Anomalous thermodynamic power-laws at the topologial transition state in nodal superconductors

Jorge Quintanilla

SEPnet and Hubbard Theory Consortium, University of Kent and ISIS Facility, STFC Rutherford Appleton Laboratory

The theory of nodal quasiparticles has a wide range of applications, from unconventional superconductors to topological materials and graphene. At low temperatures, their linear dispersion away from a nodal point or line on the Fermi surface (a Dirac point or a Dirac line), leads to a characteristic power-law dependence of the specific heat:

In superconductors, such behaviour can be used to detect experimentally whether the order parameter has line nodes (n = 2) or point nodes (n = 3) and therefore to identify the Cooper pairing symmetry.

I will begin this talk by pointing out that other, non-integer exponents are possible when the dispersion of quasi-particles away from the nodes becomes non-linear. I will show that they occur when line nodes cross or near topological transitions where point nodes, line nodes, or line node crossings either appear, disappear or re-configure themselves in a non-trival way on the Fermi surface (e.g., at a nodal-line reconnection transition). Such anomalous exponents thus provide *bulk* thermodynamic signatures of the topological transitions in question – with important experimental implications. I will describe in detail their relevance to the Li2Pt3Pd3-xB series of noncentrosymmetric superconductors.

To conclude, I will show that a material need not be exactly at the topological transition in order for the anomalous exponent to be observed. Indeed the topological transition state holds sway over a large part of the phase diagram, similarly to a quantum critical endpoint (QCEP). I will speculate that this state may be stabilised by an order-by-disorder mechanism. I will propose a novel technological application of the "soft" quasiparticles found in this state.