|φ〉 in terms of the bras of the basis states as follows:

〈φ| = φ∗L〈xL|+ φ∗R〈xR| . (2.15)

In e�ect using this de�nition the expression〈φ|ψ〉 naturally leads to the correct form of the inner product:

〈φ|ψ〉 = (φ∗L〈xL|+ φ∗R〈xR|) (ψL|xL〉+ ψR|xR〉)
= φ∗LψL 〈xL|xL〉︸ ︷︷ ︸

=1

+φ∗RψL 〈xR|xL〉︸ ︷︷ ︸
=0

+φ∗RψL 〈xR|xL〉︸ ︷︷ ︸
=0

+φ∗RψR 〈xR|xR〉︸ ︷︷ ︸
=1

= φ∗LψL + φ∗RψR,

where in the2nd line we have used linearity and in the 3rd that{|xL〉, |xR〉} is a basis for our Hilbert space.
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Using bras and kets we can express thecompleteness relation:

|xL〉〈xL|+ |xR〉〈xR| = 1
completeness relation
for position eigenstates

(2-state system)

(2.16)

Proof:

Let|ψ〉 = A|xL〉+B|xR〉 be an arbitrary state.

Let us apply the operator|xL〉〈xL|+ |xR〉〈xR| from the left:

(|xL〉〈xL|+ |xR〉〈xR|) |ψ〉 = |xL〉 〈xL|ψ〉︸ ︷︷ ︸
=A

+|xR〉 〈xR|ψ〉︸ ︷︷ ︸
=B

= A|xL〉+B|xR〉
= |ψ〉

so multiplying by|xL〉〈xL|+ |xR〉〈xR| does nothing to the state,Q.E.D.�

Exactly the same applies to the basis vectors of any other representation, e.g.

|E0〉〈E0|+ |E1〉〈E1| = 1

completeness relation
for energy eigenstates

(2.17)
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The completeness relation can be used to obtain the inner product: given two states

|φ〉 = φL|xL〉+ φR|xR〉 and
|ψ〉 = ψL|xL〉+ ψR|xR〉 ,

the projection of|ψ〉 on|φ〉 is

〈φ|ψ〉 = 〈φ| (|xL〉〈xL|+ |xR〉〈xR|) |ψ〉
= 〈φ| (|xL〉〈xL|ψ〉+ |xR〉〈xR|ψ〉)
= 〈φ|xL〉︸ ︷︷ ︸

=〈xL|φ〉∗

〈xL|ψ〉+ 〈φ|xR〉︸ ︷︷ ︸
=〈xR|φ〉∗

〈xR|ψ〉

= φ∗LψL + φ∗RψR,

which is exactly the de�nition of the inner product (2.10).

Likewise, if the decompositions of the same states in the energy basis are

|φ〉 = φ0|E0〉+ φ1|E1〉 and
|ψ〉 = ψ10|E0〉+ ψ1|E1〉 ,

respectively, then

〈φ|ψ〉 = 〈φ| (|E0〉〈E0|+ |E1〉〈E1|) |ψ〉
= φ∗0ψ0 + φ∗1ψ1.

This shows thatthe de�nition of the inner product is basis-independent:

〈φ|ψ〉 = φ∗LψL + φ∗RψR = φ∗0ψ0 + φ∗1ψ1 .

In fact, it is not a de�nition, but simply a consequence of the completeness relations which are in turn
consequences of the superposition principle.
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So we now know how to change basis (representation) from eigenstates of one property to eigenstates of
another property, buthow do we know which are the eigenstates and eigenvalues of a given property?

2.7 Operators

For every measurable property (e.g. positionx or energyE) there is alinear operatorde�ned in the system's
Hilbert space:

states of the system
operator→ states of the system

The eigenstates and eigenvalues of the property are those of the corresponding operator.

For example,the operator for positionx is denotedx̂ and has the following properties:

� Linearity:
x̂ (A|ψ〉+B|φ〉) = Ax̂|ψ〉+Bx̂|φ〉 (2.18)

� Eigenstates and eigenvalues:

x̂|xL〉 = xL|xL〉 (2.19)

x̂|xR〉 = xR|xR〉 (2.20)
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For example,the operator for energyE is denotedĤ and obeys:

� Linearity:
Ĥ (A|ψ〉+B|φ〉) = AĤ|ψ〉+BĤ|φ〉 (2.21)

� Eigenstates and eigenvalues:

Ĥ|E0〉 = E0|E0〉 (2.22)

Ĥ|E1〉 = E1|E1〉 (2.23)
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2.8 Action of operators on arbitrary states

From the action of an operator on its eigenstates we can work out how it acts on any other state.

� For example, if we know|ψ〉 in terms of|xL〉 and|xR〉 then we know howx̂ acts on|ψ〉:

|ψ〉 = A|xL〉+B|xR〉 (2.24)

⇒ x̂|ψ〉 = x̂ (A|xL〉+B|xR〉)
= A x̂|xL〉︸ ︷︷ ︸

=xL|xL〉

+B x̂|xLR〉︸ ︷︷ ︸
=xR|xR〉

⇒ x̂|ψ〉 = AxL|xL〉+BxR|xR〉. (2.25)

In terms of the state vectors in the position basis/representation,

x̂

(
A
B

)
=

(
AxL
BxR

)
=

(
xL 0
0 xR

)(
A
B

)
(2.26)

i.e. the action of the operatorx̂ on state vectors in the position representation is described by the
diagonalmatrix

x̂ =

(
xL 0
0 xR

)
. (2.27)
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� Similarly if we know|ψ〉 in terms of|E0〉 and|E1〉 then we know howĤ acts on|ψ〉:

|ψ〉 = C|E0〉+D|E1〉 (2.28)

⇒ Ĥ|ψ〉 = CE0|E0〉+DE1|E1〉. (2.29)

Thus in the energy basis/representation,

Ĥ

(
C
D

)
=

(
E0 0
0 E1

)(
C
D

)
(2.30)

so the matrix representingĤ in the energy basis is

Ĥ =

(
E0 0
0 E1

)
. (2.31)

In general, the operator corresponding to any observable takes the form of adiagonal matrixwhose non-zero
elements are the eigenvalues of that observablein the basis of eigenstates of that observable.
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What if we want|ψ〉 in one basis e.g.
|ψ〉 = ψL|xL〉+ ψR|xR〉 (2.32)

and want to �nd the e�ect of another operatore.g.Ĥ|ψ〉?

� Option 1 (quite tedious):change basis of|ψ〉 [Subsec. 2.4]

{|xL〉, |xR〉} → {|E0〉, |E1〉} , (2.33)

then applyĤ, then transform back.

� Option 2 (much better!): we wantĤ|ψ〉 in basis{|xL〉, |xR〉} . Compute amplitudes〈
xL|Ĥ|ψ

〉
,
〈
xR|Ĥ|ψ

〉
. (2.34)
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Let's do the latter. Substituting Eq. (2.32),〈
xL|Ĥ|ψ

〉
= 〈xL|Ĥ (ψL|xL〉+ ψR|xR〉)

= 〈xL|
(
ψLĤ|xL〉+ ψRĤ|xR〉

)
= 〈xL|ψLĤ|xL〉+ 〈xL|ψRĤ|xR〉
= ψL〈xL|Ĥ|xL〉+ ψR〈xL|Ĥ|xR〉 (2.35)

Here we used that

1. Ĥ is linear and

2. the projection operation〈xL| . . . is linear.

Similarly 〈
xR|Ĥ|ψ

〉
= ψL〈xR|Ĥ|xL〉+ ψR〈xR|Ĥ|xR〉 (2.36)

Thus in the{|xL〉, |xR〉} basis

Ĥ|ψ〉 =

 〈
xL

∣∣∣Ĥ∣∣∣ψ〉〈
xR

∣∣∣Ĥ∣∣∣ψ〉
 =

 〈
xL

∣∣∣Ĥ∣∣∣xL〉 〈
xL

∣∣∣Ĥ∣∣∣xR〉〈
xR

∣∣∣Ĥ∣∣∣xL〉 〈
xR

∣∣∣Ĥ∣∣∣xR〉
( ψL

ψR

)
,

so the matrix representingĤ in the position basis is

Ĥ =

 〈
xL

∣∣∣Ĥ∣∣∣xL〉 〈
xL

∣∣∣Ĥ∣∣∣xR〉〈
xR

∣∣∣Ĥ∣∣∣xL〉 〈
xR

∣∣∣Ĥ∣∣∣xR〉
 (2.37)
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Graphical interpretation of the action of an operator in the Hilbert space:

Eigenstates of a property are onlyshortened,lengthened, and/orreversed under the action of the corre-
sponding operator. Anyrotationmeans that the state is not an eigenstate of that property.

E.g. take|E0〉 which is an eigenstate ofĤ but not ofx̂. CompareĤ|E0〉 tox̂|E0〉:

Ĥ|E0〉 = E0|E0〉 (2.38)

x̂|E0〉 = x̂ (〈xL|E0〉|xL〉+ 〈xR|E0〉|xR〉)
= 〈xL|E0〉x̂|xL〉+ 〈xR|E0〉x̂|xR〉
= 〈xL|E0〉xL|xL〉+ 〈xR|E0〉xR|xR〉 (2.39)
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2.9 Quantisation

We now discuss how to �nd what values a property can take i.e. how observables arequantised.

As we will see quantisation follows from the postulates introduced above (i.e. not a new postulate).

Since the allowed values of a property are the eigenvalues of the corresponding operator, knowing how the
operator acts on arbitrary states allows us to �nd the permissible (i.e. quantised) values of the property.
How? By solving the theeigenvalue problem.

Example: Suppose a two-state system with Hamiltonian

Ĥ =

(
0 −T
−T 0

)
(2.40)

in the{|xL〉, |xR〉} basis.

T > 0 is an unspeci�ed parameter which must be anenergye.g.T = 1eV.

What are the allowed values of the energy?
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Solution:

1. Write the eigenvalue problem:
Ĥ|En〉 = En|En〉. (2.41)

2. Write the energy eigenstate|En〉 in the position basis:

|En〉 = An|xL〉+Bn|xR〉. (2.42)

3. Re-write (2.41) as amatrix eigenvalue problem:(
0 −T
−T 0

)(
An
Bn

)
= En

(
An
Bn

)
. (2.43)

4. Find the roots of thecharacteristic polynomial:∣∣∣∣( 0 −T
−T 0

)
− En

(
1 0
0 1

)∣∣∣∣ = 0 (2.44)

⇒
∣∣∣∣( −En −T
−T −En

)∣∣∣∣ = 0

⇒ E2
n − T 2 = 0

The two solutionsEn = ±T are theeigenvalues of the energy:

E0 = −T ground state energy; (2.45)

E1 = +T excited state energy. (2.46)

�
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Example: what are the corresponding eigenstates? Express them in the position basis.

In the energy basis, by de�nition

|E0〉 ≡
(

1
0

)
and |E1〉 ≡

(
0
1

)
. (2.47)

In position basis, each energy eigenstate|En〉 will have some unknown componentsAn, Bn:

|En〉 = An|xL〉+Bn|xR〉 =

(
An
Bn

)
. (2.48)

We want to determine the amplitudesAn, Bn (n = 0, 1):

1. Go back tot heeigenvalue problem(2.43) substituting theknown values of the energy(2.45,2.46):(
0 −T
−T 0

)(
An
Bn

)
= ∓T

(
An
Bn

)
for n =

{
0
1

(2.49)

⇒
(
−TBn

−TAn

)
=

(
∓TAn
∓TBn

)
⇒

{
−TBn = ∓TAn
−TAn = ∓TBn

⇒

{
Bn = ±An
An = ±Bn (redundant)

i.e.
Bn = ±An. (2.50)

This does not determine overall size of the amplitudes, only theirrelative size and sign.
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2. To �nd absolute size usenormalisation:

|An|2 + |Bn|2 = 1. (2.51)

AssumingAn > 0 (real)45

A2
n +B2

n = 1. (2.52)

Substituting (2.50) we get
A2
n + A2

n = 1⇒ An = 1/
√

2. (2.53)

3. Substituting (2.53) and (2.50) back into (2.48) we arrive at thesolutions

Energy State

E0 = −T |E0〉 =

(
1/
√

2

1/
√

2

)
in position basis = 1√

2
(|xL〉+ |xR〉)

E1 = +T |E1〉 =

(
1/
√

2

−1/
√

2

)
in position basis = 1√

2
(|xL〉 − |xR〉)

�

Assignment: tackle Problem11.

4Amplitudes of probabilitycan be complex; we will see this later on in the module.
5We could have assumedAn have any other phase e.g.An = −|An|(negative) orAn = |An| eiθ for any other phaseθ. It doesn't

matter as long as therelativephase betweenAn andBn is consistent with (2.50). This is because probabilities depend on the

squared magnitude|An|2 which does not change with the sign, or phase, ofAn.
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2.10 Hermitian and self-adjoint operators

Measurements yield real numbers so although amplitudes of probability are complex numbers, eigenvalues
must be real.

E.g.

� Energy:Ĥ|E〉 = E|E〉 withE real;

� Position:x̂|x〉 = x|x〉 withx real.

Operators whose eigenvalues are real are calledHermitian,

therefore
All operators representing observables must be Hermitian.
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Given an operatore.g. Ĥ itsadjointĤ† is de�ned by〈
ψ
∣∣∣Ĥ†∣∣∣φ〉 =

〈
φ
∣∣∣Ĥ∣∣∣ψ〉∗ (2.54)

for every pair of states|ψ〉, |φ〉.

An operatore.g. isself-adjointif

Ĥ = Ĥ†. (2.55)

In that case its matrix

Ĥ =

(
H1,1 H1,2

H2,1 H2,2

)
inany basishas the property

Hn,m = H∗m,n (2.56)

i.e. its transpose is the same as its complex conjugate or, equivalently,

H1,1 and H2,2 are real (2.57)

and H2,1 = H∗1,2. (2.58)

Theorem:(not proven)

An operator is self-adjoint if and only if it is Hermitian .

As a direct consequence, all operators describing observables are self-adjoint.
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2.11 Expectation values

The expectation value〈x̂〉 of an observable such as position x in a given state (e.g. |ψ〉 = A|xL〉+B|xR〉)
is the average value ofx obtained after many measurements always with the system prepared in the same
intitial state |ψ〉.
The expectation value is evidently given by

〈x̂〉 = xL |A|2 + xR |B|2 (2.59)

i.e. 〈x̂〉 = xL |〈xL|ψ〉|2 + xR |〈xR|ψ〉|2 (2.60)

It is thus easy to calculate an expectation value if we know the probabilities of various measurement
outcomes.

Assignment: tackle Problem12.

It is trivial to show that the de�nition in Eq. (2.59) is, in matrix form,

〈x̂〉 =
(
A∗ B∗

) (
xL 0
0 xR

) (
A
B

)
.

bra 〈ψ| in matrix of x̂ in ket |ψ〉 in
position basis position basis position basis

(2.61)

The expectation value can also be expressed compactly using bra-kets:

〈x̂〉 = 〈ψ |x̂|ψ〉

expectation value
of position x

(2.62)
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Proof:

〈ψ |x̂|ψ〉 = 〈ψ|x̂| (A|xL〉+B|xR〉)
= A〈ψ| x̂|xL〉︸ ︷︷ ︸

=xL|xL〉

+B〈ψ| x̂|xR〉︸ ︷︷ ︸
=xR|xR〉

= = xLA 〈ψ|xL〉︸ ︷︷ ︸
=〈xL|ψ〉∗=A∗

+xRB 〈ψ|xR〉︸ ︷︷ ︸
=〈xR|ψ〉∗=B∗

= xL |A|2 + xR |B|2 Q.E.D. �

Bra-kets allow us to compute the expetation value using any other basis e.g. energy:

〈x̂〉 = 〈ψ|x̂|ψ〉

[insert completeness relation, twice] = 〈ψ|
1=︷ ︸︸ ︷

(|E0〉〈E0|+ |E1〉〈E1|) x̂
1=︷ ︸︸ ︷

(|E0〉〈E0|+ |E1〉〈E1|) |ψ〉
= (〈ψ|E0〉︸ ︷︷ ︸

=〈E0|ψ〉∗

〈E0|+ 〈ψ|E1〉︸ ︷︷ ︸
=〈E1|ψ〉∗

〈E1|)x̂(|E0〉〈E0|ψ〉+ |E1〉〈E1|ψ〉)

⇒
〈x̂〉 =

(
〈E0|ψ〉∗ 〈E1|ψ〉∗

) (
〈E0|x̂|E0〉 〈E0|x̂|E1〉
〈E1|x̂|E0〉 〈E1|x̂|E1〉

) (
〈E0|ψ〉
〈E1|ψ〉

)
.

bra 〈ψ| in matrix of x̂ in ket |ψ〉 in
energy basis energy basis energy basis

(2.63)

One can therefore calculate an expectation value directly from state vectors and operator matrices, as an
alternative to using the straight de�nition.

Assignment: tackle Problem13.
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2.12 Gauge freedom

One consequence of everything we've seen so far (not a new postulate) is that changing the theoverall
phaseof the wave function,

|ψ〉 → |ψ〉eiα, (2.64)

doesnota�ectexpectation valuessuch as

〈ψ |x̂|ψ〉 (position),〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 (energy),

etc. (2.65)

Why? Because probabilities are una�ected:6

|〈xL|ψ〉|2 = 〈xL|ψ〉∗ 〈xL|ψ〉 (2.66)

→
(
〈xL|ψ〉 eiα

)∗ (〈xL|ψ〉 eiα) (2.67)

= 〈xL|ψ〉∗ e−iα 〈xL|ψ〉 eiα (2.68)

= |〈xL|ψ〉|2 , (2.69)

therefore all statistical averages like (2.60) will be unchanged,Q.E.D.�

6Remember that for any angleα the phase factor
(
eiα
)∗

= (cosα+ i sinα)
∗

= cosα− i sinα = e−iα.



3 State Evolution

This section covers

� The Schrodinger equation. Stationary states. Completeness. Expectation values. Collapse of the state
vector.

3.1 Time-evolution (1): the Schrödinger Equation

A general state|ψ〉will be time-dependent:|ψ (t)〉.
Its time-evolution is given bythe Schrödinger equation (SE):

i~
∂

∂t
|ψ (t)〉 = Ĥ|ψ (t)〉 . (3.1)

Here

� i ≡
√
−1 (the imaginary unit);

� ~ ≡ h/2π (Planck's constant,h ≈ 6.62607004× 10−34 J s, divided by 2π);

� Ĥ = Ê (the Hamiltonian operator).

This is one of the most importantpostulates of Quantum Mechanics.

The energy operator is thus a special one as it determines how system evolve in time. That's why it gets its
own name (�Hamiltonian�).
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Let us write
|ψ (t)〉 = A (t) |xL〉+B (t) |xR〉 (3.2)

i.e.

|ψ (t)〉 =

(
A (t)
B (t)

)
in the {|xL〉, |xR〉} basis. (3.3)

In this representation the position eigenstates|xL〉, |xR〉 are taken to be static and the time-dependence
of|ψ (t)〉 is encapsulated in the time-evolution of the corresponding amplitudes of probability

A (t) = 〈xL|ψ (t)〉 ; (3.4)

B (t) = 〈xR|ψ (t)〉 . (3.5)

Let us re-write the SE (3.1) as a di�erential equation forA (t) andB (t):

1. The LHS is

i~
∂

∂t
|ψ (t)〉 = i~

∂

∂t
[A (t) |xL〉+B (t) |xR〉]

=

[
i~
∂

∂t
A (t)

]
|xL〉+

[
i~
∂

∂t
B (t)

]
|xR〉

=

(
i~ ∂

∂t
A (t)

i~ ∂
∂t
B (t)

)
in the {|xL〉, |xR〉} basis. (3.6)

2. The RHS

Ĥ|ψ (t)〉 = Ĥ [A (t) |xL〉+B (t) |xR〉]
= A (t) Ĥ|xL〉+B (t) Ĥ|xR〉 (3.7)
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To write this as a vector in the{|xL〉, |xR〉} basis we need the projections onto|xL〉 and|xR〉:〈
xL

∣∣∣Ĥ∣∣∣ψ (t)
〉

= 〈xL|
[
A (t) Ĥ|xL〉+B (t) Ĥ|xR〉

]
= A (t) 〈xL|Ĥ|xL〉+B (t) 〈xL|Ĥ|xR〉 and (3.8)〈

xR

∣∣∣Ĥ∣∣∣ψ (t)
〉

= 〈xR|
[
A (t) Ĥ|xL〉+B (t) Ĥ|xR〉

]
= A (t) 〈xR|Ĥ|xL〉+B (t) 〈xR|Ĥ|xR〉, respectively. (3.9)

Thus the RHS is

Ĥ|ψ (t)〉 =

(
A (t) 〈xL|Ĥ|xL〉+B (t) 〈xL|Ĥ|xR〉
A (t) 〈xR|Ĥ|xL〉+B (t) 〈xR|Ĥ|xR〉

)
=

(
〈xL|Ĥ|xL〉 〈xL|Ĥ|xR〉
〈xR|Ĥ|xL〉 〈xR|Ĥ|xR〉

)(
A (t)
B (t)

)
in the {|xL〉, |xR〉} basis. (3.10)

3. We now equate the expressions obtained in (3.6) and (3.10):

i~
∂

∂t

(
A (t)
B (t)

)
=

(
〈xL|Ĥ|xL〉 〈xL|Ĥ|xR〉
〈xR|Ĥ|xL〉 〈xR|Ĥ|xR〉

)(
A (t)
B (t)

)
, (3.11)

which is the SE in the{|xL〉, |xR〉} basis.

As we see the equation involves the matrix representingĤ in that basis. An analogous expression is valid in
any other basis.
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3.2 Stationary states

Recall the Schrödinger Equation

i~
∂

∂t
|ψ (t)〉 = Ĥ|ψ (t)〉 (3.1)

features the Hamiltonian operatorĤ. This makes eigenstates of the energy special.

Consider arbitrary state|ψ(t)〉. Let us expand

|ψ (t)〉 = ψ0 (t) |E0〉+ ψ1 (t) |E1〉 (3.12)

where|E0〉, |E1〉 are the (time-independent) eigenstates of the energy:

Ĥ|En〉 = En|En〉 (3.13)

n = 0, 1

Obtaining the time-evolution of|ψ(t)〉 is the same as obtaining that of the probability amplitudesψ0 (t) , ψ1 (t) .
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Let's put the Schrödinger equation in terms of the energy-basis probability amplitudes:

1. Put (3.12) into (3.1):

i~
∂

∂t
[ψ0 (t) |E0〉+ ψ1 (t) |E1〉] = Ĥ [ψ0 (t) |E0〉+ ψ1 (t) |E1〉]

⇒
[
i~
∂

∂t
ψ0 (t)

]
|E0〉+

[
i~
∂

∂t
ψ1 (t)

]
|E1〉 = ψ0 (t) Ĥ|E0〉+ ψ1 (t) Ĥ|E1〉

[using (3.13)] = [ψ0 (t)E0] |E0〉+ [ψ1 (t)E1] |E1〉

2. For the LHS on the second line to equate the RHS on the third line we must have the amplitudes of
the two energy eigenstates to be the same:

i~
∂

∂t
ψ0 (t) = ψ0 (t)E0 (3.14)

i~
∂

∂t
ψ1 (t) = ψ1 (t)E1 (3.15)

i.e.

i~ ∂
∂t

(
ψ0 (t)
ψ1 (t)

)
=

(
E0

E1

)(
ψ0 (t)
ψ1 (t)

)
Schrödiner Equation in energy basis

(3.16)

Note the equations forψ0 (t) and ψ1 (t) are decoupled.
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Let us now solve these equations:

(3.14)⇒ ∂

∂t
ψ0 (t) = −iE0

~
ψ0 (t) (3.17)

|ψ1 (t)|2 = |ψ1 (0)|2 ⇒ ψ0 (t) = ψ0 (0) e−i
E0
~ t (3.18)

i.e. the time-evolution ofψ0 (t) is just a multiplication by a phase factore−iE0t/~:


0
(0)


0
(t)

Re[
0
]

Im[
0
]

This means the probability of measuring energyE0 is constant:

|ψ0 (t)|2 = |ψ0 (0)|2 . (3.19)

Likewise

(3.15) ⇒ ψ1 (t) = ψ1 (0) e−i
E1
~ t (3.20)

⇒ |ψ1 (t)|2 = |ψ1 (0)|2 . (3.21)
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Consequences:

� If initial state is an eigenstate of the energye.g.

ψ0 (0) = 1
ψ1 (0) = 0

}
⇒ initial state is |ψ (0)〉 = |E0〉

then the time-evolution just changes the overall phase,

|ψ (t)〉 = e−i
E0
~ t|ψ (0)〉

Gauge freedom [Subsec.2.12] then implies that all measurable properties stay the same.

In other words, energy eigenstates are stationary .

� If we know the energy eigenstates [i.e. the solutions to Eq. (3.13)] then it is straight-forward to compute
the time-evolution of any given initial state|ψ (0)〉:

1. Find amplitudes in energy basis:

ψ0 (0) = 〈E0|ψ (0)〉 , (3.22)

ψ1 (0) = 〈E1|ψ (0)〉 . (3.23)

2. The time-evolved states is given by

|ψ (t)〉 = ψ0 (t) |E0〉+ ψ1 (t) |E1〉, (3.24)

where

ψ0 (t) = ψ0 (0) e−i
E0
~ t; (3.25)

ψ1 (t) = ψ1 (0) e−i
E1
~ t. (3.26)
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Example: the ammonia molecule (NH3)
7

This has two equivalent con�gurations, one with the Nitrogen atom above the plane de�ned by the
Hydrogens and another one with the Nitrogen below the Hydrogens:

We we call these two states|N〉 and |H〉, respectively.
The stationary states (i.e. the energy eigenstates) are known to be

|E0〉 =
1√
2

(
1
1

)
and |E1〉 =

1√
2

(
1
−1

)
in the {|N〉, |H〉} basis.

How does the state|N〉 evolve in time?

7For a much more extensive treatment, see Feynmann in the module's reading list.
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Solution:

The intial state is

|ψ (0)〉 = |N〉 =

(
1
0

)
in the {|N〉, |H〉} basis.

Follow the two-step process outlined above.

Step 1:

〈E0|ψ (0)〉 =

(
1√
2
,

1√
2

)∗(
1
0

)
=

1√
2

1 +
1√
2

0 =
1√
2

〈E1|ψ (0)〉 =

(
1√
2
,− 1√

2

)∗(
1
0

)
=

1√
2

1− 1√
2

0 =
1√
2

∴ |ψ (0)〉 =
1√
2
|E0〉+

1√
2
|E1〉

Step 2:

|ψ (t)〉 =
1√
2
e−i

E0
~ t|E0〉+

1√
2
e−i

E1
~ t|E1〉

=
1

2
e−i

E0
~ t

(
1
1

)
+

1

2
e−i

E1
~ t

(
1
−1

)
in the {|N〉, |H〉} basis

=
1

2

(
e−i

E0
~ t + e−i

E1
~ t

e−i
E0
~ t − e−i

E1
~ t

)
in the {|N〉, |H〉} basis
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Now substituteE0 = −∆/2,E1 = +∆/2 to obtain8

|ψ (t)〉 =

(
cos
(

∆
2~t
)

i sin
(

∆
2~t
) ) in the {|N〉, |H〉} basis �

So the amplitudes of probability for the N to be above or below the three H's both vary harmonically.

It is most illustrative to look at the actual probabilities that the N will be above or below, respectively:

PN (t) = |〈N|ψ (t)〉|2 = cos2

(
∆

2~
t

)
PH (t) = |〈H|ψ (t)〉|2 = sin2

(
∆

2~
t

)

8We've used the well-known relations

eiα + e−iα = 2 cosα

eiα − e−iα = 2i sinα
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Thus the molecule oscillates harmonically between the two con�gurations: initially it is certainlyN, then
the probability ofH increases until it aH con�guration becomes certain, after which then the probability ofN
starts to increase again and so on, withperiod

τ =
h

∆
i.e. τ =

h

E1 − E0

. (1.6)

This is the result we quoted without proof in Subsec. 1.3. Well, here is the proof!9

Assignment: tackle Problem14.

9The reader who strives for more generality may want to note that the result stems from the fact that the initial state was
an equal superposition of two energy eigenstates with energiesE1 andE0. It does not relay on any of the details of the particualr
problem we were considering.
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3.3 Collapse of the state vector

This is one of our �nal postulates.

Take system in arbitrary state|ψ〉. Measure property e.g. positionx. Suppose we obtain valuexL. Then

Immediately after the
measurement the system is in the state|xL〉.

The wave function has�collapsed�:
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The collapse of the wave function is consistent with the result obtained in the measurement:

It does not matter which property we are measuring - e.g. an energy measurement of the energy leads to an
energy eigenstate:
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Note a consequence of wave function collapse is that, after a measurement, we becomecertainof the measured
property but this may implyuncertaintyof some other property, e.g. if we measure energy and getE0 we
are certain to be in the state|E0〉 but this state may have an uncertain position e.g. 50%xL, 50%xR. This
connects with our discussion of the Heisenberg Uncertainty Principle on page19.

Wave function collapse applies also to time-dependent states - e.g. an observation of the position of the N
atom in an ammonia molecule at timetobs could modify the plot on page64 thus (assuming the measurement
yieldsN):

Thus measurement introduces an additional, non-linear dynamics on top of that given by the Schrödinger
equation which is linear and applies while the system is not being observed.

Assignment: tackle Problem15.
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4 Wave Functions

This section covers

� The wavefunction. Probability density.

� Solutions of the Schrodinger equation for simple physical systems with constant potentials: Free parti-
cles. Particles in a box. Classically allowed and forbidden regions.

4.1 Three states

Suppose a quantum system with 3 di�erent states,e.g. a particle can be in one of 3 boxes atx = xL, xM , xR:

States can be represented by 3-component vectors. Operators decribing observables are3× 3 matrices.

In our example a state|ψ〉 would be represented by a three-component vector,

|ψ〉 =

 ψL
ψM
ψR

 , (4.1)
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whereψL ≡ 〈xL|ψ〉 ,ψM ≡ 〈xM |ψ〉 , andψR ≡ 〈xR|ψ〉 are the amplitudes of probability to �nd the particle in
the left (L), middle (M) and right (R) boxes, respectively. These amplitudes will be subject to a normalisation
condition of the form

|ψL|2 + |ψM |2 + |ψR|2 = 1. (4.2)

The Hamiltonian will be the matrix

Ĥ =

 HL,L HL,M HL,R

HM,L HM,M HM,R

HR,L HR,M HR,R

 (4.3)

where the matrix elementsHL,L ≡
〈
xL|ĤxL

〉
, HL,L ≡

〈
xL|ĤxL

〉
, etc.

For any 3-state system,Ĥ will in general have 3 eigenstates|E0〉, |E1〉, |E2〉 with 3 corresponding eigenvaluesE0, E1, E2.
Two or more of these eigensates may bedegenerate, i.e. the sates may be di�erent but with the same eigen-
value e.g.E0 = E1 < E2.

4.2 Many states

We could have many more possible states,e.g. a particle which has availableN di�erent boxes:
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The the Hilbert space becomesN -dimensional! States are repsented byN -dimensional vectors

|ψ〉 =


ψ1

ψ2
...
ψN

 (4.4)

where thenth amplitude is given byψn = 〈xn|ψ〉.

Normalisation implies
∑N

n=1 |ψn|
2 = 1.

Operators are represented byN ×N matrices withN eigenstates and up to10N eigenvalues.

10We write�up to� because two or more distinct eigenstates could be degenerate, i.e. share the same eigenvalue.
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The state vector for|ψ〉 can be seen as a functionψ (xn) assigning to each allowed valuexn of the measured
propertyx and amplitude of probability〈xn|ψ〉 :

x1 → ψ1 = 〈x1|ψ〉 ≡ ψ (x1)

x2 → ψ2 = 〈x2|ψ〉 ≡ ψ (x2)

. . . (4.5)

xN → ψN = 〈xN |ψ〉 ≡ ψ (xN)

ψ (xn) is the�wave function� of state|ψ〉 in the position representation.

Matrices that are diagonal in a given basis that be viewed as multiplicatione.g. in position basis,

x̂ =


x1

x2

. . .

xN0

 (4.6)

∴ x̂|ψ〉 =


x1

x2

. . .

xN0




ψ1

ψ2
...
ψN

 =


x1ψ1

x2ψ2
...

xNψN

 (4.7)

which can be written
x̂ψ (xn) = xnψ (xn) (4.8)

i.e. we multiply the functionψ (x) byx.
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4.3 A continuum

What if x (or some other variable) can change continuously?

In this case it no longer makes sense to talk about a state vector however we still can talk about awave
function:

x→ ψ (x) = 〈x|ψ〉
The normalisation condition is now an integral:∫ L

0

dx |ψ (x)|2 =

∫ L

0

dx |ψ (x)|2 = 1

Note the wave function hasdimensions:

[dx] = Length⇒
[
|ψ (x)|2

]
= 1/Length⇒ [ψ (x)] = 1/

√
Length

C.f. to state vectors which are dimensionless!

ψ (x) is a probability density per unit length:

|ψ (x)|2 dx = probability of �nding particle within dx of x
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For example, consider the wave function

ψ (x) = A sin
(πx
L

)

What is the normalisation constant A?

We require

1 =

∫ L

0

dx |ψ (x)|2 = A2

∫ L

0

dx sin (xπ/L)2

We now introduce the change of variables

y ≡ πx

L
⇒ dy =

π

L
dx⇒ dx =

L

π
dy.

Thus we have

1 = A2L

π

∫ π

0

dy sin2 y
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Now we notice that the integral on the RHS is made up of two identical contributions, one fromy = 0 . . . π/2
and another one fromy = π/2 . . . π:

We thus can write ∫ π

0

dy sin2 y = 2

∫ π/2

0

dy sin2 y

and recognise the integral on the RHS as a particular instance of

from the standard formula sheet (taking m = 2), giving∫ π/2

0

dy sin2 y =
1

2

∫ π/2

0

dx =
π

4
.

Thus

1 = A2L

�π
2
�π

4
⇒ A =

√
2

L
⇒ the wave function is ψ (x) =

√
2

L
sin
(πx
L

)
.

Assignment: tackle Problem16.
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4.4 Operators in a continuum

For a continuum of possible states, operators are not matrices, but general operations carried out on the
functions in that basis.

For example in position representation

x̂ψ (x) = xψ (x) (because x̂ is diagonal in the position basis) (4.9)

andp̂ψ (x) =
~
i

∂

∂x
ψ (x) i.e. p̂ =

~
i

∂

∂x
momentum operator in pos. basis

(4.10)

The above expression of the momentum operator int he position basis is our 7th postulate of Quantum
Mechanics.

Knowing x̂ and p̂ in the position basis allows us to construct any operator, such as the Hamiltonian Ĥ, of a
quantum system from that of its classical counterpart. E.g.

Hclassical =
p2

2m
+ V (x)⇒ Ĥ =

p̂2

2m
+ V (x̂)⇒ Ĥ =

1

2m

(
~
i

∂

∂x

)2

+ V (x) (4.11)

Assignment: tackle Problem 17.
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The completeness relation (Eq. (2.16), can be generalised to a continuum of position eigenstates:∫
dx|x〉〈x| = 1

completeness relation
for position eigenstates

(1D continuum)

. (4.12)

This works for any other operator too, e.g.
∫
dp|p〉〈p| = 1.
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We use this to generalise our expectation value formula (2.63):

� Consider an operator representing an observable property, expressed in a given basis. For instance, the
momentum operatorp̂expressed in the position basisx [Eq. (4.10)].

� The espectation value of the property in question in a state|ψ〉 whose wave function in that basis
is〈x|ψ〉 = ψ (x) can be ontained using

〈ψ |p̂|ψ〉 =

∫
dxψ (x)∗ p̂ψ (x) . (4.13)

Proof: this is analogous to the matrix expression (2.63), valid for a discrete, two-state system (note also that
in that case we were computing the expectation value ofx, notp). The proof is also analogous: we want to
show that the above expression is the same as

〈ψ |p̂|ψ〉 =

∫
dpPψ (p) p,

wherePψ (p) = |〈p|ψ〉|2 is the proabability that, in the state|ψ〉, a measurement of momentum will yield the
valuep. Indeed

〈ψ |p̂|ψ〉 = 〈ψ|p̂|

1=︷ ︸︸ ︷∫
dp|p〉〈p|ψ〉 =

∫
dp〈p|ψ〉〈ψ| p̂|p〉︸︷︷︸

=p|p〉

= =

∫
dp〈p|ψ〉 〈ψ|p〉︸ ︷︷ ︸

=〈p|ψ〉∗

p

∫
dp |〈p|ψ〉|2 p, Q.E.D.
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4.5 Free particle: plane waves

Consider a particle moving freely in one dimension:

The Hamiltonian is, in position representation,

Ĥ = − ~2

2m

∂2

∂x2
+ V (4.14)

where the potential energyV isconstant(independent ofx).

The position-representation wave functionψ (x) of a stationary state with energyE is found by solving the
time-independent Schrödinger equation:(

− ~2

2m

∂2

∂x2
+ V

)
ψ (x) = Eψ (x)⇒ − ~2

2m

∂2

∂x2
ψ (x) = (E − V )ψ (x) (4.15)

This is solved by takingψ (x) equal to

ψk (x) = Aeikx

planewave with wave vector k

(4.16)

with E =
~2k2

2m
+ V

energy of plane wave

(4.17)
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Plane wave states|k〉 with wave functions〈x|k〉 ≡ ψk (x) areeigenstates of momentum:

p̂ψk (x) =
~
i

∂

∂x
Aeikx = ~kAeikx = ~kψk (x)⇒ p̂ψk (x) = pψk (x) (4.18)

with momentum p = ~k (4.19)

Eq. (4.19) is another form of thede Broglie wave-particle duality equation:
substitutingk = 2π/λ and~ = h/2π,

p =
h

2π

2π

λ
⇒ p =

h

λ
(4.20)

80



� Note plane wave states are 2-fold degenerate:

Plane wave state |k〉 with momentum + ~k
Plane wave state |−k〉 with momentum − ~k

}
same energy E =

~2k2

2m
+ V (4.21)

One of these states is moving to theleft (p > 0) and the other to theright (p < 0).

� Theprobability densityatx is

|ψk (x)|2 =
∣∣Aeikx∣∣2 = |A|2 (constant) (4.22)

This is consistent with theHeisenberg uncertainty principle∆x∆p & ~: as these are momentum
eigenstates,∆p = 0⇒ ∆x =∞.

� Finally, how do wenormalise a plane wave? Note that
∫∞
−∞ dx |ψk (x)|2 = |A|2

∫∞
−∞ dx =∞ (!!!)The�trick�

is to de�ne avery largeregion of lengthL in which the particle can be found. Then the normalisation
condition becomes ∫ L

0

dx |ψk (x)|2 = |A|2 L = 1⇒ |A| = 1√
L

(4.23)

Objection: if the particle is con�ned to move within0 ≤ x ≤ L, then it is not free!

Response:sure. Plane waves are anidealisation.
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4.6 Particle in a box

Suggested reading (all references are from the module's o�cial reading list):

� Bransden & Joachain Secs. 4.1 to 4.6.

� Zettili Secs. 4.1 to 4.7.

Assume particle in a 1D continuum with Hamiltonian

Ĥ =
p̂2

2m
+ V (x) (4.24)

where the potential

V (x) =

{
0 if 0 ≤ x ≤ L

∞ otherwise.
(4.25)

This de�nes a�box� from 0 toL where the particle is con�ned.

Outside the box we haveE =∞ therefore the stationary wave function

ψ (x) = 0 for x < 0 or x > L. (4.26)

Inside the boxψ (x) the potential is zero so the time-independent Schrödinger equation takes the form

− ~2

2m

∂2

∂x2
ψ (x) = Eψ (x) (4.27)

This is the Schrödinger equation for a plane wave.
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There are two degenerate solutions for the given energy:

ψ (x) = Aeikx and Be−ikx (4.28)

with
~2k2

2m
= E. (4.29)

Any linear comnbination can therefore be a solution:

ψ (x) = Aeikx +Be−ikx. (4.30)

We now introduce anew postulateapplying to continuum wave functions:

ψ (x) must be continuous

Thus

ψ (0) = 0⇒ A+B = 0 (i)

ψ (L) = 0⇒ AeikL +Be−ikL = 0 (ii) (4.31)
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Now from (i) we obtain
ψ (x) = A

(
eikx − e−ikx

)
⇒ ψ (x) = 2iA sin (kx) (4.32)

and from (i) and (ii) we obtain

A
(
eikL − e−ikL

)
= 0⇒ 2iA sin (kL) = 0

⇒ sin (kL) = 0

Now, the anglesα for whichsin (α) = 0 are0, π,and multiples thereof. In this case the angle iskL:

⇒ kL = nπ, n = ±1,±2,±3, . . .

So only some values of the wave numberk are allowed. It is quantised.

This illustrates an important feature of Quantum Mechanics:

CONFINEMENT⇒ QUANTISATION

Once the wave numberk is quantised, so is the energyE:

E =
~2k2

2m
⇒ E =

~2π2

2mL2
n2, n = 1, 2, 3, . . .
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Note ψ (x) ∝ sin
(nπx
L

)
� c.f. vibrations on a string!

Normalisation:

∫ L

0

dx |ψ (x)|2 = 1⇒ |A| = . . . (see Problems)

Assignment: tackle Problem18.
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4.7 Classically-allowed and forbidden regions: the �leaky� box

Let's see what happens when one of the walls of our box is not totally impenetrable i.e. the height of the
energy barrier that a classical particle would have to vercome to exit the box is �nite:

V (x) =


∞ if x < 0

0 if 0 ≤ x ≤ L

V if x > L

(4.33)

Let us assume the energy E of the particle obeys 0 < E < V :

Where can the particle be?

Classically,

� Region I is allowed but

� Region II is forbidden: E = p2/2m+@@V <@@V ⇒ p2 < 0⇒ p imaginary (not allowed)
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Let us now solve the quantum problem:

� Region I: − ~2
2m

∂2

∂x2
ψ (x) = Eψ (x)⇒ ψ (x) = ψI (x) where

ψI (x) =Aeikx +Be−ikx (4.34)

with E =
~2k2

2m

[
⇒ k =

1

~
√

2mE

]
(4.35)

[in Eq. (4.35) we have ignored the negative solution without loss of generality].

� Region II: − ~2
2m

∂2

∂x2
ψ (x) = (E − V )ψ (x)⇒ ψ (x) = ψII (x) where

ψII (x) =Ceiκx +De−iκx (4.36)

with E =
~2κ2

2m
+ V

[
⇒ κ =

1

~
√

2m (E − V )

]
(4.37)

We now note that E − V < 0⇒ κ = i |κ| (imaginary) with |κ| = 1
~

√
2m |E − V | (real positive). Then

ψII (x) is a sum of two exponentials,

ψII (x) = Ce−|κ|x���
��XXXXX+De|κ|x, (4.38)

and we have crossed the second term because it represents an exponential growth of probability of
�nding the particle as we probe deeper into the classically-forbidden region, which makes no physical
sense (and is not normalisable):
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ψ (x) must be continuous at x = 0:

0 = ψI (0) = A+B ⇒ B = −A⇒ ψI (x) = A
(
e−ikx − e−ikx

)
⇒ ψI (x) = 2iA sin (kx) (4.39)

ψ (x) must also be continuous at x = L:

ψI (L) = ψII (L)⇒ 2iA sin (kL) = Ce−|κ|L (4.40)

We now introduce a new postulate:

If V (x) is �nite, then
dψ (x)

dx
must be continuous (4.41)

What this means is that the wave function must not only lack any jumps in value, but must also be smooth
(the exception is when the potential jumps to in�nity, which is why this postulate did not apply for the box
with impenetrable walls, or to the leaky box at x = 0).

At x = 0 the potential is �nite so the new postulate does not apply, however it does at x = L:

dψI (x)

dx

∣∣∣∣
x=L

=
dψII (x)

dx

∣∣∣∣
x=L

⇒ 2iA cos (kL) k = Ce−|κ|L (− |κ|) (4.42)

Combining Eqs. (4.40) and (4.42) we get a relation between k and κ:

��
�2iA sin (kL)

��
�2iA cos (kL) k

=

XXXXCe−|κ|L
XXXXCe−|κ|L (− |κ|)

⇒ tan (kL) = − k

|κ|
(4.43)
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Both k and κ are related to the energy E via Eqs. (4.35,4.37):

E =
~2k2

2m
=

~2κ2

2m
+ V ⇒ κ2︸︷︷︸

=−|κ|2
= k2 − 2mV

~2
⇒ |κ| =

√
2mV

~2
− k2 (4.44)

Combining the last two equations we obtain

tan (kL) = − k√
2mV
~2 − k2

(4.45)

Eqs. (4.35,4.44,4.45) can be written

Ẽ = k̃2 (4.46)

˜|κ| =
√
Ṽ − k̃2 (4.47)

tan
(
k̃
)

= − k̃√
Ṽ − k̃2

(4.48)

where we have de�ned dimensionless expressions for the energy, barrier height, wave vector and decay rate
by using energy scale ~2/2mL2 and length scale L as the units:

Ẽ ≡
(

~2

2mL2

)−1

E; Ṽ ≡
(

~2

2mL2

)−1

V ; |κ̃| ≡ |κ|L; k̃ ≡ kL (4.49)

For a given barrier height Ṽ Eq. (4.48) gives the wave vector k̃ and then we can use (4.47) and (4.46) to �nd
the decay rate |κ| and energy E.
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Eq. (4.48) is a transcedental equation that must be solved graphically and/or numerically.

Here's an example (Ṽ = 25):

The solutions are where the green and purple curves cross.

Since the green curve diverges at k̃ =
√
Ṽ = 5, there are only two such crossings [the k = 0 solution is not

physical].
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� First crossing:

k̃ ≈ 2.6⇒ k ≈ 2.6L−1

⇒ Ẽ ≈ 2.62 ≈ 6.8⇒ E =
~2

2mL2
Ẽ =

V

Ṽ
Ẽ ≈ V

25
6.8 ≈ 0.27V

and ˜|κ| =
√
Ṽ − k̃2 ≈

√
25− 2.62 ≈⇒ |κ| ≈ 4.3L−1

� Second crossing:

k̃ ≈ 4.91⇒ k ≈ 4.91L

⇒ Ẽ ≈ 4.912 ≈ 24.1⇒ E =
~2

2mL2
Ẽ =

V

Ṽ
Ẽ ≈ V

25
24.1 ≈ 0.96V

and ˜|κ| =
√
Ṽ − k̃2 ≈

√
25− 4.912 ≈⇒ |κ| ≈ 0.94L−1

Thus both k and κ are �nite and the two parts of the wave function combine to give somethign that looks like
the partcile-in-a-box solutions, except for this �leaky� box there is some exponentially-decaying amplitude of
probability to �nd the particle in the classically-forbidden Region II:
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Note in particular that the ground state has n = 0 nodes and the excited state has n = 1 nodes, as expected.

For this example there are no higher-energy bound states as the next allowd energy would have E > V and
would be allowed classically to escape the box (we have only looked for solutions with E < V ).

In order to determine the wave function quantitatively, we need to �nd a relationship betweeen the coe�cients
A and C. This is provided by

2iA cos (kL) k = Ce−|κ|L (− |κ|)⇒ 2iA = − |κ|Le
−|κ|L

kL cos (kL)
C

which can be used to write (89) in the form

ψI (x) = −C |κ|Le
−|κ|L

kL cos (kL)
sin (kx) (4.50)

Thus once we know kL and |κ|L both ψI (x) and ψII (x) are now written in terms of the single coe�cient C,
which allows us to plot the wave function.

Determining the last coe�cient C requires normalisation:∫ ∞
0

dx |ψ (x)|2 = 1⇒
∫ L

0

dx |ψI (x)|2 +

∫ ∞
L

dx |ψII (x)|2 = 1. (4.51)

Substituting (87) and (93) the normalisation condition becomes

|C|2
{

e−2|κ|L

cos2 (kL)

∫ L

0

sin2 (kx) +

∫ ∞
0

dxe−2|κ|x
}

= 1
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To do the �rst integral on the RHS, change variables:kx ≡ β ⇒ dx = dβ/k :∫ L

0

dx sin2 (kx) =
1

k

∫ kL

0

dβ sin2 β =
1

k

∫ y

0

dβ sin2 β =
1

2k
(y − sin y cos y)

where we have used the de�nitiony ≡ kL and the standard integral
∫ y

0
dβ sin2 β = 1

2
(y − sin y cos y).

The other integral is simply done:∫ ∞
0

dxe−2|κ|x = − 1

2 |κ|
[
e−2|κ|x]∞

0︸ ︷︷ ︸
=0−1

=
1

2 |κ|
.
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Thus11

|C|2
{

e−2|κ|L

cos2 (kL)

1

2k
[kL− sin (kL) cos (kL)] +

1

2 |κ|

}
= 1

⇒ |C| =

√
e−2|κ|L

cos2 (kL)

1

2k
[kL− sin (kL) cos (kL)] +

1

2 |κ|

Assignment: tackle Problem19.

11Proof:

∫ y

0

dβ sin2 β =

∫ β=y

β=0

dβ sinβ︸ ︷︷ ︸
=−d cos β

sinβ = −


[cosβ sinβ]

β=y
β=0︸ ︷︷ ︸

=cos y sin y−cos 0 sin 0︸︷︷︸
=0

−
∫ β=y

β=0

d (sinβ)︸ ︷︷ ︸
=cos βdβ

cosβ

︸ ︷︷ ︸
=
∫ β=y
β=0

cos2 βdβ


= − cos y sin y +

∫ β=y

β=0

cos2 β︸ ︷︷ ︸
=1−sin2 β

dβ = − cos y sin y +

∫ y

0

dβ︸ ︷︷ ︸
=y

−
∫ y

0

dβ sin2 β

Taking the last intergal on the RHS to the LHS,

2

∫ y

0

dβ sin2 β = − cos y sin y + y ⇒
∫ y

0

dβ sin2 β =
1

2
(y − cos y sin y) .
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5 Simple Harmonic Oscillator

Suggested reading (all references are from the module's o�cial reading list):

� Bransden & Joachain (2nd Edition), Sec. 4.7 (see also Sec. 5.6, Eqs. [5.188-...] for an
alternative treatment of the same topic).

This section covers

� The simple harmonic oscillator. Atomic vibrations.

5.1 Harmonic oscillator potentials

Consider a particle moving in one dimension in some potential energy landscape, given by a functionV (x):
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It is natural for the particle to come to rest near one of the potential energy minima,x = xmin,1 orxmin,2.

Small perturbations will let the particle explore the potential energy landscapenearthe minimumx = xmin.

To describe such motion one can carry out a Taylor expansion,

V (x) = V (xmin) + V ′ (xmin) (x− xmin) +
1

2
V ′′ (xmin) (x− xmin)2 + o (x− xmin)3 , (5.1)

and cut it to the lowest non-trival order (green dashed line):

V (x) ≈ V (xmin) + V ′ (xmin) (x− xmin) +
1

2
V ′′ (xmin) (x− xmin)2 . (5.2)
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If we measure potential energy and position from their values at the minimim

xmin ≡ 0, V (xmin) ≡ 0 (5.3)

then this is equivalent to approximatingV (x) by

VSHO (x) =
1

2
kx2

Simple Harmonic Oscillator

(5.4)

where

k =
∂2V

∂x2

∣∣∣∣
x=0

. (5.5)

Example: consider an electron (with charge−e) moving along a one-dimensional channel and sitting between
two negative ions with charges−e each (all three charges with the same sign):

Find the harmonic potential that best describes the electron near its point of stable equilibrium.

Solution: The Coulomb potential felt by the electron is given by

V (x) =
1

4πε0

(−e)2

|x− a|
+

1

4πε0

(−e)2

|x+ a|
=

e2

4πε0
v (x) with v (x) =

1

|x− a|
+

1

|x+ a|
(5.6)
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Nearx = 0 the functionV (x) has a minumum and therefore can be approximated by a simple harmonic
oscillator. To show this we need to carry out the following Taylor expansion:

v (x) ≈ v (0) + v′ (0)x+
1

2
v′′ (0)x2 (5.7)

We use that for|x| < a we have|x− a| = a− x, |x+ a| = x+ a whence

v (x) =
1

a− x
+

1

a+ x
, (5.8)

v′ (x) =
−1

(a− x)2 (−1)− 1

(a+ x)2 =
1

(a− x)2 −
1

(a+ x)2 , and (5.9)

v′′ (x) =
−1

(a− x)4 2 (a− x) (−1) +
1

(a+ x)2 2 (a+ x) = 2

[
1

(a− x)3 +
1

(a+ x)3

]
. (5.10)

Substitutingx = 0,

v (0) =
2

a
; (5.11)

v′ (0) = 0 as we expected (x = 0 is a potential energy minimum); and (5.12)

v′′ (0) =
4

a3.
(5.13)

Thus

v (x) ≈ 2

a
+

2

a3
x2 (5.14)

whence

V (x) ≈ const. +
1

2
kx2 with k =

e2

πε0a3
� (5.15)
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More generally, any potentialV (x) can be approximated byVSHO (x) near a local potential energy minmum
if we choose the�spring constant�k appropriately. Rather conveniently, the resulting problem can be solved
exactly. These two facts, taken together, give the SHO paramount importance.

Assignment: Problem20.
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5.2 Harmonic oscillator frequency and classical turning points

Classically, the SHO potentialVSHO (x) = 1
2
kx2 [Eq. (5.4)] leads to a force

F (x) = −∂V (x)

∂x
= −1

2
k
∂x2

∂x
⇒ F (x) = −kx

Hooke's law

(5.16)

This is the well-known restoring force of a spring with spring constantk.

As we know from �rst-year Physics the solutions of the classical equation of motion

F = md2x/dt2 (5.17)

leads to simple harmonic motion:
x (t) = l cos (ωt+ φ) , where (5.18)

� l is the amplitude of the oscillations i.e. how far the particle gets from the potential energy minimum;

� φ is their phase (i.e. it determines the initial value ofx for a given amplitude);

� andω is the angular frequency of the oscillations.

A andφ are set by the initial conditions, whileω is �xed and given by

ω =

√
k

m

frequency of simple
harmonic oscillator

(5.19)

Exercise (revision): Problem21.
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It is customary to use Eq. (5.19) re-write the SHO potential (5.4) in terms of its characteristic frequency:

VSHO (x) =
1

2
mω2x2. (5.20)

Theenergy of a classical SHO is

E =
p2

2m︸︷︷︸
K

+
1

2
mω2x2︸ ︷︷ ︸
U

(5.21)

Given the energyE, the particle will oscillate between twoturning points located at a certain distancel from
the origin:

At the turning points the kinetic energyK = 0 therefore

E = U =
1

2
mω2l2 (5.22)

⇒ l =

√
2E

mω2
(5.23)
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5.3 Stationary states: energies and wave functions

To obtain the quantumHamiltonianwe replace in the energy equation (5.21) the momentump and positionx
with the correspondingoperators. If we write the operators inposition representation we obtain

Ĥ =
1

2m

(
~
i

∂

∂x

)2

+
1

2
mω2x2 (5.24)

which is a particular case of Eq. (4.11) corresponding to the potential in Eq. (5.4).

Thetime-independent Schrödinger equationĤ|n〉 = En|n〉 takes the form[
−~2

2m

∂2

∂x2
+

1

2
mω2x2

]
ψn (x) = Enψn (x) (5.25)

where
ψn (x) = 〈x|n〉 (5.26)

is the position-representation wave function of thenth stationary state,|n〉, with energyEn.

We will knoweverythingabout the SHO potential if we can solve Eq. (5.25).
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As we will see it is very useful to introduce the following characteristicenergy scale:

E0 ≡
~ω
2

characteristic energy scale
of a quantum SHO

(5.27)

The distance from the origin of the classical turning points corresponding to that energy yields,via(5.23), a
correspondinglength scale:

l0 =

√
~
mω

characteristic length scale
of a quantum SHO

(5.28)

De�ne dimensionless rescaled variablesthat measure energy and position in units ofE0 andl0, respectively:

Rescaled energy: λn≡ En/E0;
Rescaled length: ξ ≡ x/l0.

(5.29)

The stationary Schrödinger equation (5.25) takes the form

∂2

∂ξ2
ϕn (ξ) +

(
λn − ξ2

)
ϕn (ξ) = 0 (5.30)

where we have de�ned theξ-dependent wave function

ϕn (ξ) ≡ ψn (l0ξ) . (5.31)

Assignment: Prove this [Problem22 ].
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Let us now impose the followingphysical constraint:

ψn (x)→ 0 as x→∞. (5.32)

We know thismust be truebecause asx → ∞ the potentialVSHO (x) → ∞ therefore a particle with �nite
energyE cannot be found at in�nity.

This suggests we write
ϕn (ξ) = Nn︸︷︷︸

normalisation
factor

e−ξ
2/2︸ ︷︷ ︸

Gaussian
decay

Hn (ξ)︸ ︷︷ ︸
arbitrary
function

. (5.33)

There's no loss of generality becauseHn (x) is anarbitrary function. However if we �nd solutions whereHn (x)
does not grow faster thaneξ

2/2, we are done.
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Substituting (5.33) in the time-independent Schrödinger equation (5.30) we obtain

∂2

∂ξ2
Hn (ξ)− 2ξ

∂

∂ξ
Hn (ξ) + (λn − 1)Hn (ξ) = 0 (5.34)

This is the equation that we have to solve.

We can make use of a bit ofmathematical knowledge:

A bit of mathematical knowledge: The Hermite Equation

The di�erential equation
∂2

∂ξ2
H (ξ)− 2ξ

∂

∂ξ
H (ξ) + (λ− 1)H (ξ) = 0 (5.35)

admits solutions with polynomial form inξ if, and only ifλ is equal to

λ = 2n+ 1, where n = 0, 1, 2, 3, . . . (5.36)

For each value ofn the solutionH (ξ) equals

H (ξ) = (−1)n eξ
2

(
∂

∂ξ

)n
e−ξ

2

where

(
∂

∂ξ

)0

≡ 1. (5.37)
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The stationary states of the quantum SHO are therefore given by thequantum number

n = 0, 1, 2, 3, . . . . (5.38)

The correspondingenergiesare

En = E0λn ⇒ En = ~ω
(

1

2
+ n

)
. (5.39)

Note that

� The energy levels areequally spaced with energy di�erence

∆E = En+1 − En = ~ω.

This is seen for example invibrational spectraof molecules.

� The lowest possible energy is not zero, as in the classical case, but

E0 = ~ω/2.

This is called thezero-point energy and is an intrinsically quantum e�ect.

Assignment: tackle Problem23.
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Finally, thewave functions are

ψn (x) = ϕn (x/l0)⇒ ψn (x) = Nne
−(x/l0)2/2Hn (x/l0) , (5.40)

whereHn (ξ) is thenth Hermite polynomial [given by Eq. (5.37)].

Thenormalisation factorNn is determined, as usual, by requiring that
∫∞
−∞ dx |ψn (x)|2 = 1. Using the

following mathematical result for Hermite polynomials:

∫ ∞
−∞

dξ e−ξ
2

Hn (ξ)2 =
√
π2nn! (5.41)

one can show that

Nn =
1√

l0
√
π2nn!

. (5.42)
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Let us work out the two simplestexamples:

Example: SHO ground state (n = 0):

Energy:E0 = ~ω
2
.

Hermite polynomial:H0 (ξ) = (−1)0︸ ︷︷ ︸
=1

eξ
2

(
∂

∂ξ

)0

︸ ︷︷ ︸
=1

e−ξ
2

= eξ
2
e−ξ

2
= 1.

⇒Wave function:ψ0 (x) = N0e
−(x/l0)2/2H0 (x/l0) = N0e

−(x/l0)2/2 = N0e
− x2

2l20

[
= N0e

−x
2mω
2~

]
Normalisation factor:N0 = 1√

l0
√
π200!

= 1√
l0
√
π
.�

Example: SHO ground state (n = 1):

Energy:E0 = 3
2
~ω.

Hermite polynomial:H1 (ξ) = (−1)1 eξ
2 ∂
∂ξ
e−ξ

2
= −eξ2e−ξ2 (−2ξ) = 2ξ.

⇒Wave function:ψ1 (x) = N1e
−(x/l0)2/2H1 (x/l0) = N1e

−(x/l0)2/22ξ = N1e
− x2

2l20
2x
l0

[
= N1e

−x
2mω
2~ 2

√
mω
~ x
]

Normalisation factor:N1 = 1√
l0
√
π211!

= 1√
2l0
√
π
.�

The next two states are left as an exercise:

Assignment: tackle Problem24.
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In general, we �nd that thenth stationary wave function hasn nodes (changes of sign), just like the particle-
in-a-box wave functions:

Ground state, 1st excited state, and 2nd excited state ...

... for a simple harmonic oscillator [Subsect. 5.3 ]. ... for a particle in a box [Subsec. 4.6 ].

This is auniversal featurefor quantum particles moving in one dimension.12

12It is worth noting also the di�erences:

� Firstly, the quantum number we use to count SHO states runs from 0 for the ground state, to 1 for the 1st excited state,
2 for the second excited state, and so on. In contrast, for the particle-in-a-box we used 1 for the ground state, 2 for the
1st excited state, etc. So wereas for the SHOn is the number of nodes, for the particle-in-a-boxn − 1 is the number of
nodes.

� Secondly, wereas the particle-in-a-box wave functions become exactly zero abruptly at the edges of the box, the SHO
wave functions tend to zero smoothly and asymptotically atx → ±∞. Thus while the number of nodes, i.e. changes of
sign of the wave function, is the same in both cases, the number of zeros is not: the partilce-in-a-box wave functions have
two additional zeros, compared to the SHO ones.
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We have so far stated our resultswithout proof. To conclude, we will show explicitly,by substitution,that
our wave functions and energies solve the TI Schrödinger equation for the simplest case,n = 0:

1. Substitute the wave functionψ (x) = Ae−
x2

2l2 into the time-independent Schrödinger equation (5.25):

−~2

2m

∂2

∂x2
@@Ae
− x2

2l2 +
1

2
mω2x2

@@Ae
− x2

2l2 = E@@Ae
− x2

2l2

2. The �rst term on the LHS involves

∂2

∂x2
e−

x2

2l2 =
∂

∂x

(
e−

x2

2l2
−�2x
�2l2

)
= e−

x2

2l2
−x
l2
−x
l2

+ e−
x2

2l2
−1

l2
=

1

l2

(
x2

l2
− 1

)
e−

x2

2l2 ,

thus the equation becomes

−~2

2m

1

l2

(
x2

l2
− 1

)
��
�

e−
x2

2l2 +
1

2
mω2x2��

�
e−

x2

2l2 = E��
�

e−
x2

2l2

3. We now put all the terms involvingx on one side of the equation and those not involvingx on the other
side: (

−~2

2m

1

l4
+

1

2
mω2

)
x2 = E − ~2

2m

1

l2

4. Since the RHS does not depend onx, the LHS must not depend onx either. The only way this can be
true is if

−~2

A2m

1

l4
+

1

A2
mω2 = 0⇒ l =

√
~
mω

5. That makes the LHS equal to zero, so the RHS must equal zero too:

E − ~2

2m

1

l2
= 0⇒ E =

~2

2m

1

l2
=

~�2

2HHm

HHmω

��~
=

~ω
2
, Q.E.D.
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Assignment: tackle Problem25.

Assignment: tackle Problem26.
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6 Quantum tunneling

Suggested reading

� Bransden and Joachain Sections 3.2, 4.2 and 4.3.

� Rae Section 2.5.

This section covers

� Re�ection and transmission of particles incident onto a potential barrier. Probability �ux. Tunnelling
of particles.

6.1 What is quantum tunnelling?

This topic deals with one of those suprising aspects of quantum systems: their ability to�tunnel� between
states that would normally be separated by an insurmountableenergy barrier. To explain what we mean
by quantum tunnelling, we have to discuss �rst what we mean by an energy barrier, both in the classical and
quantum descriptions of matter.
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Energy barriers in Classical Mechanics

Imagine, for example, a large�hill� on a roller-coaster:

The car comes with some energy,E. Initially, this is in the form of kinetic energy,E = p2/2m (wherem is
the mass of the car,p = mv is its momentum, wherev is the velocity). This then gets partially converted to
potential energy,V (x), as the car climbs up the hill (the car does not have any source of energy: roller-coaster
cars usually do not have an engine, they are pulled up the �rst hill by an external mechanism and then they
are let go). The hill represents a barrier that the car has to overcome. If the hill has heighth, the potential
energy of the train when it reached the top ismgh ≡ V0, whereg ≈ 9.8ms−1 is the acceleration due to gravity.
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There are two distinct options:

� If the train has energyE > V0, then when it reaches the top of the barrier it will still be moving to the
right, albeit with reduced velocity (so as to keep the total energy,E = p2/2m + V (x) , constant) and
so it will overcome the barrier and continue on the other side.

� In contrast, if the energy isE < V0, then before the car reaches the top of the hill all its kinetic energy
will have been converted to potential energy, and conservation of energy will prevent it from advancing
further. The car will reverse its motion and go back the way it came.

Barriers like these occur everywhere. I can lean against a wall withouut falling because the electrons in the
outler layers of my molecules are electrostacially-repelled by those in the bricks or concrete the wall is made
of. This is a huge energy barrier, much bigger than the force my weight exerts on the wall when I lean on it.
It would be very surprising if I suddenly fell to the opposite side of the wall.
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Energy barriers in Quantum Mechanics

Energy barriers also exist in the microscopic world. For example, the electrons in a material, even when they
can move freely around the sample (as in a metal), cannot easily get out of it, because their potential energy
is lower inside the material than outside it, due to the attraction extered by the postiviely-charge atomic
nuclei:

However, unlike classical particles, electrons can overcome this barrier, even when their energy is lower than
the barrier itself. This is calledquantum-mechanical�tunnelling� and it has been veri�ed extensively.
Indeed, it forms the basis of theScanning Tunnelling Microscope (STM), an experimental technique
that we have mentioned before in this course.
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To be more concrete, let us imagine that a second sample is brought in close proximity with the original one:

The two samples have a �nite separationa, and therefore it is impossible, classically speaking, for an electron
to thet from the left-hand sample to the righ-hand one unless its energyE > V0, the height of the barrier.
But all the electrons in either sample were at an energyE < V0 to begin with so none of them can make it.
Yet experimentally we �nd that electrons do have a �nite probability to tunnel across the barrier.

In fact, if a small potential energy di�erence is introduced between the two samples (for example, by con-
necting them to opposite poles of a battery) then we �nd that the slightly increased probability to tunnel in
one of the two directions leads to a net current �owing towards the sample with the higher voltage (i.e. the
lower potential energy of negatively-charged electrons). This is in spite of the fact that none of the electrons
have enough energy to overcome the barrier.
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In STM, the sample on the left would be of the material under investigation, and the sample on the right
would be a metallic tip which is the crucial element of the scanning tunnelling microscope. The tip is brought
close to the surface of the sample and kept at a constant potential energy di�erence with the sample. This
leads to a detectable current of electrons between the sample and the tip. This current depends on the
potential energy di�erence but also on the distance between the tip and the surface of the sample. The tip is
then scans the surface, and its height is varied precisely to keep the current constant. Recording these heights
variations gives a very accurate topographical map of the surface (with precision of order of 1 Angstrom =
0.1 nm).
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6.2 Probability current

Motion in Quantum Mechanics

In order to understandtunnellingwe need to understandmotionin quantum mechanics. This is not straight-
forward. Whereas in classical mechanics a particle has a well-de�ned position,x, and therefore it is evident
that its motion is just given by the time-dependent functionx (t), in quantum mechanics the particle has
aprobability distributionP (x, t)of being at di�erent positionsx at di�erent timest. Consider the following
time-evolution of the probability of �nding a particle at a given positionx from one distributionP (x, t) at
timet to a di�erent one,P (x, t+ ∆t), a �nite time∆t later:

At timet, the particle could be said to be somewhere nearx0. After the time∆t as elapsed, the probability
for the particle to be found in that region remains �nite, but smaller, and the highest probabilities to �nd
the particle are nearx1 and nearx2. Has the particle moved to the left, to the right, or both?
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Even if we measure, at timet + ∆t, the actual position of the particle, we still cannot answer the above
question. Suppose that when we carry out the measurement we �nd it nearx1. Does this mean that the
particle moved to the left? We don't know, because at the earlier timet, the probability that the particle
would be found to the left ofx1 was also �nite, so it could have moved to the right betweent andt + ∆t.
In order to �nd out where the particle was at timet, we would have had to measure its actual position at
that time, but then we would have destroyed the probability distribution we started with (the wave function
would have collapsed to a completely localised one, see Subsection3.3,Collapse of the state vector). The
time-evolution of the probability distribution would then have been entirely di�erent.

The continuity equation

Fortunately, it turns out that motion of quantum particles can be conceptualised by introducing the idea of
a probabilitycurrent or probability �ux. This concept is entirely analogous to the current of water in a
pipe or of electrons in a wire. So instead of talking about where the particle is moving from and to, we will
discuss the direction and strength of the probability of �nding the particle somewhere, and how it changes
with time.

Suppose, speci�cally, that a particle can move along thex axis. Let us assume that we know the time-evolution
of its probability distribution,P (x, t). This gives the probability∆N (x, t) that at timet the particle is found
betweenx andx+ ∆x. If the interval∆x is very small, this is given by13

∆N (x, t) = P (x, t) ∆x. (6.1)

13More generally, if∆x were sizable, then the probability in question would have to be calculated through the

integral
∫ x+∆x

x
dx′ P (x′, t). In the limit when∆x is very small we can assume thatP (x′, t) does not very perceptibly within

the domain of integration and approximate this byP (x, t)
∫ x+∆x

x
dx′ = P (x, t) [x′]

x′=x+∆x
x′=x = P (x, t) ∆x.
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The key now is to think ofP (x, t) as the density of a �uid. Of course, we only have one particle, but you can
imagine carrying out exactly the same experiment many times and averaging the results to obtain something
equivalent to what you would have with a �uid of many non-interacting particles. On everage there will
beP (x, t) ∆x particles betweenx and∆x at any given timet (since we are dealing with a single particle in
total, this number is between 0 and 1).

Now let us de�ne the currentj (x, t) as the rate at which particles are, on average, moving through the single
pointx at any given timet (from left to right ifj (x, t) > 0, and from the right to the left ifj (x, t) < 0, by
convention). Then evidently the number of particles in our chosen interval will remain constant ifj (x, t) =
j (x+ ∆x, t), i.e. if the rate at which particles enter the interval from the left is the same as the rate at which
they leave it to the right. More generally if the currents coming in from the left and going out to the right
are not equal, then the number of particles in our interval su�ers a net change:

121



Mathematically, the rate at which the probability to �nd the particle betweenx andx+ ∆x changes, is given
by the derivative∂∆N (x, t) /∂t. This rate is evidently the di�erence betweenj (x, t) andj (x+ ∆x, t):

∂∆N (x, t)

∂t
= j (x, t)︸ ︷︷ ︸
arriving

− j (x+ ∆x, t)︸ ︷︷ ︸
leaving

. (6.2)

Substituing Eq. (6.1) we obtain

∂P (x, t)

∂t
∆x = j (x, t)− j (x+ ∆x, t) (6.3)

⇒ ∂P (x, t)

∂t
=

j (x+ ∆x, t)− j (x, t)

∆x
(6.4)

whence

⇒ ∂P (x, t)

∂t
= − ∂

∂x
j (x, t) . (6.5)

This is called thecontinuity equation and it holds for classical �uids (e.g., running water) if we takeP (x, t)
to represent the density of the �uid and also for probability distributions of quantum particles. It is based
on very general arguments.

More generally, probability distributions may occur in three dimensions. Then the current density is a
vector,j (r, t), giving the magnitudeand directionof probability �ow, and whose value is de�ned for each
location in space,r = (x, y, z), and of course for each timet. Similarly, the probability density depends onr
andt. The the continuity equation then takes the form

∂P (r, t)

∂t
= −∇r · j (r, t) . (6.6)
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We can integrate both sides of this equation over a givenvolumeV to put the rate of change of the total
probability of �nding the particle inside that volume,

N (r, t) ≡
∫
V

d3rP (r, t) , (6.7)

in terms of theprobability current �uxthrough thesurfaceSdelimiting that volume:

∂

∂t
N (r, t) =

∫
V

d3r
∂P (r, t)

∂t
= −

∫
V

d3r∇r · j (r, t) (6.8)

= −
∫
S

j (r, t) · ds , (6.9)

where in the last line we have invokedGauss' theorem andds is an area element on the surfaceS.
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From wave functions to probability current densities

In the foregoing we have described, by means of the continuity equation, the variation in time of the probability
distribution in terms of a probability current, however we have not established how that probability current
could be calculated, or what for it would have. The nice thing about this in QM is that theSchrödinger
equationactually gives us the time-evolution of the probability distribution. We can then compare to the
continuity equation to deduce what the current must be.

In a time-dependent state|Ψ (t)〉 the amplitude of probability for �nding the particle nearx is〈x|Ψ (t)〉, and
the corresponding probability distribution is given by

P (x, t) = |〈x|Ψ (t)〉|2 . (6.10)

The derivative ofP (x, t) with respect to time is given by

∂

∂t
P (x, t) =

∂

∂t
|〈x|Ψ (t)〉|2 =

∂

∂t
(〈x|Ψ (t)〉∗ 〈x|Ψ (t)〉) (6.11)

= 〈x|Ψ (t)〉 ∂
∂t
〈x|Ψ (t)〉∗ + 〈x|Ψ (t)〉∗ ∂

∂t
〈x|Ψ (t)〉 (6.12)

The derivatives with respect to timet of the amplitude〈x|Ψ (t)〉 and of its complex conjugate〈x|Ψ (t)〉∗ follow
from the Schrödinger equation: [Eq. (3.1)]

i~
∂

∂t
|Ψ (t)〉 = Ĥ|Ψ (t)〉

Indeed, projecting both sides of this equation onto positionx we obtain

i~
∂

∂t
〈x|Ψ (t)〉 = 〈x|Ĥ|Ψ (t)〉. (6.13)
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Taking the complex conjugate of both terms of the last equation we obtain

− i~ ∂
∂t
〈x|Ψ (t)〉∗ = 〈x|Ĥ|Ψ (t)〉∗. (6.14)

Putting these two results back into (6.12) we obtain

∂

∂t
P (x, t) =

i

~

[
〈x|Ψ (t)〉 〈x|Ĥ|Ψ (t)〉∗ − 〈x|Ψ (t)〉∗ 〈x|Ĥ|Ψ (t)〉

]
(6.15)

Thus if we compute the bra-ket〈x|Ĥ|Ψ (t)〉 we can have an expression for∂P/∂t in terms of the state of the
system.

Let us now assume a simple Hamiltonian of the form of Eq. (4.11),

Ĥ =
1

2m
p̂2 + V (x̂)

[
=

1

2m

(
~
i

∂

∂x

)2

+ V (x) in position representation

]
.

The �rst term is the kinetic energy and the second term is a position-dependent potential energy. The
bra-ket we are after is〈x|Ĥ|Ψ (t)〉. This is the position-representation wave function of the state obtained
by applying the HamiltonianĤ to the time-dependent state|Ψ (t)〉. This can be obtained by applying the
position-representation ofĤ to the position-representation wave function corresponding to the state|Ψ (t)〉
i.e.〈x|Ψ (t)〉:

〈x|Ĥ|Ψ (t)〉 =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
〈x|Ψ (t)〉. (6.16)
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We can now plug this result back into (6.15) to obtain

∂

∂t
P (x, t) =

i

~

{
〈x|Ψ (t)〉

[
− ~2

2m

∂2

∂x2
+ V (x)

]
〈x|Ψ (t)〉∗

−〈x|Ψ (t)〉∗
[
− ~2

2m

∂2

∂x2
+ V (x)

]
〈x|Ψ (t)〉

}
(6.17)

Evidently the terms involvingV (x) cancel, so we are left with

∂

∂t
P (x, t) =

i

~

{
−〈x|Ψ (t)〉 ~

2

2m

∂2

∂x2
〈x|Ψ (t)〉∗ + 〈x|Ψ (t)〉∗ ~2

2m

∂2

∂x2
〈x|Ψ (t)〉

}
(6.18)

=
~

2mi

{
〈x|Ψ (t)〉 ∂

2

∂x2
〈x|Ψ (t)〉∗ − 〈x|Ψ (t)〉∗ ∂

2

∂x2
〈x|Ψ (t)〉

}
(6.19)

= − ∂

∂x

{
~

2mi

[
〈x|Ψ (t)〉∗ ∂

∂x
〈x|Ψ (t)〉 − 〈x|Ψ (t)〉 ∂

∂x
〈x|Ψ (t)〉∗

]}
(6.20)

The LHS of the �rst line is the LHS of the continuity equation (6.5). Comparing the RHS on the last line to
the RHS of (6.5) shows that indeed the continuity equation is obeyed if we choose the probability current to
be given by

j (x, t) =
~

2mi

[
〈x|Ψ (t)〉∗ ∂

∂x
〈x|Ψ (t)〉 − 〈x|Ψ (t)〉 ∂

∂x
〈x|Ψ (t)〉∗

]
current j (x, t) in terms of the wave function 〈x|Ψ (t)〉

. (6.21)
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Note that the RHS of Eq. (6.21) can be re-written as

~
2m

{
1

i
〈x|Ψ (t)〉∗ ∂

∂x
〈x|Ψ (t)〉+

[
1

i
〈x|Ψ (t)〉∗ ∂

∂x
〈x|Ψ (t)〉

]∗}
,

leading to14

j (x, t) = <
[
〈x|Ψ (t)〉∗ 1

m

~
i

∂

∂x
〈x|Ψ (t)〉

]
current j (x, t) in terms of the wave function 〈x|Ψ (t)〉 (alternative form)

. (6.22)

This admits a suggestive interpretation if we notice that(~/i) ∂/∂x gives the action of the momentum operator
in position representation and that1/m times the momentum gives the velocity. So in some sensej (x, t) could
be interpreted as describing an actual �ow of particles at positionx and timet. However notice that this last
equation is not really the expectation value of an operator. Indeed, the position and the momentum cannot
have well-de�ned values simulaneously, of course. So the intepretation we just gave is just a semi-classical
picture and must be used with caution. In general it is best to stick to the description ofj (x, t) as giving the
current of probability, as above.

14< (. . .) stands for the real part of(. . .), i.e.< (. . .) = 1
2

[
(. . .) + (. . .)

∗]
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Some consequences of Eq. (6.21) [or, equivalently, (6.22)]:

� If the time-dependent wave function〈x|Ψ (t)〉 isreal then there is no probability �ow:

j (x, t) = 0. (6.23)

� Let us now consider the probability current in astationary state [Subsec. 3.2] i.e. one with the form

|En (t)〉 = e−
i
~Ent|En (0)〉,

where|En (0)〉 is an eigenstate ofĤ, with eigenvalueEn. Substituing this for|Ψ (t)〉 in Eq. (6.21) we
obtain

j (x, t) =
~

2mi

[
〈x|En (0)〉∗ ∂

∂x
〈x|En (0)〉 − 〈x|En (0)〉 ∂

∂x
〈x|En (0)〉∗

]
. (6.24)

Note that the time-dependent factorse−
i
~Ent, e

i
~Ent completely cancel out, i.e. the probability current

istime-independent in a stationary state.

� We also note that if the real-space wave function of a stationary state isrealatt = 0,〈x|En (0)〉 =
〈x|En (0)〉∗, then we again obtain

j (x, t) = 0 for all t, (6.25)

even though the time-dependent wave is not real (because it has the phase factore−
i
~Ent). So, for

example, the stationary states of aparticle in a box [Subsec. 4.6], showno probability current.
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� In contrast, thestationary states of afree particlein empty space, given by plane waves [Subsec. 4.5]
do have a�nite probability current. In one dimension the time-independent part of such plane waves
is given by Eqs. (4.16,4.23):〈x|k〉 = 1√

L
eikx,wherek is the wave vector andL is the nominal length to

which the particles are con�ned. Substituting this into (6.24) yields

j (x, t) =
1

L

~k
m

for a plane wave in 1D . (6.26)

This makes sense:~k is the momentum, and therefore~k/m is the velocity, so we are just obtaining the
velocity with which the particle is moving, normalised by the lengthL.

It might seem a bit puzzling that a state in which a particle is moving uniformly in a certain direction is
stationary - however, the point is that the probability distribution itself, in this case, remains uniform,
i.e. the particle always has the same probability of being anywhere, and this does not change in time.
This situation is analogous to a uniform-density �uid where as many particles enter a given region per
unit time as leave it, so the amount of �uid in the region remains constant.

Assignment: Problem27.
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6.3 Re�ection and transmission through a barrier

Consider particle with energyE in presence of barrier of heightV0 > E:

Classically, particle cannot get through barrier. Let us see what happens in quantum mechanics.

Let us obtain the stationary states|E (0)〉 i.e. solutions to the time-independent Schrödinger equation.

We can then obtain the probability current densityj (x) using Eq. (6.24).15

15We writej(x) instead ofj (x, t) because as we saw above for stationary states this quantity is time-independent.
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In terms of position-representation wave functionsψ (x) ≡ 〈x|E (0)〉 the equation giving the current is

j (x, t) =
~

2mi

[
ψ (x)∗

∂

∂x
ψ (x)− ψ (x)

∂

∂x
ψ (x)∗

]
. (6.27)

The Schrödinger equation takes the form[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ (x) = Eψ (x) . (6.28)

The potential is

V (x) =


0 if x < 0 (L)

V0 if 0 ≤ x ≤ a (M)

0 if x > a (R)

(6.29)

Therefore

in regions L,R:− ~2

2m

∂2

∂x2
ψ (x) = Eψ (x) (6.30)

i.e. ψ′′ (x) = −k2ψ (x) with k2 =
2mE

~2
(6.31)

in region M:

(
− ~2

2m

∂2

∂x2
+ V0

)
ψ (x) = Eψ (x) (6.32)

i.e. ψ′′ (x) = +κ2ψ (x) with κ2 =
2m (V0 − E)

~2
(6.33)
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Thus in L,R the solutions are linear combinations ofeikx ande−ikx while in M they are linear combinations
ofeκx ande−κx:

ψ (x) =


ALe

ikx +BLe
−ikx if x < 0 (L)

AMe
κx +BMe

−κx if 0 ≤ x ≤ a (M)

ARe
ikx +BRe

−ikx if x > a (R)

(6.34)

We now impose continuity of the wave function...

ψ
(
x = 0−

)
= ψ

(
x = 0+

)
⇒ AL +BL = AM +BM (6.35)

ψ
(
x = a−

)
= ψ

(
x = a+

)
⇒ AMe

κa +BMe
−κa = ARe

ika +BRe
−ika (6.36)

...and of its �rst derivative...

ψ′
(
x = 0−

)
= ψ′

(
x = 0+

)
⇒ ikAL − ikBL = κAM − κBM (6.37)

ψ′
(
x = a−

)
= ψ′

(
x = a+

)
⇒ AMκe

κa −BMκe
−κa = ARike

ika −BRike
−ika (6.38)

...which leaves us with4 equations [Eqs. (6.35-6.38)] to determine6 unkowns [AL, BL, AM , BM , AR, BR].

132



To obtain additional equations we need to imposeboundary conditions at in�nity.

Let us �rst compute thecurrent in the L and R regions: substituting (6.34) in (6.27),

j (x) =

{
~k
m

(
|AL|2 − |BL|2

)
for x < 0 (L)

~k
m

(
|AR|2 − |BR|2

)
for x > 0 (R)

(6.39)

Note~k/m = p/m = v, the velocity of the particle, so the above equation reads

j (x) =
velocity
of particle

×

 probability
particle

going right
−

probability
particle
going left

 (6.40)

We now impose the additional boundary conditions:

� The net �ow into the barrier fromx = −∞ must equal the net away from the barrier towardsx = +∞:

�
�
�~k
m

(
|AL|2 − |BL|2

)
=
�
�
�~k
m

(
|AR|2 − |BR|2

)
(6.41)

� There is no source of particles atx =∞:

v |BR|2 = 0⇒ BR = 0 (6.42)

Now we have6 equations [Eqs. (6.35-6.38) and (6.41-6.42)]for 6 unkowns [AL, BL, AM , BM , AR, BR]!
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We are rally interested in there�ection and transmission coe�cients

R ≡ |BL|2

|AL|2
(6.43)

T ≡ |AR|
2

|AL|2
(6.44)

These give the fraction of incoming particles that get re�ected from and transmitted through the barrier,
respectively.

Note that

� R + T = 1 always;

� classically, forE < V0 we should haveR = 1, T = 0.

Solving Eqs. (6.35-6.38) and (6.41-6.42) forBL/AL andAR/AL we obtain16

BL

AL
=

(k2 + κ2)
(
e2ka − 1

)
e2κa (k + iκ)2 − (k − iκ)2 ⇒ R =

[
1 +

4E (V0 − E)

V 2
0 sinh2 (κa)

]−1

(6.45)

AR
AL

=
4ikκe−ikaeκa

e2κa (k + iκ)2 − (k − iκ)2 ⇒ T =

[
1 +

V 2
0 sinh2 (κa)

4E (V0 − E)

]−1

(6.46)

16The algebra is left as an exercise. See Bransden & Joachain, Section 4.4 (4th Edition).
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Note that the expression forT can be easily obtained form the expression forR by demandingR + T = 1.

Indeed de�ning

A ≡ 4E (V0 − E)

V 2
0 sinh2 (κa)

(6.47)

allows us to recast (6.45,6.46) in the form

R = [1 + A]−1 (6.48)

T = [1 + 1/A]−1 . (6.49)

From this it is easy to show that

R + T = [1 + A]−1 + [(A+ 1) /A]−1 = (1 + A) / (A+ 1) = 1.
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It is illustrative to consider the following limiting cases of the particle's energy:

� Much less than the height of the barrier:

E � V0 ⇒

{
T ≈ 0;

R ≈ 1.
(6.50)

In this case the particle is always re�ectedm, which coincides with the classical result (R = 1, T = 0).

� Just below the height of the barrier:

E > V0 ⇒

{
T ≈ 1;

R ≈ 0.
(6.51)

In this case the particle isalways transmitted, in start contradiction with the classical prediction!

For intermediate energies, the probabilities of transmission and re�ection are both �nite - so the classical
result is only recovered in theE � V0 limit.
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Proof of Eqs. (6.50,6.51):

We write

κ2 =
2m (V0 − E)

~2
⇒ κa =

√
V0 − E
~2/2ma2

and note that whenE � V0 we haveκa→∞ while whenE > V0 we haveκa→ 0.

In the �rst case,sinhκa = 1
2

(eκa − e−κa)→∞ soA→ 0 and therefore using (6.48,6.49) we getR = 1, T = 0.

In the second case,sinhκa = 1
2

(eκa − e−κa)→ 1
2

(1− 1) = 0 and so we haveA→∞ leading toR = 0, T = 1.

Assignment: Problem28.
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7 Perturbation Theory

Suggested reading (all references are from the module's o�cial reading list):

� Zettili Subsection 9.2.1.

This section covers

� Perturbation theory.

7.1 Formalism

Until now, we have assumed that, whatever the system we were dealing with, it was possible to solve the
corresponding stationary Schrödinger equation,

Ĥ|n〉 = En|n〉 , (7.1)

exactly. However, on many occassions this is just not possible, and approximation methods are required.
Here we will discuss what is arguably one of the most important approximation schemes, namelytime-
independent perturbation theory. This is useful when wedoknow how to solve exactly the Shcrödinger
equation

Ĥ0|n(0)〉 = E(0)
n |n(0)〉 , (7.2)

for certain Hamiltonian,Ĥ0, to which has been added aperturbation,λĤ1. The full Hamiltonian is

Ĥ = Ĥ0 + λĤ1 (7.3)
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and for it we do not know how to solve Eq. (7.1), which takes the form(
Ĥ0 + λĤ1

)
|n〉 = En|n〉 , (7.4)

The parameterλ is some dimensionless quantity that tells us whether the perturbation is large or small
compared to the unperturbed Hamiltonian,Ĥ0.

The central idea of perturbation theory is to assume that we are dealing with asmall perturbation,

λ� 1, (7.5)

and exploit this to �nd an approximate solution to Eq. (7.1) which is a slightly modi�ed version of Eq. (7.2).
We will assume atime-independent Hamiltonian and also that all the stationary states of the unperturbed
Hamiltonian arenon-degenerate (i.e. each energy corresponds to only one state).

The method starts by assuming that the energies and the corresponding stationary states can be expressed
as a sum of many terms, each of which will become negligible faster as the perturbation becomes smaller (i.e.
asλ becomes small):

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (7.6)

|n〉 =
∣∣n(0)

〉
+ λ

∣∣n(1)
〉

+ λ2
∣∣n(2)

〉
+ . . . (7.7)

The whole of perturbation theory is predicated on this simple and intuitive assumption. Substituting these
two expansions in (7.4) we obtain(

Ĥ0 + λĤ1

) (∣∣n(0)
〉

+ λ
∣∣n(1)

〉
+ λ2

∣∣n(2)
〉

+ . . .
)

=
(
E(0)
n + λE(1)

n + λ2E(2)
n + . . .

) (∣∣n(0)
〉

+ λ
∣∣n(1)

〉
+ λ2

∣∣n(2)
〉

+ . . .
)

(7.8)
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The key step now is to recognise the LHS and RHS of this equation are both polynomials inλ and that
therefore we can group the terms on the in the same power ofλ. Then we have

Ĥ0

∣∣n(0)
〉

= E(0)
n

∣∣n(0)
〉

(7.9)

Ĥ0

∣∣n(1)
〉

+ Ĥ1

∣∣n(0)
〉

= E(0)
n

∣∣n(1)
〉

+ E(1)
n

∣∣n(0)
〉

(7.10)

Ĥ0

∣∣n(2)
〉

+ Ĥ1

∣∣n(1)
〉

= E(0)
n

∣∣n(2)
〉

+ E(1)
n

∣∣n(1)
〉

+ E(2)
n

∣∣n(0)
〉

(7.11)

...
... (7.12)

Ĥ0

∣∣n(j)
〉

+ Ĥ1

∣∣n(j−1)
〉

= E(0)
n

∣∣n(j)
〉

+ E(1)
n

∣∣n(j−1)
〉

+ . . .+ E(j)
n

∣∣n(0)
〉

(7.13)

The �rst of the above equations comes from equating theλ-independent terms and is obviously just our
unperturbed Schrödinger's equation, (7.2). The other equations correspond to higher and higher orders inλ
and can be used to obtain better and better approximations.

Let's �rst assume thatλ is not negligible, but is small enough that all but the linear terms in (7.6,7.7) can

be neglected. Let's compute the �rst correction to the energy,λE
(1)
n . We use Eq. (7.10). Let us project both

sides of that equation on thenth unperturbed state,|n(0)〉:〈
n(0)
∣∣ Ĥ0

∣∣n(1)
〉

+
〈
n(0)
∣∣ Ĥ1

∣∣n(0)
〉

=
〈
n(0)
∣∣E(0)

n

∣∣n(1)
〉

+
〈
n(0)
∣∣E(1)

n

∣∣n(0)
〉
. (7.14)

The �rst term on the LHS of this equation can now be simpli�ed as follows:〈
n(0)
∣∣ Ĥ0

∣∣n(1)
〉

=
〈
n(1)
∣∣ Ĥ0

∣∣n(0)
〉∗

(7.15)

=
〈
n(1)
∣∣E(0)

0

∣∣n(0)
〉∗

(7.16)

= E
(0)
0

〈
n(1)|n(0)

〉∗
(7.17)

= E
(0)
0

〈
n(0)|n(1)

〉
, (7.18)
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where we have used (7.2) and the fact that all energies are real. This is evidently equal to the �rst term on
the RHS, so those two terms cancel. The second term on the RHS, on the other hand, is just〈

n(0)
∣∣E(1)

n

∣∣n(0)
〉

= E(1)
n

〈
n(0)|n(0)

〉
= E(1)

n , (7.19)

therefore we are left with

E(1)
n =

〈
n(0)
∣∣ Ĥ1

∣∣n(0)
〉
. (7.20)

This is an extremely important result in perturbation theory: it tells us that when a perturbation is added to
the Hamiltonian of a quantum system, to �rst order the change in the energy of each of its stationary states
is just the epxectation value of the perturbation in the corresponding unperturbed state.

One can continue in the same spirit to obtain the second-order correction to the energy:

E(2)
n =

∑
l 6=n

∣∣∣〈l(0)|Ĥ1

∣∣n(0)
〉∣∣∣2

E
(0)
n − E(0)

l

. (7.21)

To summarise, the energy expansion (7.6) takes the form

En = E(0)
n + λ

〈
n(0)
∣∣ Ĥ1

∣∣n(0)
〉

+ λ2
∑
l 6=n

∣∣∣〈l(0)|Ĥ1

∣∣n(0)
〉∣∣∣2

E
(0)
n − E(0)

l

+ . . . (7.22)

Assignment: Problem29.
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Addendum (advanced): Proof of Eq. (7.21)

Let us assume that theλ2 terms are important as well �that is, we are looking for a second-order approximation
now. We now use Eq. (7.11). Like before, we project on|n(0)〉 and obtain〈

n(0)
∣∣∣ Ĥ0

∣∣∣n(2)
〉

+
〈
n(0)

∣∣∣ Ĥ1

∣∣∣n(1)
〉

=
〈
n(0)

∣∣∣E(0)
n

∣∣∣n(2)
〉

+
〈
n(0)

∣∣∣E(1)
n

∣∣∣n(1)
〉

+
〈
n(0)

∣∣∣E(2)
n

∣∣∣n(0)
〉

(7.23)

As before, the �rst terms on the LHS and the RHS cancel and the last term on the RHS is justE
(2)
n . Solving for

that quantity, we obtain

E(2)
n =

〈
n(0)

∣∣∣ (Ĥ1 − E(1)
n

) ∣∣∣n(1)
〉
. (7.24)

Unfortunately, this expression now involves the �rst-order corrections to the state|n(0)〉,|n(1)〉, which we have not
yet obtained. So whereas the �rst-order correction to the energy could be obtained using the unperturbed states,
the second-order correction to the energy requires a �rst-order correction to the state. To obtain this, let us use
the fact that the unperturbed stationary states form a complete set to expand the �rst-order perturbation in them:

|n(1)〉 =
∑
m

|m(0)〉〈m(0)|n(1)〉. (7.25)

Plugging this into the �rst-order equation (7.10) we obtain

Ĥ0

∑
m

|m(0)〉〈m(0)|n(1)〉+ Ĥ1

∣∣∣n(0)
〉

= E(0)
n

∑
m

|m(0)〉〈m(0)|n(1)〉+ E(1)
n

∣∣∣n(0)
〉
. (7.26)

With some re-arranging, and using the unperturbed SE to eliminate the operator form the �rst term on the LHS,(
E(0)
m − E(0)

n

)∑
m

|m(0)〉〈m(0)|n(1)〉+
(
Ĥ1 − E(1)

n

) ∣∣∣n(0)
〉

= 0. (7.27)

We now project on|l(0)〉 and get(
E

(0)
l − E

(0)
n

)
〈l(0)|n(1)〉+ 〈l(0)|

(
Ĥ1 − E(1)

n now
) ∣∣∣n(0)

〉
= 0 (7.28)

⇒
(
E

(0)
l − E

(0)
n

)
〈l(0)|n(1)〉+ 〈l(0)|Ĥ1

∣∣∣n(0)
〉
− E(1)

n δl,n = 0. (7.29)
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Here we have used repeatedly that
〈
l(0)|m(0)

〉
= δl,m. Forl = n, the above equation is the same as (7.20). Forl 6= n,

it yields

〈l(0)|n(1)〉 =
〈l(0)|Ĥ1

∣∣n(0)
〉

E
(0)
n − E(0)

l

for all l 6= n. (7.30)

This yields the amplitdues of the �rst-order corrections to the stationary states in the unperturbed energy rep-
resentation. All we need is to compute the matrix elements of the perturbation in the unperturbed basis. The
procedure we have used to obtain these amplitudes is called theRayleigh-Schrödinger method. The method is
only valid if these amplitudes turn out to be small �otherwise, the perturbation is important and the expansion
(7.7) cannot be cut o�. Speci�cally, our method will also fail if the unperturbed Hamiltonian,Ĥ0, has two or more

degenerate states,|n(0)〉, |l(0)〉, because then their energy di�erenceE
(0)
n −E(0)

l in the denominator vanishes, making
the amplitude〈l(0)|n(1)〉 diverge.
Armed with these �rst-order corrections to the probability amplitudes, we can now evaluate the second-order
correction to the energy. First, we apply the completeness relation to (7.24)

E(2)
n =

〈
n(0)

∣∣∣ (Ĥ1 − E(1)
n

)∑
l

|l(0)〉〈l(0)
∣∣∣n(1)

〉
(7.31)

=
∑
l

〈n(0)|Ĥ1|l(0)〉〈l(0)|n(1)〉 − E(1)
n 〈n(0)

∣∣∣n(1)
〉

(7.32)

We now note that the term in the summation on the RHS corresponding tol = n cancels exactly the second term
on the RHS, by virtue of (7.20). We thus have just

E(2)
n =

∑
l 6=n

〈n(0)|Ĥ1|l(0)〉〈l(0)|n(1)〉. (7.33)

We now plug in (7.30) to �nd

E(2)
n =

∑
l 6=n

〈
n(0)

∣∣∣ Ĥ1|l(0)〉
〈l(0)|Ĥ1

∣∣n(0)
〉

E
(0)
n − E(0)

l

, (7.34)

from which Eq. (7.21) follows.
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7.2 Applications

Example: a dimple in the middle of a well.Suppose we have an in�nite square well going fromx = 0 tox = L
and we create a small, thin barrier in the middle, in the form of a small step potential

λV (x) = λ

{
V0 if |x− L/2| < δ/2,
0 otherwise.

(7.35)

We are going to assume that, ifλ is small, the small barrier will not make a big di�erence (it will be a small
perturbation). We will also assume thatδ is small compared toL (this is not necessary for perturbation theory
to be applicable, it just makes the calculation easier �see below). The question is: how does this change,
i.e. adding this small energy barrier in the middle of the potential well, the energy of the ground state?
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To lowest order, the energy in the ground state is

E1 = E
(0)
1 + λE

(1)
1 (7.36)

where

E
(0)
1 =

~2π2

2mL2
(7.37)

(from Dr. Mountjoy's notes, Section 3.1). The �rst-order correction is given by Eq. (7.20), above:

λE
(1)
1 =

〈
1(0)
∣∣λĤ1

∣∣1(0)
〉
, (7.38)

where we have substituted|1(0)〉 for the zeroth-order ground state. To evaluate this, we need to write it in
some particular representation. Since we are given the potentialV (x) in the position representation, let us
use that basis. Using the completeness relation for a continuum of position eigenstates, Eq. (4.12), we can
re-write (7.38) as

λE
(1)
1 =

∫
dx

∫
dx′〈1(0)|x〉〈x|λĤ1|x′〉〈x′|1(0)〉. (7.39)

We have now put everything in terms of the matrix elements ofλĤ1 in position representation,

〈x|λĤ1|x′〉 = V (x) 〈x|x′〉 = V (x) δ (x− x′) , (7.40)

and the corresponding ground state wavefunction,

ψ (x) ≡ 〈x|ψ〉 = B sin
(nπ
L
x
)

= B sin
(π
L
x
)

[see Subsec. 4.6:Particle in a box; taken = 1 for the ground state]
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Thus

λE
(1)
1 =

∫
dx〈1(0)|x〉V (x) 〈x|1(0)〉

=

∫ L

0

dxV (x)
∣∣〈x|1(0)〉

∣∣2
=

∫ L/2+δ/2

L/2−δ/2
dxλV0 |B|2 sin2

(π
L
x
)

= λV0 |B|2
∫ L/2+δ/2

L/2−δ/2
dx sin2

(π
L
x
)

≈ λV0 |B|2 δ sin2
(π

2

)
= λV0 |B|2 δ. (7.41)

where in the ante-penultimate line we have assumed thatδ � L (thin barrier) so we can neglect the change
ofsin2

(
π
L
x
)
withx withinδ/2 ofx = 0.
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Finally, we need the normalisation factor|B|2, which is obtained from∫
dx
∣∣〈x|1(0)

〉∣∣2 = 1 (7.42)

⇒
∫ L

0

dx
∣∣∣B sin

(π
L
x
)∣∣∣2 = 1

⇒ |B|2 =

[∫ L

0

dx sin2
(π
L
x
)]−1

=

[
L

π

∫ π

0

dξ sin2 (ξ)

]−1

=

[
2L

π

∫ π/2

0

dξ sin2 (ξ)

]−1

(7.43)

Now we use the famous integral ∫ π/2

0

sinm x dx =
m− 1

m

∫ π/2

0

sinm−2 x dx (7.44)

withm = 2: ∣∣〈x|1(0)
〉∣∣2 |B|2 =

[
2L

π

1

2

∫ π/2

0

dx

]−1

=

[
2L

π

1

2

π

2

]−1

=
2

L
. (7.45)
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Hence our �nal result is

λE(1) = λV0
2δ

L
(7.46)

so the energy is

E1 ≈
~2π2

2mL2
+ zλV0

δ

L
.� (7.47)

Assignment: Problem30.

Assignment: Problem31.
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Part II

Problems

The following problems are intended to aid your understanding of the material in the lecture notes. Each
problem is closely-related to one of the lectures. The shaded boxes in the lecture notes tell you when you
should be attempting each of the problems. It is crucial that you attempt the problems as we progress.



1. Revision: vectors (PH311).17

A quick recap: vectors

Consider the two-dimensional plane. Letu1 andu2 be the unit vectors pointing along
the horizontal and vertical directions, respectively.u1 andu2 form abasiswhich means
that any other vectorv can be written in the formv = au1 + bu2. We say thatv = (a, b)
is the expression in Cartesian coordinates of the vectorv in theu1,u2basis. By de�nition
the Cartesian coordinates of the basis vectors themselves areu1 = (1, 0) andu2 = (0, 1) .
The dot product of two vectorsv = au1 + bu2 andw = cu1 + du2 is given byv.w =
ac+ bd. The norm ofv is|v| =

√
a2 + b2. This all generalises stright-forwardly to higher

dimensions e.g. if we have 3 basis vectors (three dimensions) then a vector has three
componentsa, b, c and its norm is

√
a2 + b2 + c2.

(a) Consider the following vectors expressed in the {u1,u2} basis:
� p = (3,−1)

� q = (−1/2,−2)

� r = (1, 1)

i. Draw a diagram showing the positions ofu1,u2,p,q, and r on the plane.

ii. Calculate the following linear combinations. Express your results in Cartesian coordinates in
the{u1,u2} basis:
� p + q

17This is arevisionproblem. It will not be assessed.



� p− q

� p− 2q + r/2

iii. Calculate the norms ofu1,u2,p,q, and r.

(b) The basis vectorsu1,u2 are orthogonal (u1.u2=0) and normalised (|u1|2 = |u2|2 = 1). Check that
the same is true for the vectors

w1 =
1√
2

(1, 1)

w2 =
1√
2

(1,−1)

and therefore they can be also be used as a basis.

(c) Add to your diagram the vectorsw1 andw2 showing the new axes they de�ne on the plane.

(d) Use the expression ofp in Cartesian coordinates, given above, to writep as a linear combination
ofu1 and u2. Now similarly write the basis vectorsu1,u2 themselves as slinear combinations of the
new basis vectorsw1,w2. Substitute into the expression forp to deduce a new formula givingp as a
linear combination ofw1 andw2. From this, deduce the Cartesian expression ofp in the new basis.

(e) The dot product of a vector with a basis vector is called a�projection�. Calculate the projectionsw1.p
andw2.p and compare them to the Cartesian-coordinate expression ofp in thew1,w2 basis obtained
above. Explain, using a diagram, why this is called a�projection�.



2. Revision: Matrices (PH311).18

A quick recap: matrices

� Linear operations with matrices (addition, multiplication by a scalar, i.e. by a number, and
combinations of those) are carried out just like with vectors, by combining the equivalent
elements of each matrix individually.

� The transpose of a2 × 2 matrix

(
a b
c d

)
is

(
a b
c d

)T
=

(
a c
b d

)
. More generally, for

a matrix of arbitrary dimensionsI × J with elementsai,j (i = 1, 2, . . . , I is the row index
andj = 1, 2, . . . , J is the column index), the tranpose is given byaTi,j = aj,i. If, in addition
to transposing the matrix, we take the complex conjugate, that is called the adjoint matrix,
denoted by a�dagger�† :a†i,j = aT∗i,j = a∗j,i.

� The elements of a matrixM that equals the product of two others matricesA andB,M = A.B,
are given bymi,j =

∑
l ai,lbl,j, where the elements ofA andB are given byai,j andbi,j, respec-

tively. Thus, the product of a matrix with dimensionsI×L with another of dimensionsL×J
gives a matrix with dimensionsI×J. Note that the number or columns of the �rst matrix must
equal the number of rows of the second matrix, otherwise the product is not well-de�ned.

(a) Consider the following2× 2 matrices:

� A =

(
1 2
2 4

)
18This is arevisionproblem. It will not be assessed.



� B =

(
1 1/2

1/2 −1

)
� C =

(
0 i
−i 0

)
What property do all these matrices have in common? (hint: try transposing them and see what
you get).

(b) Calcuate the linear combinationX = A− 2B.

(c) Calculate the matrix productY = B.C.



3. Revision: determinants (from PH311).19

A quick recap: determinants

The determinant of a (square)N ×NmatrixA with elementsai,j is

|A| =
∑
P

sign (P )
N∏
i=1

ai,Pi

where the sum is over all the permutationsP1,P2, . . . , PN of1, 2, . . . , N andsign (P ) denotes the sign
of the permutation. For2× 2 and3× 3 matrices this gives, respetcively,∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + dhc− ceg − bdi− fha.

(a) Calculate the determinants of the matricesA,B,C given in Problem2.

(b) Calculate the determinant of  1 2 i
2 0 −i
−i i 2

 .

19This is a revision problem. It will not be assessed.



4. Revision: vectors and matrices (from PH311).20

A quick recap: vectors and matrices

� A row vector(a, b) can be considered as a1× 2 matrix. Its transposition(a, b)T =

(
a
b

)
is a

column vector, or2×1 matrix. The same goes for vectors with larger number of components
(in higher dimensions).

� A particular case of matrix multiplication is when the �rst matrixM is anN × N (square)
matrix and the second matrixx is anN×1 matrix (a column vector). Then the productM.x =
y gives a newN−row column vector. We sayy is the rewsult ofapplyingthe matrixM to the
vectorx.

� The column vectorx is said to be aneigenvectorof the matrixM ifM.x = λx for some scalarλ
(a scalar is a real or complex number).

� The characteristic polynomial of a matrixM of dimensionsN ×N is the|M− λ1|, whereλ is

a free variable and1 =

 1
. . .

1

 is theN ×N identity matrix.

� The eigenvalues ofM are the roots of its characteristic polynomial, i.e. the values ofλ for
which|M− λ1| = 0.

20This is a revision problem. It will not be assessed.



(a) Apply the matrixC in Problem2 to each of the vectorsp,q, r in Problem1 to obtain new vectorsp′,q′, r′.
Is any of them and eigenvector ofC?

(b) Find all the eigenvalues of each of the matricesA,B, and C in Problem2 by solving for the roots
of their characteristic polynomials. Are your resuls forC consistent with what you obtained in the
previous section?



5. 21Sketch the possible orbits in phase space (i.e. the space of momentump and positionx) of a particle
moving in the following potential (see �gure):

V (x) = −ax2 +
b

4
x4

Do this by solving the equation
p2

2m
+ V (x) = E

for di�erent values of the energy,E.

Give ranges of values of E over which the particle is localised on either side of the barrier and able to
overcome it and move between the L and R sides of its accessible space, respectively.

Express your result as a function of the parametera > 0.

21This is anadvancedproblem. It will not be assessed. Attempt this problem only after you are con�dent with the other
problems covered so far.



Hints: Inspection of the �gure in combination with the above condition will tell you that for low values
of the energy there are no solutions; for higher energies, but below certain threshold there are solutions
in two disconnected regions of space: one with negativex and another one with positivex; and for higher
energies there are solutions spanning a range ofx going from negative to positive values.

You can now sketch the orbits in phase space, i.e. in ap vsx plot. The disconnected orbits correspond
to the particle being localised, depending on the initial conditions, either on theL orR side (x < 0
andx > 0, respectively). The higher-energy solutions correspond to a particle able to overcome the
barrier and moving freely betweenL andR.

To �nd the energy thresholds to go from one behaviour to another you need to �rst �nd the stationary
points ofV (x) by demandingdV/dx = 0 and then determine the value ofV (x) at those points. You can
also check which stationary points are maxima or minima by computing the sign ofd2V/dx2.



6. Eq. (1.6) describes quite generally the time evolution of a two-state quantum system. Given two energy
levels available to the system, E0 and E1, the equation gives the period of oscillation of some other
measurable property, such as the box the particle is in (in the one-particle-in-two-boxes example we
dealt with in the lectures). Suppose a quantum system emits radiation by oscillating between two such
states. Calculate the energy level di�erence necessary to produce radiation of the following wavelengths:

(a) 1 pm (gamma rays);

(b) 1 nm (soft X-rays);

(c) 1 µm (visible light);

(d) 500 m (medium frequency microwaves);

(e) 80 km (Verly Low Frequency radio waves).

Hint: one way to tackle this is to use the speed of light in a vacuum, c, to convert the wavelength to a
frequency, then from the frequency obtain the period of oscillation τ and solve for E1 − E0.



7. A particle is in a linear superposition of two states with energies E0 and E1:

|φ〉 = A|E0〉+
A√
3− ε

|E1〉

where A > 0 and 0 < ε < 3.

(a) What is the value of A? Express your answer as a function of ε.

(b) Use your expression to plot A vs ε.

(c) Show by a diagram the location of the state |φ〉 on the Hilbert space, using |E0〉 and |E1〉 as the
basis vectors, for ε = 0, 1, and 2.

Hint:use the normalisation condition P (E0) + P (E1) = 1.



8. A magnetic particle can have its magnetisation pointingup | ↑〉 or down | ↓〉. The eigenstates of the
energy are

|E0〉 =
1√
2
| ↑〉+

1√
2
| ↓〉

|E1〉 =
1√
2
| ↑〉 − 1√

2
| ↓〉

The particle is in a linear superposition

|φ〉 = A|E0〉+
A√
3
|E1〉

with A > 0.

(a) What is the value of A?

(b) What is the state vector in the {|E0〉, |E1〉} basis?
(c) What is the state vector in the {| ↑〉, | ↓〉} basis?



9. Consider the states

|ψ〉 =
1√
2

(
eiα|xL〉+ |xR〉

)
|φ〉 =

1√
2

(i|xL〉+ |xR〉)

where α is a real number. Compute the following quantities:

(a) 〈φ|ψ〉
(b) 〈ψ|φ〉
(c) |〈ψ|φ〉|2

Hint:for any complex numberz,|z|2 = z∗z.



10. A quantum communication channel uses superpositions of photon states with vertical polarisation | l〉
and horizontal polarisation | ↔〉. Individual qubits are transmitted using the states |0〉, |1〉 given by the
following superpositions of polarised states:

|0〉 =
1√
2

(
| l〉+ eiπ/4| ↔〉

)
|1〉 =

1√
2

(−i| l〉+ | ↔〉)

Invert these relations two write | l〉 and | ↔〉 in terms of |0〉 and |1〉 and use your result to write the
state

|Φ〉 =
1

2

(√
1| l〉+ i

√
3| ↔〉

)
explictly as a linear superposition of |0〉 and |1〉.
Hint: to invert the basis transformation, use the given form to deduce the four projections of |0〉,|1〉
onto | l〉,| ↔〉. Then, use the fact the inverting the order of an inner product is the same as taking its
complex conjugate to deduce the inverse relation.



11. A qubit can be in one of two states
|0〉 or |1〉.

The Hamiltonian is given by

Ĥ =

(
0 −Ω

−Ω 2Ω/
√

3

)
in the {|0〉, |1〉} basis,

where the parameter Ω is an experimentally-controllable energy scale.

(a) Find the eigenvalues of the energy, E+ and E− (E− < E+).

(b) Find the ground state energy eigenvector

|E−〉 =

(
A
B

)
in the {|0〉, |1〉} basis.
You may assume A > 0.

Hint:Derive theg ratio A/B, then require normalisation.

(c) A measurement of the energy of our qubit produces the lower value, E−. What is the probability
of �nding the qubit in the state |1〉 straight after this measurement?



12. Expectation values from probabilities. A quantum system has 4 possible energy eigenstates
|E1〉, |E2〉, |E3〉, |E4〉. The energy of the nth eigenstate is known to be given by En = ~ωn for n =
1, 2, 3, 4. The system is in the following linear superposition of energy eigenstates:

|ψ〉 =
1

2
√

2

(
|E1〉 − i

5

2
|E2〉+

√
3

2
|E4〉

)
.

What is the expectation value of the energy? Use the de�nition of expectation value, Eq. (2.60), to
deduce your answer.



13. Expectation values from operator matrices. A �quantum dot� nanostructure acts as a single-
electron capacitor that can have two charge states:

�empty� state �charged� state

Charge Q Charge Q+ e
|0〉 |e〉

Let Ĉ be the charge operator with eigenstates |0〉 and |e〉:

Ĉ|0〉 = Q|0〉;
Ĉ|e〉 = (Q+ e) |e〉.

In terms of {|0〉, |e〉} , the two eigenstates of the energy are

|E−〉 =
1

2

(
−|0〉+

√
3|e〉

)
(7.48)

|E+〉 =
1

2

(√
3|0〉+ |e〉

)
(7.49)



(a) Obtain the matrix  〈E− ∣∣∣Ĉ∣∣∣E−〉 〈E− ∣∣∣Ĉ∣∣∣E+〉

〈E+

∣∣∣Ĉ∣∣∣E−〉 〈E+

∣∣∣Ĉ∣∣∣E+〉


that describes Ĉ in the energy basis {|E−〉, |E+〉} .
Hint: to calculate each of the four matrix elements, say 〈E−

∣∣∣Ĉ∣∣∣E+〉, �rst write 〈E−| as a row

vector, Ĉ as a matrix and |E+〉 as a column vector, all in the same basis, then simply calculate
the product:

〈E−|︸︷︷︸
(1×2 matrix)

Ĉ︸︷︷︸
(2×2 matrix)

|E+〉︸︷︷︸
(2×1 matrix)

= a number.

This is easy if we work in the charge basis.

(b) Using the above result, calculate the expectation value
〈
ψ
∣∣∣Ĉ∣∣∣ψ〉 of the excess charge in the

quantum dot when it is in the state

|ψ〉 =
1√
2

[cos (α) |E−〉+ sin (α) |E+〉]

where α is a real number.



14. A biased double quantum dot can hold an electron on the LEFT (x = xL) or the RIGHT (x = xR):

The two eigenstates of the energy are

|E0〉 =
1√
3
|xL〉+

√
2

3
|xR〉

|E1〉 =

√
2

3
|xL〉 −

1√
3
|xR〉

The corresponding energy eigenvalues are E0 and E1 = E0 + ∆E (with ∆E > 0), respectively.

At t = 0 the electron is in the state |xL〉.
What is the earliest time τ > 0 at which a measurement of the electron's position will yield xL or xR
with 50% probability? Express your result as a function of ∆E.

Hints: Compute the probability PR (t) = |〈xR|ψ (t)〉|2 [or, equivalently, PL (t) = |〈xL|ψ (t)〉|2 = 1 −
|〈xR|ψ (t)〉|2] and solve the equation PR (t) = 1/2. Because it is a trigonometric equation, there may be
more than one solution, and you have to make sure you use the solution corresponding to the smallest
value of t. It really helps if you plot PR (t) vst to get a graphical view of what the solutions are and
which the earliest one is.



15. A particle has a magnetic moment that can only point up | ↑〉 or down | ↓〉.
At t = 0 the particle is in the | ↑〉 state.
For t > 0 the probability distribution for the magnetic moment direction evolves according to

P↑ (t) = cos2 (ωt)

P↓ (t) = sin2 (ωt)

where ω is a known angular frequency.

At time t = τ (0 < τ < π/2ω) a measurement of the particle's magnetic moment direction is carried out.
The measurement indicates that the magnetic moment is again pointing up. A second measurement is
carried out at a later time t = τ + ∆t.

� What is the probability that the second measurement will also show the magnetic moment to be
pointing up?

Express your result as a function of the measurement delay ∆t.

Hint: there's not much calculation involved. Just think carefully about what the measurement postulate
implies for this problem.



16. Find the value of the constant A > 0 for the following state vectors/wave functions:

(a) Electron that can be at one of three sites x1, x2, x3 with state vector

|ψ〉 =

 1/
√

3

i/
√

4
A


(b) A photon moving along a straight, one-dimensional optical �bre with two mirrors at

x = −a/2 and x = a/2

whose wave function is
φ (x) = A cos

(πx
a

)

Hint: In both cases, A is determined by enforcing normalisation.



17. Continuum eigenfunctions. Consider a free particle moving along the one-dimensional coordinate
x. Check whether each of the following wave functions represent eigenstates of momentum, energy, or
both. When the wave function is an eigenstate of one of the two observables, give the corresponding
eigenvalue:

(a) ψ (x) = Akx

(b) φ (x) = A cos (kx)

(c) ξ (x) = 1√
2L

[
eikx + ie−ikx

]
Hint: you can use that for a free particle there is no interaction potential.



18. Find the normalisation constant A in the wave function of a particle in a box,

ψ (x) = 2iA sin (kx) where k =
π

L
n,

as a function of n for n = 2, 3, 4.



19. Find k, κ, E for solutions to the �leaky box� problem with E < V in the case when

α =
V

~2/2mL2
= 16.

Find the coe�cients A and C determining the wave function

ψ (x) =

{
2iA sin (kx) if 0 < x < L;

Ce−|κ|x if L < x <∞.

Assume C > 0 (real and positive). Assume also that the length of the box, L, is known and give your
results as functions of L.



20. Suppose an electron in a quantum dot is con�ned by a Gaussian-like potential

V (x) = −V0e
−(x/σ)2 ,

where x is the position of the electron along the symmetry axis of the nanostructure and V0, σ are two
known positive constants (with dimensions of energy and length, respectively).

(a) Find the SHO potential VSHO (x) that best approximates V (x) near x = 0.

Hint: obtain the Taylor expansion of V (x), cutting it o� at quadratic order in x/σ.

(b) Plot VSHO (x) and V (x) on the same graph, showing how they di�er asx becomes larger.



21. Substitute the formula in Eq. (5.18) for the time-evolution of the position of a harmonic oscillator,
namely

x (t) = A cos (ωt+ φ) ,

in the corresponding classical equation of motion (5.17) to prove that it is a solution as long as ω obeys
the relation in Eq. (5.19), that is, as long as the angular frequency of oscillations is given by

ω =

√
k

m
.



22. Substitute the de�nitions of the characteristic length and energy of a SHO [Eqs. (5.27,5.28)]

l0 ≡
√

~
mω

, E0 ≡
~ω
2

in the time-independent Schrödinger equation (5.25) to show it takes the form (5.30):

∂2

∂ξ2
ϕn (ξ) +

(
λn − ξ2

)
ϕn (ξ) = 0

whereϕn (ξ) ≡ ψn (l0ξ) .



23. A gas containing hydroxide (OH−) molecules has been an absorption line at wave number 1/λ =
3500 cm−1. This means that when photons with that wave number hit the molecule, they can be ab-
sorbed due to a transition between two successive energy levels of the molecule whose energy di�erence,
∆E, equals the energy of the photon. The two energy levels correspond to di�erent vibrational states
of the molecule. You may assume that the molecular vibrations can be described by the oscillating
motion of the H+ ion (i.e. a proton) around its equilbrium distance from the O2− ion, which can be
considered �xed (since its mass is much larger than that of the proton). You may assume that the two
energy levels are consecutive.

(a) Calculate the energy of photons absorbed in this line.

Hint: use the speed of light to obtain the frequency of the light, then use Planck's equation giving
the energy of a photon in terms of its frequency and Planck's constant.

(b) Deduce the angular frequencyω of the e�ective harmonic oscillator potential in which the proton
moves.

Hint: use the equation obtained in the lectures for the energy di�erence between two consecutive
energy levels of a SHO and equate it to the photon's energy. Solve for the harmonic oscillator
frequency.

(c) What pairs of vibrational states can be involved in the absorption of the photon?



24. Construct the n = 2, 3 solutions of the SHO (energy and wave functions). Compare them to the n = 0, 1
solutions obtained in the lectures, and put all four wave functions on the same plot, indicating the main
di�erences.



25. Consider a particle of mass m con�ned to move along a straight line in a harmonic oscillator potential
with angular oscillation frquency ω.The wave function

ψ (x) = Be−
x2

2l2 x.

(a) Find the value of the normalisation constantB, as a function ofl, by requiring that
∫∞
−∞ dx |ψ (x)|2 =

1.

(b) Show by substitution that this wave function corresponds to a stationary state of the particle,
deriving a formula for the wave function parameter l and another one for the energy, both expressed
as functions of m and ω.

(c) What is the probability that the particle is found between−l and l? Compare your result to the
case of a classical particle with the same energy.



26. Consider a simple harmonic oscillator. Let us denote by |n〉 its nth stationary eigenstate, with energy
En = ~ω

(
1
2

+ n
)
. Let us assume that at t = 0 the system is in the state |Ψ (0)〉 ≡ 1√

2
(|0〉+ |1〉).

(a) Write a computer code that plots the probability density P (x, t) = |〈x|Ψ (t)〉|2 as a function of
positionx at any given timet.

(b) Use your program to �nd the period with which the peak in the probability distribution oscillates
from left to the right.

(c) Compare your result to the classical period of oscillation of a simple harmonic oscillator.



27. A quantum particle is in a one-dimensional box potential (with in�nitely high energy barrier at the
edges of the box, x = 0, L). At time t = 0, the particle's state |ψ〉 is an equal superposition of the two
lowest-energy stationary states, namely the ground state |1〉 and the �rst excited state |2〉, with equal
phase for the two states: |ψ〉 = 1√

2
(|1〉+ |2〉).

(a) Find a formula for the probability density pro�le as a function of x at t = 0, P (x, 0) = |〈x|ψ〉|2 .
You will need the correctly-normalised particle-in-a-box stationary wave functions 〈x|1〉 and 〈x|2〉.
Choose the normalisation factors to be real and such that the two stationary wave functions have
the same sign on the left side of the box (0 < x < L/2).

(b) Use a computer to plot the function P (x, 0) obtained above.22

(c) Find a numerical approximation to the valu xmax at which the probability density for �nding the
particle is maximum.

(d) What is the current at t = 0, j (x, 0)?22

(e) Find a formula for the time-dependent probability density pro�le, P (x, t) = |〈x|ψ (t)〉|2 . You will
need to make use of the particle-in-a-box energies, En = n2~2π2/2mL2, which we derived in the
lectures, to obtain the time dependence of each of the two components of the wave function: that
corresponding to the ground state and that corresponding to the �rst excited state.

(f) Make a plot (again, using a computer) showing how P (x, t) changes as a function of time. You
will see that the behaviour is periodic in time. Find the period (you can do this, for example, by

22The tools you use to complete parts27b,27c and27f is up to you. To create the plots, you could write a script in Python or
Fortran, use a plotting program such as GNUplot, or even a chart on a spreadsheet. To �nd xmax, you could again write some
code in a language of your choice, e.g. using the bisection method. Alternatively, some plotting programs like GNUplot allow
you to place the cursor of the plot and read o� the coordinates (which combined with zooming can give you quite an accurate
reading of where two curves cross). You could even print the plot and use a ruler and a pencil - which is �ne as far as the result
is accurate to within 1% or so.



evaluating P (x, t) at a �xed, arbitrary value of x for di�erent times and seeing at what value of
the time the probability density goes back to the value it had at t = 0).22

(g) Find an expression for the current in the centre of the box, j (L/2, t) at arbitrary times t, using
the time-dependent wave function which you obtained as part of part27e, above. Interpret your
result in terms of the time-evolution of the probability distribution and �nd an analytical formula
for the period.



28. In a future war, soldiers are equipped with guns that �re beams of positrons. They are also kitted out
with suits that are reinforced with sheets made of a material designed to stop the positrons. Depending
of the material used, the sheet can be made 1nm thick with a 1KeV high potential energy barrier for
the positrons or 10nm thick with a 700eV high barrier. The positrons have energy equal to 600eV.

(a) Calculate the transmission coe�cient of each sheet to see which one is better.

(b) What would the transmission coe�cient be for a suit with both sheets, one on top of each other?
(Assume that you can treat the two barriers as two consecutive, but independent tunneling prob-
lems).



29. The ammonia molecule (NH3) can exist in one of two equivalent quantum states, |a〉 and |b〉, depending
on whether the Nitrogen atom is, respectively, above orbelow the plane de�ned by the three Hydrogens:

N

N

Ignoring all other degrees of freedom, the Hamiltonian Ĥ0 can be written in terms of the parameters
ε0 and ∆ (both of which are >0) by the following matrix:(

ε0 −∆
−∆ ε0

)
in the basis in which

|a〉 =

(
1
0

)
and |b〉 =

(
0
1

)
.

An ammonia molecule is now placed in an externally-applied electric �eld which favours the state |a〉
over |b〉. The Hamiltonian is thus perturbed,

Ĥ0 → Ĥ0 + EĤ1,



whereĤ1 is represented by the matrix (
1 0
0 −1

)
and E is proportional to the electric �eld strength. Find the unperturbed stationary states of the system
(speci�ed by their state vectors) and their energies and compute the corrections to those energies using
perturbation theory. Assume that E is small and that therefore we can compute the energies to second
order in E .



30. Show that the result (7.47) does not depend on the precise shape of the barrier as long as it is small,
so we can use �rst-order parturbation theory, and the width is also small, δ � L, by repeating the
calculation for a Gaussian-shaped barrier,

λV (x) = λV0e
−(x−L/2δ )

2

.



31. Consider the particle in a box perturbed by a small potential energy barrier as in the example on
page144 of the lecture notes.

(a) Compute the �rst-order approximations to the energies of the �rst excited state and the second
excited state.

(b) Interpret physically the results you obtain by examining a plot of the probability distribution P (x)
for the two unperturbed states.
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