INTRODUCTION	Data	Models	PR	Results	SUMMARY
000000	00	00000000000	00	00000	0

Ring-Recovery Methods for Historical Ringing Data

Marina Jiménez Muñoz

Dr Diana Cole, Dr Stephen Freeman, Dr Eleni Matechou, Dr Stephen Baillie, Dr Robert Robinson

Thursday 6th July, 2017

<ロト < 母 ト < 臣 ト < 臣 ト 三 の Q (C) 1/29

INTRODUCTION	Data	Models	PR	Results	Summary
•00000	00	00000000000	oo	00000	0
INTRODUCTIO	N				

- Ringing schemes in Britain since the beginning of the 20th century.
- Nearly all records of birds that have been recovered have been computerised.
- Historical ringing totals for the different age classes for some species are only in paper form.

INTRODUCTION	Data	Models	PR	Results	Summary
0€0000	00	000000000000	00	00000	0

RING-RECOVERY DATA

- Ring-recovery models require data on:
 - The total number of birds ringed in each age category (i.e. pulli, juvenile and adult birds),
 - The total number of recoveries for each age category.

INTRODUCTION	Data	Models	PR	RESULTS	SUMMARY
00000	00	000000000000	00	00000	0

STANDARD RING-RECOVERY DATA

Inti	RODUCTION	Data	Models	PR	Results	SUMMARY
000	000	00	00000000000	00	00000	0

HISTORICAL RING-RECOVERY DATA

- For some species, like the Sandwich tern, not all historical data has been computerised:
 - UNKNOWN total number of birds ringed in each age category
 - ► KNOWN total number of recoveries for each age category
- Survival tends to be affected by age. While older birds are likely to have a more stable and higher survival rate, younger birds usually have a more varying and smaller chance of surviving.

	O O IVIIVII III I
000000 00 000000000 00 00000	0

HISTORIC RING-RECOVERY DATA

≣ ∽ < (~ 6 / 29

INTRODUCTION	Data	Models	PR	RESULTS	SUMMARY
000000	00	00000000000	00	00000	0

HISTORIC RING-RECOVERY DATA

- Robinson R. A. (2010) ¹ assumes *a priori* proportions of the birds ringed as free-flying are marked as juveniles.
- We propose a model in which this proportion can be estimated as a parameter.
 - ► This model extends the results of Robinson R. A. (2010),
 - We show that this proportion can be estimated, along with other parameters.

¹Robinson R. A. (2010). Estimating age-specific survival rates from historical ringing data. *The International Journal of Avian Science*, **152**, 651-663.

INTRODUCTION	Dата	Models	PR	Results	Summary
000000	●0	00000000000	00	00000	0

Data

Introduction	Dата	Models	PR	Results	Summary
000000	0●	00000000000	oo	00000	0
Dата					

Table: Total number of Sandwich Terns ringed and recovered in each age category.

Age at ringing	No. of	Percentage of Total	No. of
	birds ringed	birds ringed	birds recovered
Pulli	67008	98.18%	851
Free-flying birds	1244	01.82%	37
Total	68252	100.00%	888

Table: Total number of Blackbirds ringed and recovered in each age category.

Age at ringing	No. of	Percentage of Total	No. of	
	birds ringed	birds ringed	birds recovered	
Pulli	71768	29.58%	2194	ĺ
Free-flying birds	170858	70.42%	5595	
Juvenile	96391	39.73%	3255	ĺ
Adult	744667	30.69%	2340	ļ
Total	242626	100.00%	7789)
		∢ □ ▶		4

9/29

Introduction	Data	Models	PR	Results	Summary
000000	oo	●00000000000	oo	00000	0
MODELS					

Table: Description of the models used. (The models in bold are the models developed in this paper).

Model name	Data on birds ringed as	Totals known?
Standard	pulli or adults	yes
Standard Combined	free-flying: juveniles and adults	yes
Standard Combined	pulli and free-flying: juveniles and adults	yes
Historic	Free-flying: juveniles and adults	no
Historic Combined	All age-categories: pulli and free-flying	pulli only
Conditional	Free-flying: juveniles and adults	no
Conditional Combined	All age-categories: pulli and free-flying	pulli only

Introduction	Data	Models	PR	Results	Summary
000000	00	o●oooooooooo	oo	00000	0
Standard Mo	DDEL				

- ▶ Brownie *et al.* (1985)², Freeman and Morgan (1992)³
 - Standard Model:
 - ► Pulli or adults
 - Standard Combined Model:
 - ► Free-flying: juveniles and adults
 - Pulli and free-flying: juveniles and adults

³Freeman S. N. and Morgan B. J. T. (1992). A modelling strategy for recovery data from birds ringed as nestlings. *Biometrics*, **48**: 217-235.

²Brownie, C., Anderson, D. R., Burnham, K. P., and Robson, D. S. (1985). Statistical inference from band recovery data handbook. Resource Publication. No. 156.Washington, DC: United States Department of the Interior, Fish and Wildlife Service.

Introduction	Data	Models	PR	Results	Summary
000000	00	00●000000000	oo	00000	0
STANDARD M	ODEL				

- ► *n*₁ years of ringing and *n*₂ years of recovery,
- ► Known T_{i,1} and T_{i,a}, total number of birds ringed as juveniles and adults in year *i*,
- ► Known, N_{i,t,1} and N_{i,t,a}, number of juvenile, and adult birds that were ringed in year *i* and recovered dead in year *t*,

where $i = 1, ..., n_1$, and $t = 1, ..., n_2$.

The models depend on the following parameters:

- $\phi_{1,t}$, probability of survival for a juvenile bird at time *t*;
- $\phi_{a,t}$, probability of survival for an adult bird at time *t*;
- $\lambda_{1,t}$, recovery probability for a juvenile bird at time *t*;
- $\lambda_{a,t}$ is the recovery probability for an adult bird at time *t*.

INTRODUCTION DATA MODELS PR RESULTS SUMMARY 000000 00 00000000 00 000000 00 00000 0

STANDARD MODEL

The probability that a bird ringed in year *i* is recovered in year *t* in the first age class,

$$P_{i,t,1} = \begin{cases} (1 - \phi_{1,t})\lambda_{1,t} & \text{if } t = i \\ \phi_{1,i} \left(\prod_{k=i+1}^{t-1} \phi_{a,k}\right) (1 - \phi_{a,t})\lambda_{a,t} & \text{if } t > i \end{cases}$$

for $i = 1, ..., n_1, t = i ..., n_2$.

The probability that a bird ringed in year *i* is recovered in year *t* in the adult age class is denoted by $P_{i,t,a}$ with,

$$P_{i,t,a} = \left(\prod_{k=i}^{t-1} \phi_{a,k}\right) \left(1 - \phi_{a,t}\right) \lambda_{a,t}$$

for $i = 1, ..., n_1, t = i, ..., n_2$.

<□ ト < □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト < 亘 へ ○ 13 / 29 INTRODUCTION DATA MODELS PR RESULTS SUMMARY 0000000 00 000000000 00 000000 00

Standard Model - Likelihood

Likelihood for standard model for Pulli data,

$$L_S \propto \prod_{i=1}^{n_1} \left\{ \prod_{t=i}^{n_2} P_{i,t,1}^{N_{i,t,1}} \left(1 - \sum_{t=i}^{n_2} P_{i,t,1} \right)^{T_i - \sum_{t=i}^{n_2} N_{i,t,1}} \right\}.$$

If the free-flying data was fully computerised the likelihood for the standard combined model,

$$L_{SC} \propto \left\{ \prod_{i=1}^{n_1} \prod_{t=i}^{n_2} P_{i,t,1}^{N_{i,t,1}} P_{i,t,a}^{N_{i,t,a}} \right\} \times \left\{ \prod_{i=1}^{n_1} \left(1 - \sum_{t=i}^{n_2} P_{i,t,1} \right)^{T_{i,1} - \sum_{t=i}^{n_2} N_{i,t,1}} \times \left(1 - \sum_{t=i}^{n_2} P_{i,t,a} \right)^{T_{i,a} - \sum_{t=i}^{n_2} N_{i,t,a}} \right\}.$$

<□ ト < ② ト < 差 ト < 差 ト 差 り Q ○ 14 / 29

	000000	00	000000000000	00	00000	O
T						

HISTORIC MODEL

- ► Unknown number of free-flying birds ringed in each age class, we only know *T_i*, total number of birds ringed in each year *i*
- ► Known, *N*_{*i*,*t*,1} and *N*_{*i*,*t*,*a*}, number of juvenile, and adult birds that were ringed in year *i*, and recovered dead in year *t*
- Historic Model:
 - ► Free-flying
- Historic Combined Model:
 - Pulli and free-flying

Additional parameter:

► p_t , the proportion of juvenile birds ringed at time t, with $(1 - p_t)$ adult birds ringed.

HISTORIC MODEL

The probability that a bird ringed in the first age class in year *i* is recovered in year *t*,

$$Q_{i,t,1} = \begin{cases} p_t (1 - \phi_{1,t}) \lambda_{1,t} & \text{if } t = i \\ p_t \phi_{1,t} \left(\prod_{k=i+1}^{t-1} \phi_{a,k} \right) (1 - \phi_{a,t}) \lambda_{a,t} & \text{if } t > i \end{cases}$$

for $i = 1, ..., n_1, t = i, ..., n_2$.

The probability that a bird ringed in the adult age class in year i is recovered in year t,

$$Q_{i,t,a} = (1-p_t) \left(\prod_{k=i}^{t-1} \phi_{a,k}\right) (1-\phi_{a,t}) \lambda_{a,t}$$

for $i = 1, ..., n_1, t = i, ..., n_2$.

4 ロ ト 4 母 ト 4 差 ト 4 差 ト 差 の Q ペ 16 / 29

INTRODUCTION	Data	MODELS	PR	Results	SUMMARY
000000	00	000000000000	00	00000	0

HISTORIC MODEL - LIKELIHOOD

The likelihood for the historic model for free flying birds

$$L_{H} = \left\{ \prod_{i=1}^{n_{1}} \prod_{t=i}^{n_{2}} Q_{i,t,1}^{N_{i,t,1}} Q_{i,t,a}^{N_{i,t,a}} \right\} \times \left\{ \prod_{i=1}^{n_{1}} \left(1 - \sum_{t=i}^{n_{2}} Q_{i,t,1} + Q_{i,t,a} \right)^{T_{i} - \sum_{t=i}^{n_{2}} (N_{i,t,1} + N_{i,t,a})} \right\}.$$

The likelihood for the historic combined model

$$\begin{split} L_{HC} \propto \Bigg\{ \prod_{i=1}^{n_1} \prod_{t=i}^{n_2} Q_{i,t,1}^{N_{i,t,a}} Q_{i,t,a}^{N_{i,t,a}} P_{i,t,p}^{N_{i,t,p}} \Bigg\} \times \Bigg\{ \prod_{i=1}^{n_1} \left(1 - \sum_{t=i}^{n_2} Q_{i,t,1} + Q_{i,t,a} \right)^{T_i - \sum_{t=i}^{n_2} (N_{i,t,1} + N_{i,t,a})} \\ \times \left(1 - \sum_{t=i}^{n_2} P_{i,t,p} \right)^{T_{i,p} - \sum_{t=i}^{n_2} N_{i,t,p}} \Bigg\}, \end{split}$$

where $N_{i,t,p}$ is the number of pulli ringed in year *i* who were recovered dead in year *t* and $T_{i,p}$, the total number pulli ringed in year *i*. The probability that a pulli ringed in year *i* is recovered in year *t* is $P_{i,t,p} = P_{i,t,1}$.

7						
	000000	00	0000000000000	00	00000	0
	INTRODUCTION	Data	MODELS	PR	Results	SUMMARY

CONDITIONAL MODEL

- ► McCrea *et al.* (2012)⁴
- ► Alternative to the historic Model, assumes totals unknown
- Conditional Model:
 - ► Free-flying
- Conditional Combined Model:
 - Pulli and free-flying

The conditional probabilities for birds ringed in year *i* that are recovered in year *t*, in both age class are

$$P_{i,t,1}^{C} = \frac{P_{i,t,1}}{\sum_{t=i}^{n_2} P_{i,t,1}} \text{ and } P_{i,t,a}^{C} = \frac{P_{i,t,a}}{\sum_{t=i}^{n_2} P_{i,t,a}}.$$

⁴McCrea, R. S., Morgan, B.J.T., Brown D. I. and Robinson R. A. (2012). Conditional modelling of ring-recovery data. *Methods in Ecology and Evolution*, **3**,823-831.

INTRODUCTION DATA MODELS PR RESULTS SUMMARY

CONDITIONAL MODEL - LIKELIHOOD

The likelihood for the conditional model for the free-flying birds

$$L_{C} = \prod_{i=1}^{n_{1}} \prod_{t=i}^{n_{2}} (P_{i,t,1}^{C})^{N_{i,t,1}} (P_{i,t,a}^{C})^{N_{i,t,a}}$$

The likelihood for the conditional combined model

$$L_{CC} = \prod_{i=1}^{n_1} \prod_{t=i}^{n_2} (P_{i,t,1}^C)^{N_{i,t,1}} (P_{i,t,a}^C)^{N_{i,t,a}} P_{i,t,p}^{N_{i,t,p}} \times \prod_{i=1}^{n_1} (1 - \sum_{t=i}^{n_2} P_{i,t,p})^{T_{i,p} - \sum_{t=i}^{n_2} N_{i,t,p}}.$$

	Introduction	Data	Models	PR	Results	Summary
	000000	00	000000000●0	00	00000	o
Moi	DELS					

Table: Description of the models used. (The models in bold are the models developed in this paper).

Model name	Data on birds ringed as	Totals known?
Standard	pulli or adults	yes
Standard Combined	free-flying: juveniles and adults	yes
Standard Combined	pulli and free-flying: juveniles and adults	yes
Historic	Free-flying: juveniles and adults	no
Historic Combined	All age-categories: pulli and free-flying	pulli only
Conditional	Free-flying: juveniles and adults	no
Conditional Combined	All age-categories: pulli and free-flying	pulli only

INTRODUCTION	Data	Models	PR	Results	Summary
000000	00	0000000000	00	00000	0

FREEMAN-MORGAN MODEL

- ► Introduce model notation x/y/z:
 - x: first-year-survival probability, ϕ_1
 - y: adult-survival probability, ϕ_a
 - z: recovery probability, λ
- Possible parameter dependencies
 - ► C: constant
 - CA: constant dependence for the 2 age classes
 - ► T: time dependence
 - TA: time dependence for the 2 age classes

000000	00	000000000000000000000000000000000000000	•0	00000	0
INTRODUCTION	Data	MODELS	PR	RESULTS	SUMMARY

PARAMETER REDUNDANCY

- ► Some parameters in a model cannot be estimated.
- Its presence may lead to biased/inaccurate results. separately.
- ► Causes:
 - Structure of the model
 - symbolic algebra
 - Use of inefficient or insufficient data
 - Simulated data,
 - Blackbird data: we have all the ringing totals,
 - Sandwich tern data: we do not have all the ringing totals.

INTRODUCTION	Data	Models	PR	RESULTS	SUMMARY
000000	00	00000000000	0●	00000	0

PARAMETER REDUNDANCY

		1.1		1.1	11.1 1	
Model	standard	historic		hist. comb.	conditional	cond. comb.
Data set(s)	Pulli	F	FF	Pulli + FF	FF	Pulli + FF
Proportion	NA	С	Т	C or T	NA	NA
C/C/C/	0	0	0	0	0	0
C/C/T/	0	0	0	0	2	0
C/C/CA/	1	1	0	0	2	1
C/C/TA/	1	1	2	0	3	1
C/T/C/	0	0	0	0	0	0
C/T/T/	0	0	0	0	3	0
C/T/CA/	1	1	0	0	2	1
C/T/TA/	2	2	3	1	n+2	3
T/C/C/	0	0	0	0	0	0
T/C/T/	0	0	0	0	2	0
T/C/CA/	0	0	0	0	2	0
T/C/TA/	2	2	3	1	n+1	3
T/T/C/	0	0	0	0	1	0
T/T/T/	2	1	1	1	n+1	2
T/T/CA/	0	0	0	0	3	0
T/T/TA/	n+1	3	4	2	2 <i>n</i>	n+2

23 / 29

 INTRODUCTION
 DATA
 MODELS
 PR
 Results
 Summary

 000000
 00
 0000000000
 00
 000000
 0

RESULTS - SIMULATION STUDY

Table: Simulation study for 5 years of ringing and recovery of study and for given true parameter values.

		stand	ard mo	del	histo	ric mod	lel	historic	fixed p	= 0.4	historic	fixed p	= 0.2
parameter	true	av	MSE	av	av	MSE	av	av	MSE	av	av	MSE	av
-	value	par est		se	par est		se	par est		se	par est		se
ϕ_1	0.4	0.40	0.006	0.08	0.40	0.006	0.08	0.40	0.006	0.08	0.47	0.023	0.12
ϕ_a	0.6	0.60	0.004	0.07	0.60	0.004	0.07	0.60	0.004	0.07	0.79	0.053	0.09
λ	0.3	0.30	0.001	0.03	0.30	0.001	0.04	0.30	0.001	0.03	0.57	0.154	0.16
р	0.4				0.40	0.002	0.05						

 INTRODUCTION
 DATA
 MODELS
 PR
 Results
 SUMMARY

 000000
 00
 00000000000
 00
 000000
 0

Results - Historic Model

Table: Comparison between the historic ring-recovery and standard combined model selection for Blackbirds.

Historic	Δ AIC	Standard Combined	$\Delta \operatorname{AIC}$
free-flying totals		Juveniles + adults totals	
C/C/T/T	0.00	C/C/T	0.00
C/T/T/T	3.68	C/T/T	11.89
C/C/T/C	6.65		
C/T/T/C	18.30		
T/C/T/C	20.30	T/C/T	23.87
$T/C/T/T^*$	22.59		
C/C/C/C	148.56	C/C/C	140.58

Parameter redundant models are marked with '*'.

INTRODUCTION	Data	Models	PR	RESULTS	SUMMARY
000000	00	00000000000	00	00000	0

Results - Combined Model

Table: Comparison for historic combined and standard combined ring-recovery model selection for Blackbirds

Historic Combined	Δ AIC	Standard Combined	Δ AIC
pulli + free flying totals		pulli + juveniles + adults totals	
C/C/TA/C	0.00	C/C/TA	26.48
T/C/T/C	2.30	T/C/T	38.38
C/C/T/T	2.60	C/C/T	0.00
C/C/TA/T	5.10		
C/C/T/C	5.80		
C/T/T/T	17.70	C/T/T	30.40
C/C/C/C	146.10	C/C/C	148.33

INTRODUCTION	Data	Models	PR	RESULTS	SUMMARY
000000	00	00000000000	00	00000	0

Results - Sandwich Terns

Model	Δ AIC	parameters	estimable pars.	total pars.
C/T/T	0.00	$\phi_1, \phi_{a,t}, \lambda_t$	40	40
C/C/T	0.66	$\phi_1, \phi_a, \lambda_t$	23	23
C/T/C	4.52	$\phi_1, \phi_{a,t}, \lambda$	22	22
C/C/C	38.16	ϕ_1, ϕ_a, λ	3	3

Table: Standard ring-recovery model selection for Sandwich Tern 1970-1990.

Table: Historic ring-recovery model selection for Sandwich Terns 1970-1990.

Model	Δ AIC	parameters	estimable pars.	Total pars.
C/C/C/C	0.00	$\phi_1, \phi_a, \lambda, p$	4	4
C/C/T/C*	1.49	$\phi_1, \phi_a, \lambda_j, p$	24	24
$C/T/T/C^* n_2 = n_1$	32.22	$\phi_1, \phi_{a,j}, \dot{\lambda}_j, p$?	43
T/C/T/C*	37.61	$\phi_{1,j}, \phi_a, \lambda_j, p$?	44

Table: Historic Combined ring-recovery model selection for Sandwich Terns for 1970-1990.

Model	Δ AIC	parameters	estimable pars.	Total pars.
C/C/T/C	0.00	$\phi_1, \phi_a, \lambda_j, p$	24	24
C/C/C/C	27.67	$\phi_1, \phi_a, \dot{\lambda}, p$	4	4
T/C/C/C	34.01	$\phi_{1,j}, \phi_a, \lambda, p$	24	24

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

27 / 29

INTRODUCTION	Data	Models	PR	RESULTS	SUMMARY
000000	00	00000000000	00	00000	0

RESULTS SANDWICH TERNS

Table: Parameter estimates for C/C/T/C historic combined model.

ϕ_1	ϕ_a	р
0.8697(0.0099)	0.7418(0.0163)	0.3151(0.0757)

<□ ト < 部 ト < 臣 ト < 臣 ト 臣 の Q () 28 / 29

Introduction	Data	Models	PR	Results	Summary
000000	oo	00000000000	oo	00000	●
Summary					

- ► Using identifiability theory we show that it is possible to extend the adhoc method presented in Robinson (2010), to create a model, where the proportion can be estimated.
- ► The historic model is an alternative to the conditional model. However, in the conditional model few models can be used due to parameter redundancy.
- ► The historic model is almost as good as the standard model, but without the need of fully computerised data.
- The model for younger birds is easily extended to additional survival or reporting rates for second and third years if required.
- Potential for extension to fit capture-recapture or capture-recapture-recovery models with uncertainty in age or sex categories.
- R code available to fit all the models described here.