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Abstract We propose the use of finite mixtures of continuous distributions in mod-
elling the process by which new individuals, that arrive in groups, become part of a
wildlife population. We demonstrate this approach using a data set of migrating semi-
palmated sandpipers (Calidris pussila) for which we extend existing stopover models
to allow for individuals to have different behaviour in terms of their stopover dura-
tion at the site. We demonstrate the use of reversible jump MCMC methods to derive
posterior distributions for the model parameters and the models, simultaneously. The
algorithm moves between models with different numbers of arrival groups as well as
betweenmodels with different numbers of behavioural groups. The approach is shown
to provide new ecological insights about the stopover behaviour of semipalmated sand-
pipers but is generally applicable to any population in which animals arrive in groups
and potentially exhibit heterogeneity in terms of one or more other processes.
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1 Introduction

Capture-recapture (CR) data, arising when individuals are captured, individually
marked, and followed over time, are often collected from wildlife populations. In
some cases, more than one type of sampling is used, as in capture-recapture-resight
(CRR) data when individuals can be detected without necessarily being caught or
in capture-recovery data when individuals can be detected dead. Different sampling
schemes can also result in more than one data set being collected from the same
population, and these are often analysed using an integrated approach (Besbeas et al.
2002).

Population ecology models are employed to analyse CR, CRR etc. data in order
to estimate, among other things, the size of the population and the probabilities of
survival of the individuals. These models need to account for the sampling scheme,
imperfect detection and often also for potential heterogeneity between individuals.
This can arise either in their characteristics, for example survival probabilities, or in
their behaviour, that could for example affect their detection probability.

Population ecology models are referred to as Jolly-Seber (JS) type (Jolly 1965;
Seber 1965), if they model the process by which new individuals enter the population.
An example of a JS type model is the Schwarz and Arnason (1996) model, which uses
the idea of a super-population of animals, N , and the entry parameters, βb−1, b =
1, . . . , K to denote the proportion of N that were new arrivals on sampling occasion
b, where K is the number of samples. For a discussion of alternative JS type model
formulations see Sect. 8.2.3 in McCrea and Morgan (2014).

Individuals enter the population either through birth or immigration and they often
do so in groups. For example, migrating birds arrive at stopover sites in flocks rather
than individually while juveniles of a species can emerge in a synchronous manner.
If the number of arrival or emergence groups is known, then finite mixture models
of continuous distributions, such as the normal, can be used to model the process by
which new individuals enter the population. See for example Matechou et al. (2014)
who modelled the emergence of butterfly broods using a mixture of two normal dis-
tributions.

However in many cases the number of arrival groups, and hence the number of
mixture components, is unknown. Model selection criteria, such as the Akaike infor-
mation criterion (Akaike 1973, AIC), have doubtful validity for selecting between
models with different mixture components (see McLachlan and Peel 2000, Chap. 6).
Pledger et al. (2010) refer to a comment by Burnham and Anderson (2002) who sug-
gest that the parameter estimates have to be in the interior of the parameter space for
AIC to be valid. Cubaynes et al. (2012) report relatively low success rates of AIC,
the Bayesian information criterion (Schwarz 1978, BIC) and the integrated classi-
fication criterion (ICL–BIC), which is similar to BIC but has an additional penalty
for fuzzy clustering (Biernacki et al. 2000), in selecting the true number of mixture
components in CR data. Finally, parameter estimates can be sensitive to model choice
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(Pledger 2000) and choosing a single model for inference can be undesirable as well
as difficult.

Arnold et al. (2010) demonstrated the use of reversible jump (Green 1995, RJ)
MCMC in the case of finite mixture models that are used to account for heterogeneity
in capture probabilities in closed populations. They referred to RJMCMC as a useful
means of selecting between models with different numbers of mixture components,
or obtaining model-averaged estimates of parameters. RJMCMC has also been used
in the capture-recapture literature (Brooks et al. 2000; King and Brooks 2008; King
et al. 2010, for example) as a method for selectingmodel covariates, assessing whether
model parameters are constant over time or time-varying or to compare models which
allow for heterogeneity between individuals using random effects to models which
assume a homogeneous population.

In this paper we demonstrate the use of finite mixture models to describe the arrival
pattern of migrating semipalmated sandpipers (Calidris pussila) at a stopover site
in terms of mixtures of continuous distributions, specifically the normal distribution.
This approach provides a biologicallymeaningful interpretation of the results in which
each mixture component is treated as a flock, so that flocks can be compared in terms
of their relative sizes and mean arrival times. We use RJMCMC to obtain the posterior
distribution of the number of arrival groups and a model-averaged estimate of the
arrival pattern.

The data set of semipalmated sandpipers was first analysed in Matechou et al.
(2013a) (M13) who extended the stopover model of Pledger et al. (2009) by proposing
integrated models for stopover data on birds that are marked, and therefore individu-
ally identifiable, together with raw count data of unmarked birds. They modelled the
probability that an individual present at the stopover site will remain until the next
sampling occasion, termed retention probability, as a function of calendar time and
of the unknown time the individual has already spent at the site, which they referred
to as its “age”. These stopover models provide estimates of the population size and
indirect estimates of the total stopover duration. Stopover sites provide an essential
opportunity for migrating birds to break their journey, rest and refuel. It is important to
assess the significance of a site, an attribute which is based on the number of migrants
that use it and the duration of their stopover, as this can aid in formulating conservation
strategies aimed at non-breeding habitat for migrant shorebirds (Brown et al. 2001)
and in measuring the effects of management treatments (Nichols and Williams 2006;
Lyons et al. 2008).

However, in M13 all birds are assumed to behave independently and identically in
terms of their stopover duration, a feature which is known to be untrue for many
migratory species (Alerstam and Lindström 1990; Lyons and Haig 1995; Cristol
et al. 1999; Dinsmore and Collazo 2003; Rubolini et al. 2004; Bishop et al. 2006).
In this paper we also use finite mixtures to allow for different behavioural groups,
defined by their retention probability and hence stopover duration at the site. Our
results agree with life history strategies (e.g., mating system) that allow for differ-
ential migration strategies among sexes to maximize fitness (Rubolini et al. 2004)
and show that there are at least two behavioural groups of semipalmated sand-
pipers.
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Hence, thework in this paper demonstrates the use ofRJMCMC thatmoves between
finitemixturemodelswith different numbers of homogeneous groups in twodirections:
arrival groups and behavioural groups. By using RJMCMCwe are able to quantify the
uncertainty arising from the need to estimate the number of mixture components in
each direction instead of relying onmodel selection criteria to choose the “best”model.
Additionally, the posterior distributions of model parameters, or functions of them,
can be naturally averaged across the different models, if appropriate and desirable.

In Sect. 2 we give a brief introduction to finite mixture models and the RJM-
CMC algorithm. We present the data set of semipalmated sandpipers and the results
in Sect. 3. The details of the RJMCMC algorithm specific to the application and
convergence diagnostic checks are given as Supplementary Material.

We verified our formulae and code by comparing our results to those obtained from
a very simple but reliable and independently coded rejection algorithm, suitable for
simple data sets only. In general terms, this works as follows: for very small discrete
data sets Y , we can simulate the posterior using a very simple rejection algorithm
which simulates parameters θ from the prior, and then simulates synthetic data Y ′|θ
according to the observation model, and finally accepts θ as an independent sample
from the posterior if Y ′ = Y , where Y is the real data. This exact algorithm is actually
the motivating algorithm for ABC (Tavaré et al. 1997). We also fitted synthetic data
of similar size to the real data set and checked convergence of our algorithm to known
parameter values. We present the results of a simulation study as Supplementary
Material.

2 Mixture models and RJMCMC

The data are represented in X with Xi the i th data vector. In generic mixture models,
the model parameters are:

– G, the number of mixture components,
– πππ = (π1, . . . , πG),

∑G
g=1 πg = 1, the mixing proportions,

– ηηη = (ηηη1, . . . ,ηηηG) with ηηηg the collection of parameters of the gth mixture compo-
nent, and

– ψψψ , a collection of parameters that are not part of the mixture components.

We write θθθ = (G,πππ,ηηη,ψψψ). We seek an expression for the posterior distribution,

P(θθθ |X) ∝ P(X|θθθ)P(θθθ)

of the parameters in θθθ , allowing the number of mixture components, G, and hence the
number of parameters in θθθ to be estimated, where

P(X|θθθ) =
∏

i

G∑

g=1

πgP(Xi |ηηηg,ψψψ)

and P(θθθ) is the joint prior of the parameters.
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We summarise P(θθθ |X) using a RJMCMC algorithm. This has two update types: one
for updating parameters within models, πππ,ηηη,ψψψ , and one for updating the number of
mixture components, G.

We update within-model parameters ηηη and ψψψ using a standard single-update
Metropolis-Hastings random walk, described for example in King et al(2010,
Sect. 5.3.2). Mixing proportions, πππ , are updated as follows: two groups are chosen at
random, say g1 and g2, ε is defined as ε = γ (πg1 + πg2), where γ ∈ (0, 1) is fixed
and chosen during tuning, x is drawn from Unif(-ε, ε) and π ′

g1 and π ′
g2 are calculated

by π ′
g1 = πg1 + x and π ′

g2 = πg2 − x . If π ′
g1 , π

′
g2 ≥ 0 and π ′

g1 ≤ (πg1 + πg2) the
standard Metropolis-Hastings acceptance probability is calculated.

The number of mixture components, G, is updated using a RJMCMC move. The
proposal transition probability to a model with G ′ mixture components and θθθ ′ para-
meters from a model with G components and θθθ parameters is denoted by PG(G ′|G).

Suppose that the proposed move is to a model with G ′ = G + 1 groups. We
allocate mass to this newly formed group by removing some mass from an existing
group. Specifically, the proposed proportion of individuals in this new group, π ′

G+1,
is generated by choosing one of the existing G groups at random, say group g, with
probability 1/G, drawing x from Unif(0, πg), setting π ′

G+1 equal to x and π ′
g equal

to πg − x .
The parameters for this proposed group,ηηη′

G+1, are generated from their correspond-
ing prior, P(ηηη′

G+1).
Suppose that the proposed move is to a model with G ′ = G −1 groups. We choose

g1 from Unif{1, . . . ,G} and g2 from Unif{1, . . . , g1 − 1, g1 + 1, . . . ,G}. We remove
group g1 and allocate its mass to group g2.

The acceptance probability for a model with G ′ = G + 1 groups is given by

α(θθθ,θθθ ′) = min

⎛

⎝1,
P(θθθ ′|X)PG(G|G + 1) 1

(G+1)
1
G

P(θθθ |X)PG(G + 1|G) 1
G

1
πg1

P(ηηη′
G+1)

⎞

⎠ . (1)

The Jacobian term (see King et al. 2010, p. 165) required in forming equation (1) is
equal to 1 because G ′ and π ′

g1 , π
′
G+1 are, respectively, linear functions of G and πg1

and ηηη′
G+1 are generated from their prior.

The reverse move, to a model with G − 1 groups, is fully defined given the above
and is presented in detail for the example considered in this paper as Supplementary
Material.

Arnold et al. (2010) provide a detailed description of RJMCMC for closed pop-
ulation models that allow for heterogeneity in capture probability and we provide R
(R Core Team 2015) code and details of the algorithm for analysing a data set from a
closed population of cottontail rabbits, also presented by Arnold et al. (2010) as Sup-
plementary Material. For the application we present in this paper, our population is
instead open and exhibits heterogeneity in both arrival and departure. We give details
of the algorithm in this case as Supplementary material and we make R code available
on request from the first author.

We check convergence of the algorithm by running three chains with random start-
ing values for the parameters and using convergence diagnostic checks incorporated
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in the R package coda (Plummer et al. 2006). These are presented as Supplementary
Material. Accurate implementation of RJMCMC is non-trivial here due in part to the
need to include normalizing constants, which cancel in fixed dimension Metropolis
Hastings MCMC but not in RJMCMC. We checked the accuracy of our code by mak-
ing an independent implementation using a very simple second approach based on
rejection. This second approach is relatively inefficient and would not scale to data
sets of practical interest, but does allow us to make high precision checks on small
data sets. The posterior distribution was simulated by the two methods and the results
were in excellent agreement.

3 Application

3.1 Data and parameters

The stopover site is formed by the wetlands at the Tom Yawkey Wildlife Center in
South Carolina where the study, which spans T = 38 days, took place in spring of
2001. Samples are collected on K = 29 of these days and there are nine null occasions
when no sampling takes place. There are two types of sampling occasions: on capture
occasions, of which there are 11, birds can be caught using mist nets and uniquely
marked before being released; on resight occasions, of which there are 18, marked
birds can be detected and an imperfect count of unmarked birds is obtained. These
raw counts of unmarked birds form a vector y of length T with 18 non-missing entries
corresponding to resighting occasions.

Each of the birds that visited the site during the study has its own capture-recapture-
resight history (CRRH) and we let H denote the number of distinct observed CRRHs
of the D birds that were marked. For CRRH xh = (xh1, . . . , xhT ), shared by nh birds,
with xht ∈ {0, 1, 2}, 2, 1, and 0 signifying that the nh individuals were resighted,
caught or missed, respectively, on occasion t . Any bird that was never caught has the
trivial history 0. All CRRHs have ninemissing entries. The H CRRHs are summarised
in matrix X of dimension H × T and their frequencies are recorded in vector n.

The y–data, formed by the raw counts, and the X–data, formed by the H unique
CRRHs together with their frequencies in n, are the two data sets to be analysed using
theM13 proposed integratedmodel which has two parts: one that builds on the Pledger
et al. (2009) model for the X–data and a binomial model for the y–data.

The model parameters are:

– N : super-population size. The total number of birds that became available for
capture-resight during the study without necessarily being detected.

– M : number of arrival groups.
– wm, μm and σm,m = 1, . . . , M : respectively, population fractions, mean arrival
times and standard deviations of arrival times of theMarrival groups,

∑M
m=1 wm =

1. The population fraction that arrived between occasions b − 1 and b is the entry
parameter βb−1. In terms of the mixture components,

123



Environ Ecol Stat

βb−1 =
M∑

m=1

wm {Fm(b) − Fm(b − 1)} , b = 2, . . . , T − 1,

where Fm(b) = P(X ≤ b) when X ∼ N (μm, σ 2
m). The first and last intervals are

treated as open-ended with

β0 =
M∑

m=1

wmFm(1)

and

βT−1 = 1 −
M∑

m=1

wmFm(T − 1),

ensuring that the entry parameters sum to 1 i.e.
∑T

b=1 βb−1 = 1.
Figure 2 in the Supplementary Material demonstrates the modelling of the arrival
process in terms of the normal mixture components and the entry parameters
βb−1, b = 1, . . . , T .

– G: number of behavioural groups. Individuals that belong to the same group have
common baseline retention probability which can be different from the corre-
sponding probability of the other G − 1 groups.

– πg, g = 1, . . . ,G: The population fractions of the G behavioural groups, with
∑G

g=1 πg = 1.
– φgta, g = 1, . . . ,G, t = 1, . . . , T − 1, a = t − b + 1: retention probability. The
probability that a bird that belongs to behavioural group g, present at the site on
occasion t and of “age” a will remain at the site until occasion t+1. As mentioned
in Sect. 1, “age” is used to refer to the unknown time an individual has already
spent at the site.
For the particular application, retention probabilities are modelled as additive in
calendar time and “age”, on the logit scale, with a different intercept for each
group:

logit(φgta) = γ
φ
0g + γ

φ
1 t + γ

φ
2 a,

where logit−1(γ
φ
0g) is the baseline retention probability for behavioural group g.

– pt , t = 1, . . . , T : capture probability. The probability that a bird will be caught
on occasion t given that it is present.
For the application considered in this paper, the number of nets used and the
number of hours they were left open on each capture occasion are multiplied
together to form a covariate for capture probability called “effort” (e) and two
dummy variables, loc2 and loc3, are created to model the effect of the three
different locations where capture occasions took place during the study, in an
additive logistic regression model for capture probability:
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logit(pt ) = γ
p
0 + γ

p
1 et + γ

p
2 I(loc2t = 1) + γ

p
3 I(loc3t = 1),

where the indicator variable I(locjt = 1) is 1 if capture took place on location
j, j = 2, 3, at time t and 0 otherwise.

– st , t = 1, . . . , T : Resighting probability. The probability that a bird will be seen
on occasion t given that it is present. It is assumed to be the same for marked and
unmarked birds and is modelled as constant, s, because resight occasions were
conducted by the same crew which visited the same sites for the same length of
time throughout the study.

The full set of parameters is

θθθ =
{
M,G, (wm, μm, σm)m=1,...,M , (πg, γ

φ
0g)g=1,...,G , N , γ

φ
1 , γ

φ
2 , γ

p
0 , γ

p
1 , γ

p
2 , γ

p
3 , s

}
.

In contrast to retention probabilities, dependence of capture and resight probabilities
on “age” is not biologically meaningful and hence these parameters have not been
modelled in terms of a, but if necessary such a dependence can straightforwardly be
allowed for in the model. Similarly, allowing for heterogeneous groups in terms of
capture/resight probabilities in the model is also possible in general, but it was not
done here because of the small number of recaptures (5).

3.2 Model, prior and posterior

3.2.1 Model

Birds with CRRH h have known times of first capture, fh , and last detection, lh , but
unknown times of arrival, b, departure, d and group membership, g. Let z = (g, b, d)

denote the unknown life history of an individual. We can write

P(z|θθθ) = πgβb−1

(
d−1∏

t=b

φgta

)

(1 − φgda)
I(d<T ),

where the indicator variable I(d < T ) is used to denote that the departure of individ-
uals still present at the end of the study cannot be observed.

If Ωz = {(g, b, d) : 1 ≤ b ≤ fh ≤ lh ≤ d ≤ T, g ∈ {1, . . . ,G}} then the
probability of CRRH xh, h ∈ {1, . . . , H}, given life history z and parameters in θθθ is

P(xh |z, θθθ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[∏d
t=b

{
pI(xht=1)
t (1 − pt )I(xht=0)

}ct ] ×
[∏d

t= fh

{
sI(xht=2)
t (1 − st )I(xht=0)

}rt ]
, z ∈ Ωz

0, otherwise
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where variable I(ψ) is equal to 1 if condition ψ is satisfied and 0 otherwise, ct = 1 if
capture took place on occasion t and variable rt = 1 if instead resighting took place
on occasion t , and 0 otherwise.

Similarly, if Ω ′
z = {(g, b, d) : 1 ≤ b ≤ d ≤ T, g ∈ {1, . . . ,G}} the probability of

the 0 history, given z, θθθ is

P(0|z, θθθ) =

⎧
⎪⎨

⎪⎩

{∏d
t=b (1 − pt )ct

}
, z ∈ Ω ′

z

0, otherwise

.

Finally,

P(X,n|θθθ) = N !
∏

h nh !(N − D)!
∏

h

⎧
⎨

⎩

∑

z∈Ωz

P(z|θθθ)P(xh |z, θθθ)

⎫
⎬

⎭

nh

×
⎧
⎨

⎩

∑

z∈Ω ′
z

P(z|θθθ)P(0|z, θθθ)

⎫
⎬

⎭

N−D

.

M13 treated the number of unmarked birds counted on resight occasion t, yt , as a
binomially-distributed random variable with number of trials equal to N and proba-
bility of success the probability that a bird is present, unmarked and detected on that
occasion. In this case, the probability of success on occasion t is

ζt =
G∑

g=1

t∑

b=1

πgβb−1

(
t−1∏

k=b

φgka

){
t∏

k=b

(1 − pk)
ck

}

st

and yt |θθθ ∼ Bin(N , ζt ). Therefore, P(y|θθθ) = ∏T
t=1 P(yt |θθθ)rt , where rt is as defined

above.

3.2.2 Prior

Unless otherwise stated, simple, vague, independent priors were chosen for the model
parameters. Specifically, we consider a Unif{1, . . . , 20} prior for M and a shifted
Poisson with mean 1 for G, i.e. G − 1 ∼ Po(1). The principal scientific hypothesis
concerning behaviour groups is that there are two, of short and long type. The natural
alternative is that there is just one but it is possible that there are more than two.
These prior hypotheses are represented in our Bayesian inference by a prior model
over G. Most of the weight is placed on G = 1 and G = 2 but larger values of G
are allowed. For M , the chosen prior reflects the lack of available information and
allows for a large number of arrival groups without imposing a penalty. In fact, when
M ≥ 13, there are more parameters for modelling the entry parameters (3 · 13 = 39)
than in the M13 paper (T = 38). However, such large values for M , if obtained,
suggest a less smooth arrival pattern that cannot be represented by a small number
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Fig. 1 Prior and posterior distribution of, a, M , the number of arrival groups and, b, G, the number of
behavioural groups

of symmetric probability distributions and potentially also a lack of fit of the model.
For the means of the mixture components we have chosen independent Unif(1, T ) to
reflect our expectation that the study period encompasses the migration period while
for the standard deviations we have chosen independent Unif(0, 10) priors, which
equally support arrival of groups spread over a period of days or in short abrupt bursts.
For N we take a N(55000, 100002) prior with the mean chosen to be close to the point
estimate obtained by M13, as this reflects our expectation for the size of the super-
population. wm,m = 1, . . . , M and πg, g = 1, . . . ,G are given Dirichlet priors with
concentration parameters all equal to 1. For the logistic regression coefficients for φ

and pwe followedNewman (2003) andKing et al (2010, p. 246)who suggestedmean–
0 normal priors with variances equal to π2

3(n+1) where n is the number of covariates in
the model. Finally, the prior for s is chosen as Beta(1, 1).

3.2.3 Posterior

Following M13,

P(θθθ |X,n, y) ∝ P(X,n|θθθ)P(y|θθθ)P(θθθ),

where P(θθθ) is the joint prior of the parameters in θθθ .

3.3 Results

The posterior distributions obtained for M and G are shown in Fig. 1. The first peaks
at M = 10, 11 and sharply declines for values of M < 9, while its right tail is longer.
The chain spent over 90% of its time in values ofM ∈ {8, . . . , 13}. The latter posterior
peaks at G = 2 and shows that the chain spent over 80% of its time in models with
G = 2 or G = 3. It gives no support to the model with G = 1, suggesting that there
are at least two behavioural groups.

Because the values for M in {9, . . . , 12} are almost equally well supported, there is
no clear choice for a best, or even top 2-3 models for M . Therefore, we present sum-
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Fig. 2 Model averaged posterior means and 95% credible intervals for entry parameters, together with the
maximum-likelihood estimates obtained byM13. The tick marks on the x-axis indicate days when sampling
took place

maries of themodel-averaged posterior distributions obtained for the entry parameters,
βt−1, t = 1 . . . , T in Fig. 2. For comparison, we also plot the maximum-likelihood
estimates obtained by M13, who estimated one entry parameter for each sample to
model the arrival process. The latter are, mostly, included in the 95% posterior credi-
ble intervals, with the exception of the point estimates obtained corresponding to the
modes of the four largest peaks, which are all above the corresponding 97.5% quan-
tiles. Therefore, even though these two sets of estimates are not directly comparable,
since a different model for the β parameters was used, they are very similar. The M13
estimates, that are only constrained to sum to 1, are more flexible but do not reflect
model-averaging uncertainty. On the other hand, our model-averaged estimates pro-
vide a smoother representation of the arrival pattern of the birds at the site and are
more robust to extremes. Our results suggest that the early arrival groups have greater
spread in their arrival times, with arrival times overlapping between groups, while
the later arrival groups are further apart and more distinct, with a longer right tail of
arrivals right at the very end of the stopover period.

The posterior densities of φgta and πg for g = 1, 2 when G = 2 and g = 1, 2, 3
when G = 3 when {t = 10, a = 1}, {t = 10, a = 10} and {t = 20, a = 1}
are shown in Fig. 3. The areas of high density suggest two very distinct groups:
a large group, with population fraction ≈80% and low retention probability, and a
small group, with population fraction≈20%with very high retention probability. The
areas of lower density when G = 3 suggest that the third group, that connects the
two groups, has medium retention probability. These results are consistent with the
predicted differences inmigration strategies ofmale and female sandpipers;malesmay
spend less time than females at stopover sites in order to reach the breeding sites earlier
(Bishop et al. 2004, 2006). Given the relative abundance of the retention groups in our
study, this interpretation suggests a male-biased sex ratio in the stopover population.
Alternatively, the heterogeneity in retention probability may reflect local movements
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of birds during a period of searching and settling that often occurs immediately after
arrival to a stopover area (Alerstam andLindström1990). The groupwith low retention
probability may be comprised of recent arrivals that were captured during a period
of searching the landscape for favourable foraging conditions, but which ultimately
settled outside the study area. The smaller group with high retention probability may
be comprised of birds that settled and remained in the study area during stopover. Local
movements may occur in response to changing conditions in prey abundance or water
depth, facilitated by wetland connectivity (Farmer and Parent 1997; Obernuefemann
et al. 2013).

The effects of calendar time and “age” on retention probability are, as expected,
found to be negative, withmodel-averaged posteriormeans equal to−0.645 (95%PCI:
−1.032, −0.352) and −0.145 (95% PCI: −0.703, 0.317), respectively, although the
effect of “age” is smaller than that of timewith a credible interval that includes 0. Since
the logistic regression model used to model their effects on retention probabilities
is additive, plotting the joint distribution of retention probabilities and population
fraction of each behavioural group for different values of time and “age” simply shifts
the contours along the axis corresponding to retention probabilities, as the contour
plots in Fig. 3 demonstrate.

In simulated data sets, obtained using parameter values inθθθ at 100 randomly chosen
simulation runs of the chain, conditional on G = 2, the two behavioural groups had
an average observed stopover duration in days equal to 1.3 (s.d. = 0.68) and 9.95 (s.d
= 7.12) while conditional on G = 3 the average observed stopover durations were
1.28 (s.d. = 0.62), 2.11 (s.d. = 2.18) and 10.41 (s.d. = 7.26) days.

Themodel-averagedmean of the posterior distribution of the super-population size,
N , is equal to 62463 (95% PCI: 54412, 73151), which is greater than the estimate
of M13 but with overlapping confidence bands (53595, asymptotic 95% CI: 48349,
59410). The 95% posterior credible intervals obtained for N for all combinations of
the most supported values for M and G are given in Table 1 in the Supplementary
Material and agree with the model-averaged interval mentioned above.

To check thefit of our specifiedmodel,we considered parameter values inθθθ obtained
at 500 randomly chosen simulation runs of the chain. For eachof these sets of parameter
values, we calculated the value of the log-likelihood for the real data set and for a data
set simulated from this set. The distributions of these two sets of log-likelihood values,
plotted inFig. 18 in theSupplementaryMaterial, peak at the samepoint,which suggests
a good fit of the model. For each of these simulated data sets we also obtained the
number of birds first caught on each capture occasion and the number of birds resighted
as unmarked on each resighting occasion. Figure 18 in the Supplementary Material,
respectively, show that the observed values almost always overlap with the boxplots
of these simulated values, once more providing support to the claim that the model
fits well. Finally, for each of these simulated data sets we obtained the total number
of individuals caught at least once and we compared it to the value observed for the
real data set (D = 507). Hence, we used the values for D as our test statistic in our
calculation of our Bayesian p-value, that is the proportion of time the simulated values
for D are less than the value of D obtained for the real data set, which being equal to
0.51 does not raise any concerns about the fit of the model.
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Fig. 3 Contour plots of the joint posterior densities for retention probability and population fraction of
each behavioural group when G = 2 (top row) and G = 3 (bottom row), when time t = 10 and “age”
a = 1 (first column), time t = 10 and “age” a = 10 (middle column), time t = 20 and “age” a = 1 (last
column). These are constructed by ordering the groups during post-processing in terms of their baseline
retention probability, obtaining the pairs of proportions and retention probabilities sampled at each iteration,
conditional on G, and calculating the kernel density estimate using R package ks (Duong 2016). The figure
which also includes the scatterplot of these pairs of values for each group is shown as Supplementary
Material

4 Discussion

To analyse the stopover data set considered in Sect. 3 we extended existing stopover
models to allow for individuals to arrive in groups and to exhibit heterogeneity in their
stopover duration at the site. We showed that both these processes can be modelled
at the same time and the uncertainty in the number of groups in either process can
be accounted for using a RJMCMC algorithm. Our results suggest that semipalmated
sandpipers at stopover sites do not exhibit the samebehaviour in terms of their stopover.

By using finite mixtures of continuous distributions, such as normal, to model the
arrival of individuals at the study site, instead of models with fully time-dependent
entry probabilities as in M13, the number of parameters does not necessarily increase
with the number of sampling occasions. Additionally, one is supplied with an uncom-
plicated and biologicallymeaningful way to interpret the results in terms of the number
of arrival groups and their behaviour, making analyses on different data sets, for exam-
ple from different years, directly comparable. Moreover, the parameters of the mixture
components, such as the mean arrival times, can also be modelled as functions of, for
example, weather covariates. Further simplifications of the models are also possible.
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Specifically, it might be assumed that the means of the arrival times of the different
groups are equally spaced, with the space to be estimated by the model. We have con-
sidered the case of normal mixtures for the work in this paper but other distributions,
not necessarily symmetric, could also be chosen, such as gamma, if appropriate.

Bayesian inference enables the incorporation of prior beliefs which might not treat
all models as equally likely a priori. The belief that there are two behavioural group
of birds at the stopover site, namely the short– and the long–stayers was easily incor-
porated in the model, instead of naively assuming that a model with 15 behavioural
groups is as likely as the more realistic one with just two groups. On the other hand,
posterior model probabilities are known to be sensitive to prior model probabilities
(Corani and Mignatti 2015) and hence, the latter should be chosen very carefully.

The application presented demonstrates the general applicability of the RJM-
CMC algorithm, even when the population is heterogeneous in more than one
process, for instance both in survival and arrival and the models are highly complex.
Unaccounted-for hererogeneity can lead to biased parameter estimates and spurious
results. Specifically, it has been frequently reported that unmodelled heterogeneity in
capture probabilities leads to biased estimates of the population size (Pollock et al.
1990), but it can also affect estimation of survival probabilities (Oliver et al. 2011;
Fletcher et al. 2012; Matechou et al. 2013b). If potential heterogeneity in survival
probabilities remains unmodelled, then individuals with an overall higher survival
probability will prevail at older ages, which can result in the average survival prob-
ability appearing to increase by age (Vaupel and Yashin 1985; Peron et al. 2010),
masking the effect of senescence. Accounting for heterogeneity is also important in
non-ecological applications of CR models with an emphasis on estimating population
size (see McCrea and Morgan 2014, p. 46).

Even when the list of possible models to be considered is large, as in the example of
Sect. 3, the use of the RJ algorithmmakesmodel selection possible since inappropriate
models do not have to be actually fitted, i.e. visited by the algorithm.When appropriate,
the use of RJMCMC enables model-averaging and does not require the quite often
unclear or subjective choice of one single “best”model. The posterior density obtained
for the number of arrival groups gives very similar support to M = 9, . . . , 12 groups,
and the conclusions have been drawn by averaging over these, as well as the less
supported models.

We have not considered heterogeneity in capture probabilities for the population
of semipalmated sandpipers because of the low number of recaptures and we sug-
gested in Sect. 3 that the models and the RJMCMC algorithm can be extended to
that effect. However, it should be noted here that, as Link (2003) explains and Arnold
et al. (2010) discuss, parameter N is not identifiable among different model classes,
for example between finite and infinite mixture models, and it may not be possible to
distinguish between models with different assumptions about capture probability that
provide very different estimates for N . Additionally, the typical sparseness of eco-
logical data sets may limit the complexity of the model and introduce identifiability
issues if heterogeneity were to be considered in both retention and capture/resighting
probabilities.

We demonstrated the models in this paper by considering a data set of migrating
semipalmated sandpipers collected at a stopover site. However, the models are more
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generally applicable as other species and animals arrive or emerge in groups and
exhibit heterogeneity in their survival or detection. For example they could apply to
data sets of amphibians collected at breeding ponds, with different groups expected
to arrive at different times (Harrison et al. 2009, observed male newts arriving before
females), and in addition to have different detection and/or retention probabilities.
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