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Abstract
In Spin Ice the hopping of a magnetic monopole, from one site to the next, consists of the flip of a large spin from an easy axis configuration to the opposite one. At very low

temperatures, this requires quantum-mechanical tunnelling throug a large anisotropy barrier. Naively one would thus expect a single, very slow frequency in the low-temperature
regime. On the other hand experiments reveal a broad range of temperature-independent (i.e. quantum) frequencies at low temperatues [1->34]. Here we study this question within
a single ion (Ho**) picture. Starting from the CF Hamiltonian for Ho,Ti,O, we analyze how a transverse magnetic field B, induces a quantum spin flip from an anisotropic
configuration to the opposite one. Interestingly, we find a broad range of frequencies that are characteristic of the system. In particular using the internal field distribution (from
Montecarlo simulations) due to the presence of a monopole we detect two different time scales for the hopping rate of a monopole. To model the hopping of a monopole, we use
a classical Monte Carlo calculation to estimate the size and orientation of the magnetic field a spin is subjected to before (B,) and after (B,) a monopole arrives to an adjacent
tetrahedron. The quantum quench from B, to B, induces a quantum mechanical flipping of the spin, and thus the hopping of the monopole. Our calculation, which doesn’t
depend on any adjustable parameter, suggests two main timescales for monopole hopping: T, =0.25ms and T, = 2.5ps.
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Spin Ice are Geometrically Frustrated
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ferromagnets (Pyrochlore Oxides ).

In Dy, Ti,0, and Ho,Ti,0,

The strong crystal field causes the

spin to point along the <111> direction =
Ice Rule = macroscopic degenerate GS =» non-zero entropy at T= 0.
Large magnetic moments (10 ) = Strong Dipole-Dipole interaction.

At low temperatures, the
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Magnetic monopoles interact
via Coulombic potential
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Long Range Coupling

RESULTS

Quantum mechanics of an Ho®* ion in a transverse magnetic field
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. Stationary States for the CF Hamiltonian
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Crystal Field Hamiltonian in terms of Stevens operators

Example of a largé spin (blue dotted)

under magnetic transverse field B (red solid).

How do Monopoles hop?
By flipping spins!
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Ground state :
t 2in-2out ,
1 NO monopoles

A monopole
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The central spin
tS flipped, hence the
monopole hopped
from one site to next
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QUANTUM DYNAMICS
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Histograms of internal fields
from classical Monte Carlo
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Quantum ‘Quench

TWO different
time scales for the
monopole hopping

T, =0.25 ms

T, =2.5 Us

[1] Bramwell et a. Nature 461 (2009) ; [2] Dunsiger et al PRL 107 (2011) ; [3] S.Giblin et al. Nature-Phys 7 (2011); [4] K.Matsushira et al. JPSJ 80 (2011)

AKNOWLEDGMENTS

We thank L.Pascut and S. Giblin for useful discussions.



