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Don’t search for the answers, which could not be given to yow, lbecause you
would not be able to live them. And the point is, to live eveng. Live the ques-
tions now. Perhaps then, someday far in the future, you watigally, without

even noticing it, live your way into the answer.
—Rilke



Abstract

In this thesis, we deal with quasi-one-dimensional fieldthes by which we mean strongly
anisotropic higher dimensional models. One way to solve suasi-one-dimensional models
is to split them into a one-dimensional part and a weaker-chain perturbation on this.
The one-dimensional model can then be solved exactly byteabs such as bosonisation or
integrability, and the weak inter-chain part can be tregitiurbatively by using the Random
Phase Approximation (RPA), or beyond this. This allows usdmment on concepts such
as dimensional crossover, and by treating the one-dimealsiloictuations exactly, we access
phases not accessible by conventional perturbation thdaryhis thesis, we report results
for three such models: the first is a model of non-BCS supelactivity where a spin-gap
in the one dimensional chains leads to pairing, even forlsgmiinteractions. We look at
the interplay between a superconducting and a charge gevesie ground state. The second
model is that of a Mott insulator, where we are specificalbkiag at the effects of a magnetic
field on the model. We look at the density of states as the arighee magnetic field is varied.
The third system is the quantum Ising model, a generic motiel@ state systems, where
we calculate the correlation functions in the ordered phaliehree models are motivated by
reference to real materials with a strong structural aroggt
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Chapter 1
Introduction

“Begin at the beginning,” the King said gravely, "and go ol tfou come to the
end: then stop”.
—Lewis Carroll

The topic of strong correlations in condensed matter pRyisi@a fascinating story of
mystery and surprise.

To understand strong correlations we must first understagakhy correlated systems,
for example Fermi liquid theory [3, 4]. The easiest thing toas a first approximation in
an interacting field theory is to simply ignore the interans. It turns out in many models
of condensed matter physics, this rather drastic lookieg & not such a bad thing to do.
The effect of 'weak’ interactions is merely to renormalikhe excitations (quasi-particles) of
the non-interacting system. Basically, this means that iypay your model of interacting
electrons onto a model of free electron like particles, whamoperties such as mass are a
parameter different from the bare (free) electron mass.ase nothing unusual happens,
one can calculate these effective parameters from thenatiiieory as a perturbation series;
where including more terms gives a more accurate result.

A strongly-correlated system is a system where we can nohido the interactions
change the nature of the ground-state and/or the quanturhergraf the excitation spectrum.
It is not possible to obtain the characteristics of the sygterturbatively by smoothly switch-
ing on the interaction from the free model.

We must then say what it means to 'solve’ such a model. Thigireg|in a certain region
of parameter space mapping the model onto a weakly-integggystems, where you can then
read off the ground state and excitation spectra and quantumibers. The residual interac-
tions can be treated perturbatively and do not give any & change to the results. We
must stress that in most cases this can only be done in cértalised regions of parameter
space. Elsewhere, the spectrum may be (and usually is) etehptlifferent.

There are two ways of solving physical problems in condensatter: a 'top-down’ and
a 'bottom-up’ approach. In the 'bottom-up’ approach, onéegrdown some exact Hamilto-
nian for the system and then tries to approximately solvsinigipowerful computation tech-
niques. This is in some sense the most fundamental appr¥aatstart with no assumptions
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about your system and you see what you can find out. This caergeatisfying when it gives
correct answers for questions such as the band-gap in seduictwrs. However, it will often
offer very little physical insight into the system. For thise top-down approach is preferred.
You start by looking at your system and making some guesswhabthe important physical
features of it are. You then construct some simplified Hamiln retaining these features
which you then hope to be able to solve analytically.

In this thesis, the feature that we concentrate on is a ststnugtural anisotropy of
hopping or interactions meaning that the system is effelgtione-dimensional. Our model
Hamiltonian is therefore going to be one-dimensional.

There are many interesting features of one dimensional leo&@stly, interaction ef-
fects are usually much stronger. This can be understoodnawely by simple phase space
arguments: two particles in two or more dimensions have tvdaelling at a specific angle
to 'collide’ with each other. In one dimension, merely hayafifferent velocities is sufficient
to ensure eventual meeting. Secondly, there are a wealtdtbhigues available to come up
with exact solutions of one-dimensional models, so we canrately say what our model
Hamiltonian predicts about the system in question, and slagrany discrepancies are due to
our model being over-simplified rather than an incorrechopmplete solution to the model.

Of course, atrue one-dimensional model is almost alwayssiveplified when trying to
describe a three dimensional solid. Most importantly,eéhdteamensional crystals show phase
transitions, whereas one dimensional ones do not. So foy parposes we need to extend
our exactly solvable one-dimensional models to have sonaveer-chain coupling before
we can make definite predictions about the system. This i®fie of this thesis.

3 titative predictions
Exactly Solvable _(Pertubation Scheme Quan b ]
1D Model (RPA or beyond) for rea?I’StrS(;rsl é)lfn%nlsotroplc

Figure 1.1: An overview of the approach taken in this thesis

In chapter 2 we introduce the mathematical tools availablestin one-dimension. The
principle of bosonisation is central to this thesis, so wensisome time discussing this: talk-
ing about the Luttinger model, spin-charge separation apdfgrmation. We then introduce
two other techniques that are commonly used to solve onerdiimeal problems: integrabil-
ity and conformal field theory. Many results from these teghas will be used, although we
derive few new ones so this part of the introduction is meait to give a flavour and some
physical insight into the methods so the reader can undwefsthere the results come from.

In chapter 3, we introduce our first model system: a modeliofgppped chains weakly
coupled together. It turns out that the spin gap promotesrsopductivity, we look at the in-
terplay between this ground state and a charge density waveag state induced by Coulomb
interactions between the chains. We then look at the raftteresting effects of a magnetic
field on our model of non-BCS superconductivity. Also in tblepter, we introduce our per-
turbation method to add inter-chain couplings to the omeedisional solution. Although this
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is a perturbation theory, it is not in interaction strengihttee one dimensional interactions are
treated exactly. In this sense, the method is rather camjlysknown as a non-perturbative
solution. This allows us to see possibilities not accessilyl conventional perturbation the-
ory, and allows us to comment on phenomena such as non-fguids and dimensional
crossover.

Chapter 4 then goes on to look at a complimentary model, wiherene-dimensional
chains have a charge-gap rather than a spin-gap, i.e. tirescra Mott Insulators (meaning
that the insulating behaviour comes from the electrontedadnteractions rather than band
structure). It turns out that adding an inter-chain hopperq to this system can drive it to a
rather unusual metallic state. The central question inctégpter is what happens to this state
in a magnetic field, a question very pertinent to recent expantal results.

Finally, in chapter 5, we look at a quasi-one-dimensionah-gpain model. A large
number of interesting results are known about the quanting feodel in one-dimension, our
guestion here is how robust are some of these results agat@sthain interactions. When
we form an ordered phase, it is necessarily three-dimeakibut in this chapter we show that
for certain regions of parameter space this ordered phdkshaiv a lot of one dimensional
properties, a signature that should be visible in expertaieasults.

In each chapter, we try to motivate and support the modelnsfdrence to real materials
to which the model could be at least partially applied. It waes original aim of this work
to then fully apply our solutions to these materials to atieto come up with quantitative
predictions about the materials. Unfortunately, the caxipy of the materials we talk about
in this thesis means that such detailed calculations ased®uiihe scope of this work. However,
we believe that a solution of the underlying models is a gdariag point for any attempt to
accurately describe these materials.



Chapter 2
Technigues in one dimension

As far as the laws of mathematics refer to reality, they areceotain, and as far

as they are certain, they do not refer to reality.
—A. Einstein

One dimensional models are the perfect place to exploreftbet® of strong correla-
tions. Not only are the effects of correlations the strohgbsre also exists a wealth of math-
ematical techniques which facilitate the study of suchesyst The three main techniques are
as follows:

1. Bosonisation, which comes about from the low energy akoiis in a 1D Fermi liquid
being limited to the vicinity of the two Fermi points,

2. Exact solutions of integrable models which have the ptggkat the scattering matrix
factorises due to strong kinematic constraints in one dgioen and

3. Conformal Field Theory (CFT), which comes from speciaigarties of the conformal
group in 1+1D and is useful for critical phenomena.

The first of these points is central to most of the thesis, sgpemd some time discussing it.
Many results from integrability and CFT will be used althbuge derive no new ones so we
simply give a brief overview of what each of these technigoeslves.

2.1 Bosonisation

For one-dimensional field theories of interacting electrdiosonisation is usually the starting
point. We begin by giving some physical intuition why thisaigood idea in one dimension,
then go on to derive the mathematical relations between tanaicting Fermi system and a
Bosonic model. This also serves to introduce the notatied tisroughout much of this thesis.

2.1.1 A heuristic view

In a one dimensional system, the Fermi surface is simply twotp. A low energy excitation
above the ground state involves taking an electron near btigese points, and exciting it

8
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Figure 2.1: Particle/hole excitations in a 1D electron eyst Because the Fermi surface
is simply two points, the low energy low-momentum excitatgpectrum collapses onto a
narrow line. The width is related to the curvature of the spee at the Fermi-points, so

becomes zero if one linearises the spectrum - see the tebet. [A].

Figure 2.2: Particle-hole excitations in a 2D electron eystk is the momentum in some
direction, the full spectrum would be found by rotating thegh about it’s origin into the
page. Because of the choice of angle for the excitationse fisea continuum of low-energy
particle hole excitations, meaning that the particle arld hwst be considered as independent
excitations. After [5].

to a vacant spot just outside the Fermi surface, leaving a. hbhe momentum transfer is
q = k. — k, and the energy is, = E. — Ej,. As shown in figure 2.1, the low energy
excitations are then a coherent state of the electron anllee and so the excitation can be
considered a single bosonic state. In two or three dimessitiere will be a range af, to
go with any one momentum transfer (figure 2.2), so one muktstisider the excitations as
independent particles and holes.

The power of bosonisation is that upon adding certain elaetlectron (e-e) interactions
it turns out that the bosons are robust (naively becausenteeactions affect the particles and
holes in similar ways). Although it is then difficult to sayvathe excitations are made out of
the original electrons, we find they are renormalised bosather than renormalised fermions
as in Fermi-liquid theory. This is the essence of bosorosatit is all made rather more
concrete in the next section.

As a historical aside, it was realised by Bloch as early agt188t hole-electron pairs
are bosonic in nature, but it was Tomonaga in 1950 [6] who §ilgiwed that these were
elementary excitations in one dimension. Luttinger thesppsed a one-dimensional model
[7] which was solved by a method similar to today’s bosomsaprocedure by Mattis and
Leib [8]. The first modern field-theoretic approach to bosation was given by Heidenreich
et. al. [9] and gave the solution to the model proposed by éudimd Peschel [10]. Around
the same time, the same ideas were being developed staxtimgtiie equivalence between
the sine-Gordon and massive Thirring models [11, 12]. Tlheeea number of good reviews
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of the bosonisation procedure, for example Tsvelik, Ngt@esand Gogolin [13] or Emery

[14]. Another good and very complete review is von Delft amti&ller [15], but the one we

follow closest is Senechal [5] who uses the field theory fdation. In this section, we do

not attempt to give a proof of the procedure, but merely dneegltasics with as much physical
motivation as possible.

2.1.2 The free boson and the free electron

To show the equivalence between an electronic model andanlwosniodel, we first consider
the relevant properties of the bosonic Gaussian model defip¢he action

5:%/mm{%@@f+m@@ﬂ, 2.1)

wherer is Matsubara timey is a velocity andd is a scaler bosonic field. Af' = 0, it is
relatively simple to show (see eg [16]) that the single pletGreen’s function is

G@a:@@awam—im% s » (2.2)

 4rm 2Z + ad
wherez = z + ir, R is the system size ang) is the lattice spacing which are introduced to
regularise the system. Now, defining the correlation fumdiof bosonic exponents:

F(1,2,...,N) = (¢%®€)  gfveEn)y (2.3)

we find that (see [13] for details)

L2\ BiBj/An (32, 8:)? /Ax
F(1,2,...,N) =] <ﬁ> <§> . (2.4)

2
i>j \ 40 o

For an infinite systemi — oo and we get the neutrality condition that the correlatiorction
of exponents is only non-zero if

> =0, (2.5)

We see that the propagator factorises into independerdneftight moving parts, which are
functions ofz andz only respectively. Hence we can define the chiral comporadrte field

®(z,2) = ¢(2) + ¢(2), (2.6)

and consider correlation functions dfeand é°¢ separately. We must understand however,
that this factorisation is a property of the correlationdtions only and not a restriction ah
in a path integral. We also define the dual field

@(Z, 2) = ¢(Z> - é('z)v (27)
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which satisfie®.® = 0.0 ando: P = —9:0, or in other word$),© = 0,P. The equal time
commutation relations between the field and the dual field is

[®(z),0(z")] = —if(x — ') (2.8)

where thed(z) on the right hand side is a step function which demonstrétesbon-local
relation betweer® and©. This leads us naturally to define

(z,7) = 0,0(z,7T), (2.9)

which is the conjugate momentum to the fididatisfying[©(z), ®(2')] = id(z — 2’).

We now move on to a fermionic model. The continuum Hamiltarednon-interacting
one-dimensional electrons obtained by linearising thetspm around the two Fermi points
(see figure 2.1) is

Hp = —ivp / de (10,0 — §10,7) (2.10)

where is the low energy excitations near the right Fermi pointis near the left Fermi
point andvy is the Fermi-velocity. The electronic annihilation operadt sitex is therefore

expanded as
Cq

Vao
Unless the curvature of the spectrum around the Fermi poartsot be ignored, equation
2.10 is a universal model for the low-energy excitations @fismteracting one dimensional
fermions. The anti-commutation relations between thediale

= 1p(x)e* T 4 o) (x)eFrT, (2.11)

{v(@),¢'a@)} = o -2,

{0(),d"@)} = dz—2),
{¢(@), 0"} = o (2.12)

The propagator is easily calculated

W () = (2.13)

2mz — 2’

The bosonisation gives the equivalence between the two Isidde

1 .
_ iV (2)
= ——¢@ ,
v V2T
_ 1 . <o
Y = —_%el“w(z), (2.14)

We also define the currents

J = iy,
J o= J' (2.15)
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| | Fermionic representatioh  Bosonic representation |

Action [drdx |10 + 10z | 3 [drdx |1(0,@)? + v(9,P)?
Left moving ¥(2), ¥1(2) \/%eﬁ\/mxz)
Right moving ¥(2), vi(z) \/%eii\/ﬂi(f)
Scattering across F5 Yl + i L cos [VAT®(2, 2)
Left Current J =Yl 770:¢
Right Current J =Yl S0:0

Table 2.1: A bosonisation dictionary.

Bosonizing these requires a little care. In order to remadverdences from the theory, we
must consider the vertex operatoté’&) to be normal ordered. The normal ordering then
means that to multiply two together, we must use the formula

0(2) gBO() _ gad(=)+i0(=) g-aB(e(z)e(=) (2.16)

which follows from the Baker-Campell-Hausdorff formulahi$ is explained in detail in [5].
Writing the current ag = lim, ., v'(2)¥(z +¢) and using the above formula, one derives the
bosonised form of the current operators:

i

J = ﬁaz¢7
_ —1 _
] = 20 (2.17)

Note that this is not a proof of the equivalence of the two ndeerely a demonstration
at the level of the correlation functions. For a rigorousgbrsee the articles cited in the
introduction. Also, at this point, it is not clear why bosang the theory is useful. This
becomes apparent in the next section when we consideri@gations in the one dimensional
electron gas. We give a summary of the results of this seatitable 2.1.

2.1.3 Spin, interactions and the Luttinger model

When considering real electrons, we add a spin indexc =7, |. In the bosonisation we
must then add additional anti-commuting factors known aarKfactors to ensure the anti-
commutation of the different species of fermion. These wareduced into the Bosonisation
procedure by Haldane [17, 18]. For many purposes, the Kégitofs play very little role, and
one can simply project them out, although one must be cagleing so. In this work, it turns
out that this is the case so we will not discuss them here.

The boson field may be combined into spin and charge comp®nent

1
1
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Figure 2.3: The four low energy scattering processes forcamensional electrons. Con-
tinuous lines denote right moving electrons, dashed lirg®te left moving electrons. Spin
indices are suppressed. After [5]

This will turn out to be a useful parameterisation when we #mdinteractions. The non-
interacting Hamiltonian is simply the sum of the charge gud sectorsi, = H.o + H; .

In the low energy limit, interactions between electronslenged to the vicinity of the
Fermi points and fall into four different categories - seeifeg2.3.

e Back scattering

Hy = vpgi Y gl . (2.19)
e Dispersion

H2,c = UFg?,C(JT + Jl)(‘fT + jl)v
H275 = vFgg,S(JT — Ji)(jT — J_l) (220)

e Umklapp (half-filling only because of momentum conservatio

1 -
Hy = Sorpgs 300l ototh o + H.C. (2.21)

e Forward scattering

1 . _
Hie = gvrgae|(Jy+ )% + (i + 1%
1 L
His = 50rgss ((Jy = J)?+ (Jy = J)?] . (2.22)
Applying our bosonisation dictionary, 2.1, we will rewrigach of the interactions in
terms of the bosonic fields. To begin with, we neglect thetsdaty across the Fermi points
(i.e. the backwards and Umklapp scattering), what we atewgh is then known as the
Tomonaga-Luttinger model [6, 7]. The beauty of this modé¢hat its bosonised form is still
a model of (renormalised) free bosons.
The charge and spin sectors of the interactions decoupdeyarcan write

7—{T.L. - Hc + Hsa (223)
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where

M, = Hop+ Hoy+ Hap,
(%
How = - |11+ (0:9,)°],

2
—UF92,
Moy = —5 2 [ - @0,
_ Urgy, 2 2
Hip = — = I+ (2.9,)°],
(2.24)
with 1 = ¢, s. This gives
1
H, = 2| K2 + —(0,7,)°] (2.25)
2 K,

where

K

o T — 02, + 94,
u = . Jsk - IJEK

T+ 92,1 + 94,

2 2
v = vF\/<1+94—’“> —(92—’“). (2.26)
T T

The parameter, is the renormalised Fermi velocity arfd, is called the Luttinger
liquid parameter. If the spin sector is to remain SU(2) iraat; we must haveé(, = 1 as
the only term to change thig; ; is not spin rotation invariant (notice howewgr; is, and this
can strongly renormalize the spin velocity). In the chaggar, K. can take a wide range of
values, and this can be seen in experimental systems.

We see that the spin and charge sectors renormalize diffggerd independently lead-
ing to the phenomenon of spin-charge separation. The atioelfunctions can be obtained
by multiplying together the spin and charge components. éd@w in the presence of interac-
tions across the Fermi surface (i.e. fheterm), the left and right bosons become mixed. To
show this, we rescale the Hamiltonian 2.25 to put it back o&oonical form¥’ = U /\/K
which implies the opposite scaling for the conjugate momeril’ = I1/K . So the left and
right parts are not simply rescaled k4, they are mixed:

1 , 1 [ 1
¢ = 5(\If+@)—>¢ —_§<—_\IJ+\/K@>,
- 1 - 1( 1
¢ = §(\If—@)—>¢ _—§<—_\If—\/K@>. (2.27)

Expressing the old right and left bosons in terms of the negs@ives

¢ = cosh& ¢ +sinh€ ¢,
¢ = sinh& ¢’ + coshé ¢/, (2.28)
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whereK = e%. This is basically a Bogoliubov transformation in the mospansion. Hence
for example, in the cas&, = 1 (spin isotropic system) buk’. # 1 we have the following
expression for the fermionic field operator

1 v
x,T) = e VI
¢T( ) \/%
_ L ivamee -ivEmes
s
1 . , . . -
— 27T6—1 27 cosh & ¢ce—z 27 sinh & ¢ce—1\/ﬁ¢s‘ (229)

The Luttinger liquid is a critical model with power-law befaur in correlation func-
tions. The exponents of these power laws depends only on uttengier liquid parameter.
These correlation functions are easy to write down once we barried out all the transfor-
mations leading to eq. 2.29 because the correlation fumetd bosonic exponents are given
by 2.4. The propagator for a real electron is of course the guour left and right moving
parts

Gi(z,7) = (¥ (z, 7)¥](0,0)) + (Py (z, 7)¥1(0,0)). (2.30)

Once more concentrating on the cdse= 1, K. # 1, we have

1 —iv/27 cos ! (2¢) iV 2 cos !
<¢T(x,r)qﬂ(0,0)> = %@ 2 cosh € ¢ (z) giv/ 2 cosh 64(0)y

% <ei 27 sinh € q;’C(ZC)e—i 2 sinh € <Z_>’C(O)>

% <6_i\/ﬁ¢g(z5)ez’x/ﬂ¢;(0)>

1 1 1 1
T oor (vor — i) (1/2) cosh? ¢ (v + iz)(1/2) sinh?¢ (.7 — ) 1/2
1 1 1 1
= — 2.31
27 (v — i) V2 v — Qx| (veT — iz)V/2’ ( )
where . .
=- (K. +——-2]. 2.32
0= ( e > (2.32)
Similarly, the left moving sector:
- - 1 1 1 1
(1 (z, 7)}(0,0)) = - (2.33)

27 (v, + 1x)V/? v, + i

O (0,7 + 12)1/2

The exponend. turns out to be a very useful parameterisatiorof 6. = 0 corresponds to
the non-interacting systerd. = 1. Also, by Fourier transforming equation 2.31 (see eg [13]),
we see that the single particle density of states behaves as

p(w) ~ Jw]”. (2.34)
Similarly, the momentum distribution function at the Feteviel

n(k) = n(kr) — asgn(k — kp)|k — kp|%, (2.35)
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where « is some constant. In a similar manner, spin-spin and dedsibgity correlation
functions can be calculated in this model [5].

Notice that in deriving the Luttinger model, we said verylditabout the underlying
microscopic Hamiltonian. The exact model chosen will pstnietions on the value of the
parameterds, and K., but the Luttinger model is universal for many microscopiocdals.
However, the model itself is unstable to many perturbatidosexample Umklapp or back-
wards scattering as we will see in the following section, @nse interchain coupling as we
will see in section 2.4.

2.1.4 The sine-Gordon model and gap formation

We now go on to bosonise the Umklapp and backwards scatteti@gctions of figure 2.3.
This gives rise to cosine terms in the Hamiltonian which setadthe sine-Gordon model and
gap formation. In the spin sector, this can come about forymeasons from the, term. In
the charge sector, it requires commensurate filling to HaeéJimklapp processes. The model
still has full spin-charge separation:

G('Tu T) = Gspin(xu T>Gcharg0 (.T, T)- (236)

However, now one or both aF, «narge as a gap. If one of the sectors is gapped and the
other is critical, then the model is known as the Luther-Bnliguid [19].

In this section, we concentrate on one sector only, and asgusrgapped. The bosonised
action in terms of the canonical bosons is

S— % [ 0,22 + V cos (VEITR o). (2.37)

whereV depends on thg, andgs; terms.

In the sine-Gordon model, the combinatig7 K is usually written ag? and the prop-
erties of the model depend very strongly on the value of thiS'he sine-Gordon model is
integrable for all values of, hence many exact results are known about it. A number oéthes
are mentioned in section 3.3.3. Many correlation functiaresalso known, for a full review
see [20]. Here, we review the simply state the basic pragedi the model. Ifs> > &=, then
it can be shown that the cosine term is irrelevant in an RGesamswever if3* < 8, i.e.

K < 1then the model has a gap.

It was shown by Sydney Coleman [11] that model 2.37 can bemada@ised as the

massive Thirring model

H =000, — w9, 0] + A[W'¥ + He] + guiwiow, (2.38)

where

1
— o= 1K
U<4K+ )
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~ TV
A=
i = 2m (%—K). (2.39)

It is very strange indeed that our original interactingssleséermions got rewritten first as a
bosonic model, then as a model of interactmngssivdermions.

We see that at the special poiit = 1/2 i.e. 3 = +/4r known as the Luther-Emery
point, the refermionised model is non-interacting. Thatiehship between these fermions
and the original electrons is very difficult to describe, as ave a) dealing with only one
sector of excitations, and By = 1/2 is a very strongly interacting model; these fermions
can be thought of as solitonic excitations of either spintmrge. Once we are away from
K = 1/2, the fermions are interacting: £ > 1/2 the lowest energy excitations are still the
solitons however if’ < 1/2, we have bound states of solitons known as breathers whigh ha
a lower energy than the solitons themselves.

2.2 Integrability

Not all one-dimensional models are integrable, but manfi@htost important are and it is the
methods of exact solution of integrable models that pergafesthe most insight into strongly
correlated systems, giving solutions unaccessible byearaional perturbation theory.

The basic idea behind integrability is the reduction of thabjem to two body dynamics.
This is through the factorisation of the scattering matttive scattering ofV particles can be
written as a product oN (N — 1)/2 two-particle scattering so long as the outcome does not
depend on the order in which the particles scatter. This compassed within the Yang-
Baxter equations (for a review see [21, 22]). It turns out thanamical systems with such
factorisable S-matrices have as a common feature an infiattef conservation laws. This
is rigorously shown in [23]. One can imagine this connecfioimne-dimension by simply
considering the scattering of two identical particles. fggeand momentum conservation
imply in one dimension that the incoming two momenta and tlig@ng two momenta be
identical. This means that the only possible solutions efafuationg, + p; = p + p}, and
PP =p i+ prisp =y, pa = phorp; = ph, p, = p. In both these cases, we discover
we have not only conservation of energy and momentum buteceason of all powers of
momentap} + py = p'{ + p'y. This then raises the obvious question of why aren’t all one
dimensional models integrable? The answer is that thecpestalso have internal degrees
of freedom, and these internal quantum numbers must alsofaatorised scattering for the
model to be integrable.

The method of building up th8-Matrix from the Yang-Baxter equations is sometimes
known as the Quantum Bootstrap approach. Historicallyfitise way to attack integrable
systems was the Coordinate Bethe Ansatz which was firsteppdi the XXX Heisenberg
chain in 1931 [24]. Here, one can write down the exact formhefrhany-body wave function
because of certain factorisation properties from the itdiset of conservation laws. From this
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wave-function, one can calculate physical properties efsystem. A third method is based
on the algebraic structure of the factorisation equatioksia known as the Algebraic Bethe
Ansatz, or the Quantum Inverse Scattering Method. Thisllg feviewed in [25]. All of
these methods are equivalent, although each have theintadyes and disadvantages in terms
of calculation techniques.

2.2.1 The S-matrix

The S-matrix is the heart of an integrable model. It is repmésd pictorially as

512:1 2

We will mostly be dealing with theories with Lorentz invarie, so we parameterise the
energy and momentum by the rapidity

E = mecoshd,
p = msinh6, (2.40)

SO scattering between two particles is simply a functios,of= 6, — 6,. We also note here
thatd) — 6 + ir changes® — —F, p — p so this can be considered as changing a particle
into its antiparticle.

The Yang-Baxter factorisation equations are the most itapoproperty of the inte-
grable model. They can be represented pictorially as

AKX

312(912)313(913)523(923) = 523(923)313(913)512(912)- (241)

Basically what this is saying is that if three particles tgradff each other, it doesn’t matter
which order they do so in.
For a well defined theory, th&-matrix must be unitary:

1 2 1

1 = 512(012)521(621). (2.42)

These conditions are also true for non-relativistic theoii we parameterise the scatter-
ing by the momentum transfer rather than the rapidity. Tha Giondition, crossing-symmetry
is a purely relativistic effect, which is represented as
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X- 47N

Si2(012) = S31(021 + im) = Sa1(021 — i). (2.43)

There are also a number of properties relating to the foonatf bound states. A bound
state shows up as a pole in the S-matrix, which means thagré tre no bound states, then the
S-matrix must have no poles in the physical sheet (i.e: Imf < 7. For more information
on the bound states, see for example [26].

These properties are enough to exactly determiné&theatrix, which can then be used
to determine many observable properties of the system. \Wedagily one extremely simple
example which will be used later in this thesis, for the omaehsional Quantum Ising Model
(section 5.1).

H=-J) {O‘fLO‘fH_l +(1+ g)aﬁ} . (2.44)

In this case, the Jordan-Wigner transformation reducemtiael to free fermions. Hence the
asymptotic states are free fermions so the scatteringxmattiivial:

S=—1. (2.45)

2.2.2 Form-factors and correlation functions

Form factors are off-shell scattering amplitudes

FO _(61,...,6,) =(0|0|6y,...0,)c,. e (2.46)

€1...€n

whered,, are the rapidities of some excitations in the system @ndenotes other internal
guantum numbers. These are simply matrix elements of theatgpe€) with various excited
states, however the expression 2.46 is limited to integraimdels for the following reason.
If one doesn’t have factorised scattering, then multiipkrtexcitations can not be simply
written in terms of the rapidities of each excitations, ikian incomplete parameterisation of
the state.

The form factors can be calculated in a bootstrap approacitesito the S-matrix [20,
27, 28, 26]. Again the equations come about as consequemdbe actorisation of the
S-matrix. Firstly, the end result of annihilating the extibas by the operato® must be
the same as if two of them scatter first. This is known as Wasequation, and can be

represented pictorially as:
(@
- m- @247

FOo (.,0:,05,..)=F% (...,0;,0:...)S;(0; —0;). (2.48)
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Changing particles to anti-particles, we get conditionsmas crossing relations which

can be represented:

3] < 91 ‘ O(O) |p2, <oy Pn >in,conn. = FO (91 + ’i7T, 62, ey 8n> (250)

€2...€n €1€2...€n

= Fe(;)...enel (927 s 79n7 91 - 7'7T) (251)

Finally, we can relate form-factors with different numbefsxcitations by a recursion

relation:
1
% Resg,,—ir = -

ResamszE_n(él, . ) =2 C12 Fgon(eg, . ) (1 — Sgn e 523) s (253)

(2.52)

whereCi, is the charge conjugation matrix with eleme@ts,, = 5., Which basically ensures
charge conservation in the above expression. In words, thisaéxpression is saying is that
the particles all being annihilated by the operatbis equivalent to two of them annihilating
each other and the rest being annihilated’by

Again, there are also a number of relations dealing with bostates which we don’t
mention here. This set of equations were proposed by Smjgtjas generalisations of those
in the original articles [29, 30]. After solving these edaas, one has to associate which local
operators in the original theory correspond to which sohutiThis is typically done by looking
at a perturbation expansion and matching it up to the ex&atiso.

Using our Ising model example 2.44 with= —1, the above formula’s reduce to

F(n)(927017637"'79n) = _F(n)(917927937"'78n>7
FMW (0 — 2w, 0y,...,0,) = F™(0y,6,,...,60,),
Resg,—inF' (01,605,605, ...,0,) = —2F"2(05.....0,). (2.54)

Looking at the first two, with the additional requirementtttieere is no bound state so aside
from 0,5, = im (there must be no other poles in the physical she€t360 < 7 because there
are no bound states), we see that the minimal solution fomtbgoarticle form-factor is

F(6y,06,) = tanh (91 g 92) : (2.55)
Using the third equation in 2.54 we can build up all the reghefform factors

F(0,,....0,) = [[ tanh <%> . (2.56)

1<j
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It turns out that ifn is odd these relate to the spin field andhifis even they relate to the
disorder field - see section 5.1

Correlation functions can be calculated in terms of the ftaators. This is obtained by
inserting a complete set of states:

X7 = (0|0(z,1)0l0)

" d@
- Zn'/ —(0[0(,1)]61,.. -, 6) (61, .-, 6] O10)

- d@Z
B Z ' / _l[thOShe mxsnjhe} FEI---En (917 cet 79n)|2 (257)
n:

For low-energy excitations in a massive field theory, retajronly the first couple of terms
in the expansion can be a very good approximation. Thereimitgas method that can give
finite temperature correlation functions - see [31].

The Fourier transform of the retarded correlation functjores us

Z /00 ﬁ db; | 6(k—m3 sinhf;)  d(k+m3 sinho;)
n! 2r (w—m> coshf; +ie w+m) coshf; +ie
X |F51___6n(91, L0 (2.58)

The imaginary part gives the structure factor.

"d9

Zn'/ —5w—chosh9 (k—m> sinh6;)

i=1

X |F51...en(917 . .,Qn)|2- (2.59)

The structure factor is a very nice thing to calculate in thés/ because it turns out if you
terminate the expansion aftaf terms, the expression is exact up to energies Nm?!, and
furthermore, the structure factor is directly related toatvis measured in the experimental
probe Angular Resolved Photoemission Spectroscopy (ARPES

This ends our brief summary of integrable systems. Bagiddlé main points are that
strong kinematic constraints in one dimension mean thamh&ory models you get factorisation
of the S matrix, which can lead to an exact solution of the rhotdas allows you to calculate
many things of physical interest such as thermodynamicsmwelation functions.

2.3 Conformal Field Theory

Although conformal field theory will not play a big role in #thesis, some results will be used
so we feel it useful to review the basic idea here. For a gemeoidel at arbitrary temperature,
there will be at least two length scales in a system, thecaipacing:, and the correlation
length&. The presence of these lengths means that there is no syynohétie model under

1This can be seen by noting that the minimum valuef ", cosh 6; is nm when all thed; = 0, and so if
w is less than this, the delta function in equation 2.59 camneg satisfied.
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scale transformations. However, at certain critical po{ine. near a phase transitiog)can
get very large so when looking at correlations on lengtheschetweem, and&, the system
will have an (approximate) scale invariance. In a systerh leital interactions, an immediate
extension to this would be that the system also has a lockd snariance [32], i.e. conformal
transformations Such symmetries occur in all dimensions, however it tunmstieat only
in two dimensions does conformal symmetry alone put huggicgsns on the correlation
functions due to a peculiarity of the conformal group in tvwmensions.

The group of conformal transformations is a finite groupuieng d(d + 1)/2 param-
eters in ad 4+ 1 dimensional field theory, so it puts relatively few consitaion the form of
the correlation functions. The exception isliA- 1 dimensions where the expression is only
for conformal transformations that are well defined evergxeh There are an infinite number
of conformal transformations (i.e. any analytic functioinat are still equivalent to local di-
lations, although not regular everywhere. This providesry ypowerful tool for calculating
correlation functions in a wide class of critical theoried H- 1 dimensions.

Conformal field theory has grown into a field of its own since 1984 seminal paper
by Belavin, Polyakov and Zamolodchikov [33]. For reviewdlud field see [34, 35]. For the
purposes of this thesis, we will derive only one result, theredation functions of bosonic
exponents on a torus which is equivalent to the finite tempegacorrelation functions of a
Luttinger liquid.

The analytic function

z(§) = sinh(w&/L) (2.60)

transforms the infinite complex plane into a strip of widtln the r-direction. This therefore
mapsI’ = 0 correlation functions onto finité correlation functions, wherge = 1/7". Hence
within the Gaussian model 2.1, the zero-temperature @iroal function

<6—i[3<1>(x,t)ei[361>(070)> _ i 1

=S (2.61)

will become at finite temperature

—iB®(x,t) i5®(0, T ’ T ‘
<eﬁﬂ)dmmwz{mmhﬂx—mn}{mmhﬂx+wn} (2.62)

whered = (32 /8. This can be Fourier transformed to give

A2 A
['(d/2+i(w+wvq)/4nT)  T(d/2+i(w —vq)/47T)
I'(1—d/2+i(w+vq)/4rT)T(1 —d/2 + i(w —vq)/4xT)’

~2+2d
YV = 2 sind <ﬂ> (1 —d)

(2.63)

whereA is the ultra-violet cutoff.

2A conformal transformation is a transformation which pasmcal scale changes and local rotations so
long as angles are preserved everywhere.
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2.4 From one dimension to quasi one dimension

When considering strongly anisotropic materials, treptimem first as strictly one dimen-
sional systems should be a good starting point. Howevemiha@gbe the end of the story.
True one dimensional systems do not exhibit phase transitigo states with broken symme-
try. This was first addressed in 1975 [36] for the case of aaliplassical Ising chains. The
authors treated the inter-chain interaction in the medd-&ied looked for fluctuations around
it, a procedure which has since become known as the Randose Ppgproximation (RPA).
It is only recently that attempts to go beyond this level gbraximation have come into the
literature [37, 38, 39], showing that the somewhat unjestifooking RPA is in fact the first
term in a more general expansion, and that in most of the tagestigated the corrections to
this are small.

We postpone a discussion of the RPA and beyond to sectio? @ltere we can make
the derivation more concrete for the particular model wedaading with. For now, we simply
give some brief scaling arguments about what can happen waeaald interchain coupling to
a one-dimensional model, and when we expect to be able toanselpation theory.

Consider adding weak interchain electron hopping betwestiriger liquids.

H=Y Hip+ 3 [ dedrtu(i— )l () (o) (2.64)

At large distances, the Green’s function of the Luttingguid behaves ag:|~'~. Hence
each term in the perturbation expansiontinwill have a factorwﬁ“‘1 which diverges for
a < 1. We can therefore define a new energy sc¢ate= tll/ (1=2) " This characterises for
example the crossover temperature above which the effé¢isare covered by temperature
and the system behaves as a Luttinger liquid. At tempemtaveer than this, the interchain
coupling is a strongly relevant operator and will changeghmund state, either to a Fermi
liquid®, superconductor, CDW or whatever depending on the natuteeointeractions. At
these low temperatures, we would be extremely wary of a getion expansion in, about
the Luttinger liquid. However, if we consider a one-dimemsil model with either a spin
or charge gap, the long distance asymptotics in one dimeiigiboff exponentially and we
would expect a perturbation expansiort into work well. These are the cases we consider in
the following chapters.

3t was pointed out by Anderson [40] that in some cases thooghk, has to be careful applying scaling
arguments, and the LL fixed point can sometimes be stabledrimensions.



Chapter 3
Superconductors

My definition of an intellectual is someone who can listenh® William Tell
Overture without thinking of the Lone Ranger.
—Billy Connolly

3.1 Physical motivation

Since the discovery in 1986 of the so called High Temperatuperconductors [41] there has
been a lot of interest from theorists for non-BCS theoriesugferconductivity. One of the
more interesting models involves a quasi-one dimensioysem. The application of such
theories to the HighE. materials is a separate discussion in itself, as these ialatbave
CuQ, planes which are structurally two-dimensional. Howeusegye is much theoretical and
experimental evidence [42] that there are ‘stripe’ cotiefes over a wide range of tempera-
tures which make the low-energy electron dynamics in thémseg locally one-dimensional.
Although a discussion of stripes is beyond the scope of ltigsis, this quasi-one dimensional
non-BCS model is interesting in its own right as there areyrsructurally one-dimensional
materials such as the Bechgaard salts (organic supercamnsiuc

In certain temperature regimes, the one-dimensional staai Luttinger liquids so we
have spin-charge separation (see section 2.1.3) and weseiipat there is a gap in the spin
sector. Single particle hopping between chains must nadsmvolve real electrons which
are some bound state of both spin and charge excitationsch/heans that single particle
hopping is strongly suppressed because it requires esayggater than the spin gap, and so
the most relevant inter-chain interaction is pair-hoppivitere we have a pair consisting of
both an up and down spin, so it has no net spin. Having thesefgwmed’ pairs is obviously
a good start for superconductivity, and it certainly create interesting and furthermore solv-
able example of a non-BCS like transition where the tempegdbr formation of pairs and
that of condensation are not identical. One has to be vesfulaabout the term ’pre-formed
pair’ however, as you have to remember the excitations wettdggquantum numbers on the
individual chains themselves are still spin-charge sdpdra

Here we discuss a simple model of a non-BCS supercondudberexhe formation of

24
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superconducting pairs on one-dimensional chains is treghby the formation of a spin gap.
The three-dimensional coherence is established throwgmtar-chain Josephson coupling.
This competes with the Coulomb interaction between thenshathich can destroy the super-
conductivity and establish Charge Density Wave (CDW) argerWe first introduce our low
energy effective model by deriving it from a model of coup$guin-gapped chains - basically
what we do is integrate out the spin degrees of freedom. We #nat there is a critical line
with enhanced symmetry between the two ordered phases,caod tp calculate the critical
temperature by combining exact results on the chains wélRi@ndom Phase Approximation
(RPA) to deal with inter-chain interactions. We also coesithe effect of a magnetic field on
the phase diagram, which shows some rather interestingioeinaWe calculate corrections
to the RPA, and show that they are numerically small for esfiing the transition tempera-
ture but can help give us more insight into the interplay leetwthe two different ordered
states near the critical line. We then show how the singlegbaspectral function evolves as
you go through the phase transition, and discuss how piepert the solution may manifest
themselves in experimentally observable features. Fina# introduce a couple of quasi-one-
dimensional spin gapped materials that may lend themsthsgch a treatment, although the
complexity of these materials means that a detailed apgpicaf the theory to the materials
is outside the scope of this thesis.

The model we use has been considered in some detail [43] inaiext of high?’,
superconductivity. It was assumed that the one-dimenkhmteaviour came about from the
formation of stripes [42]. Since in some stripe picturesctilations of the stripes dephase
the CDW coupling [44], only the superconducting inter-chigiteraction was considered in
[42]. However, more recently [45] the model 3.14 has beersicmned a good description of
a 'caricature of a stripe ordered state’ in the Hubbard moldethis chapter, we consider the
model as a description of materials that are structuralfsgone-dimensional, although it is
worth remembering that there may be many features of thaigolthat are relevant for the
high-T.. materials also. The scaling properties of the solution HBeen known as early as
1975 [46] and discussed many times since. However the poegathe interplay between the
SC and CDW phases, the effects of the magnetic field and theations to RPA were all new
work in our paper [1].

3.2 The model

The pure one-dimensional part of the Hamiltonian densitysawritten in its Bosonised form
(section 2.1):

Hchain = Hcharge + Hspim (31)
Vo

Ho ==, [K0(0:04)? + K, (0,94)% — Vi cos(vV81d,,), (3.2)

wherea = spin, charge an®(z), ®(y)] = i6(z — y).
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We suppose the one dimensional electron gas is sufficiedtymmensurate that there is
no Umklapp scattering Sd.... = 0. However, we want to look specifically at the case where
a spin-gap\ is present, which means thé,,, # 0 andK, < 1. Now, if we are at the SU(2)
symmetric point, the sign o, is fixed to be positive, and may come, for example from
next-nearest neighbour exchange. Ryzhkov and Millis amred another possibility of spin
gap formation in a single chain. In their scenario the gagmsegated by an Ising anisotropy in
the spin sector. In this casé,, is negative. The spectrum of the model is independent of the
sign of Vi, but the vacuum configuration gf,;, changes and therefore different operators
acquire finite amplitudes. In the case of SU(2) symmetryogperators which acquire finite
amplitudes and whose correlations are enhanced are thietssugperconducting (SSC) and
CDW order parameters respectively. However, with the Isingotropy, the corresponding
operators are the.component of triplet superconductivity (TSC) and theomponent of Spin
Density Wave (SDW). Note that in the latter case, the ordearpaters will also have Ising
anisotropy. In this work, we will not worry too much about tinecroscopic origins of the spin
gap, and will limit ourselves to the case where we are lookihthe interplay between SSC
and CDW. The alternative case, TSC to SDW was worked out ify gt¥d we will refer to
some of the similarities and differences throughout thigptér.

The spin gap blocks single-particle tunnelling processdw/éen the chains at low en-
ergies. Then the virtual multi-particle processes geegpair hopping so the most relevant
interchain interaction comes from the Josephson couplirtheosuperconducting order pa-
rameters and the Coulomb backscattering

Hinter = Vp2Fr p, 257 + JALAT (3.3)

where the subscripts refer to chain number. Using our beation dictionary, table 2.1, we

see that
po= S {0l + O, + e (Gl + i, ) + (Akpterms) |
= Lamfbc + Acos(2kpz + V21®,) cos V21 ®, + (4kpterms), (3.4)
V2r
and

A~ (P + )
= cos(V210,) cos(V21d,). (3.5)

We now derive the magnitude of the effective Josephson augiplVe start from a single
particle hopping term in our bare Hamiltonian density

Hicoming = 5— 3 {040 (@) + 6} (2) i (2)} (3.6)

2&0 ntm

After opening the spin-gap, the effective Hamiltonian dignsnly involves pair hopping as
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shown above:

1

= aan

Jor Y 1 cos[V2m(0, —0,,)] : . (3.7)
n#m

These are virtual processes involving an intermediateggndr,, hence the/.gz will have

a factort?/A,. We must also remember that our effective theory has an-ubtat cut-

off determined by the spin-gap, so we must account for theghan cut-off in the nor-

mal ordering, and finally we replace anything involving tipensfield by its average value

(cos(v2m®,)) ~ (A,/A)%s/2, Putting this all together gives

As Ks+1/K.—1 2

Ja~ () X (3.8)

wheret is the single particle hopping ardis related to the original bandwidth.
Interaction (3.7) has scaling dimension

dsc = 1/(2Kc)7 (39)

and therefore is relevant even for repulsive interactiaorthé charge sector provided they are
not too strong K. > 1/2). This is a well known effect of the spin gap; it generatesqraed
pairs making it easy for them to condense [48].

Now we consider the inter-chain Coulomb coupling. In theetsystem, we have a term

v
Heoulomb = a_O Z pn(x)pm(x)a (310)

0 ntm

with p(x) the charge density on each chain, dids the strength of the inter-chain Coulomb
coupling. When we open a spin gap, the uniform part merelpgbathe chemical potential,
so the most relevant operators are 2lkg components of the CDW. Once more, replacing all
occurrences of the spin field with its average value and dhgribe ultraviolet cut-off in the
normal ordering, we generate an effective interaction endharge sector

Heqw = 1 Ver > tcos[V2r (@, — @) : (3.11)
2A71 m
where
A Ks+Ke.—1
Vet ~ <T> V. (3.12)

The corresponding scaling dimension is
deaw = K. /2. (3.13)

We will also be considering the effect of a magnetic field. \Weaduce an external
magnetic fieldH directed perpendicular to the chains. This couples to tpersonducting
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order parameter but doesn’t affect the coulomb couplingrimciple, the material will have a

Meissner effect, expelling the magnetic field from the iesid the superconductor. However,
because of the reduced dimensionality, we would expect thissvier effect to be very weak
(i.e. the materials are strongly type Il superconductqgaaiticularly near the phase transition
which is the region we are most interested in. Hence we camasthat the magnetic field that
couples to the superconducting order parameter is simplgxternal magnetic field, which

will be a good approximation for all but the weakest of apgplields.

The effective action for coupled chains is therefore

1

Lo =
79K,

Z(Bui)n)? + % Z {Vam : COS[\/%((I)N - P, :

n n#m

4+ Jom @ cos[V271(0,, — O,, — 2¢Hb,mz/c)] :}.  (3.14)

whereb,,,, is the projection of the inter-chain lattice vector on theediion perpendicular both
to the chains and the magnetic field and the expressionm\ha@s the ultraviolet cut-off. We
will be considering nearest-chain interactions only, ig,, = V, J,..,, = J for neighbouring
chains and zero otherwise. In what follows we will be mosgiested in the cask, ~ 1
when both interactions are important.

Note also that at this point, our effective action deals amih the charge sector, any
details of the spin-sector except for the gap have beenraitsd)out. So this model is more
universal than its derivation, and can be applied to suchscas when the one-dimensional
units are for example ladders rather than chains where theyacquire a Haldane spin-gap
[49, 50].

To complete the introduction, we present the hierarchy efgnscales present in the
system:

1. The highest energy scale is the spin gap Below A, the system is described by
competing CDW and SC fluctuations.

2. There is a transition temperature at which eitles v/270) or (cos /27 ®) are formed.
According to the mean field calculation, these order pararaetannot be formed si-
multaneously. Thus we are either in CDW or SC phase, but tinpeeature of their
formation goes smoothly through the point= J.

3. We will see that there is a third energy scale associatddtive gap for another mode
which becomes soft at the critical point. This mode is nohgeehe first order RPA
calculations, but its effects can be noted by looking at tts¢ ¢iorrection to RPA.
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3.3 Low temperature phase diagram: Critical temperature
and magnetic field effects

We now go further down in temperature where the inter-chaumpting becomes important,
and we get dimensional crossover to a three-dimensionateddhase.

In the case where there are two coupled chains, the modeh&44olved by Sheltoet
al [51]. There are two modes; one symmetric in the two chainstb@dther antisymmetric.
In the presence of the inter-chain interactions, the symmetode remains gapless and the
antisymmetric sector splits into two Majorana fermiongwgaps (V + J) and (V - J).

For an infinite number of chains, we expect to see a similar gobehaviour. The
gapless symmetric mode in the the case of two chains will meseense be the Goldstone
mode in our infinite system and we expect to see a range of otbdes with gaps ranging
fromV — JtoV + J. We will see that within the basic RPA we cannot reproducs thi
behaviour: the properties will depend only on the strongér and.J. However when we go
beyond the first order term we can start probing the interplktyveen these two competing
interactions.

3.3.1 An Effective theory of the Critical Point

For a general value oK. the symmetry of the model 3.14 is U@Y(1) which corresponds
to independent global shifts d@f and®©. WhenK, = 1 andV = +.J the symmetry increases
and becomes SU(2). To see this we use the non-Abelian baesionislescription [13, 52]. At
K, = 1 the exponentsxp|+iy/27®), exp[+iyv/270] have conformal dimensions (1/4,1/4) and
can be understood as matrix elements of the tensor giglttom the S=1/2 representation -
the first primary field of the level = 1 Wess-Zumino-Novikov-Witten (WZNW) model (for
a discussion of this model, see e.g. Itzykson and Droufig[35

g (3.15)

_ [ e [i(vV27®]  expliv27O)]
exp[—iv27m0] exp[—iv2r®] |

The Gaussian part of the action becomes the sum of the WZNMhadtom individual
chains:

Y (0,2,)* = > Wlgal, (3.16)

n

N | —

and the interaction term in (3.14) can be written as

Line = 3 AV = J) 3 [98[gm]” + (n — m)] + JTr(gugm, + gmgi)}.  (3:17)
n#m a=1,2
This description is convenient since it contains only mlyuacal fields and therefore can be
considered as the Ginzburg-Landau theory.
In three spatial dimensions the system undergoes a phaséitva into the ordered state



CHAPTER 3. SUPERCONDUCTORS 30

where the matrixy acquires an average value throughout the system. In thewag limit
one can replace the lastterm in (3.17) by

(9y9)(0yg™), (3.18)

and omitting the time dependence of the fields we obtain th@dmng Ginzburg-Landau free
energy:

F= bo_2 / dxderr[%(ﬁx9+0xg) + Jbg(vingVLg)] + Fanisotropys (3.19)
whereb, is the lattice constant in the transverse direction and

Funssorapy = (V = D2 [ docPr 3 gl [g ). (3.20)
a=1,2
We can now re-parameterise the theory. The order paransatee SU(2) matriy. Its
relation to the CDW and SC order parameterand® are:

g = explio®(® + 0) /4] explio*a /2] exp[ic®(® — O) /4]. (3.21)
The Ginzburg-Landau free energy density is
F= %p[cosz(a/2)(V@)2 + sin?(a/2)(V®)?] + %,O(Va)2 +(V—=J)cosa.  (3.22)

This is interpreted as follows: whén — J is positive,« is pinned atr so that the coefficient
in front of (V®)? is non-zero and henck, the CDW order parameter, is constant throughout
the material. Whev — J is negativeg is pinned ab) and hence it i®©, the superconducting
order parameter that acquires an expectation value. WhenJ = 0 we are at the critical
point where the free energy of the superconducting andatisgl phases becomes equal, and
we obtain an extra soft mode. The effects of this / mode will be considered when looking
more quantitatively at the transition.

In the alternative case of the transition between TSC and Sib#/symmetry at the
qguantum critical point is enhanced from UJ(1) to SO(4) [47], although this calculation
is specifically for the case of a bipatrtite lattice.

3.3.2 The Random Phase Approximation

To begin with, we will estimate the critical temperaturengsthe RPA. Our effective La-
grangian can be written as the sum of a 1D part and an inten-aftgractionL.s = L1p +
Linter Where

1

£1D = QKC Xn:(@MCI)n)?
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Figure 3.1: (a) The basic RPA diagram, (b) The Dyson serieRRA, (c) The first correction
term. In these diagrams, the dashed lines represent the diDs¢hihe dots indicate vertex
operators ofb or ©, the wiggly lines are the inter-chain interactions, andhediagram is an
irreducible correlator.

1
Linter = 5 Z {Vam : cos[V2rm (P, — ®,,,)] :
n#m

4+ Jom @ cos[V27(0,, — 0,,)] :}, (3.23)

where we have ignored the magnetic field for now for simpliciwe are interested in calcu-
lating the correlation functions

Yse = <627ri<I>(w,k)6—27ri<I>(w,k)>7 and

Yedw = <627ri9(w,k)6—27ri9(w,k)’ > (324)

as these are the channels in which we may have an instability.

Our starting theory i€, o and we want a perturbing seriesdr,;... Because our starting
theory isn't a free theory (in terms of thé™*«*) fields), we don’t have Wick’s theorem.
However, up to the level of RPA, the perturbation expansgméntical with conventional
perturbation theory:

(0)
Xse (w; k)
Xsc(wa kHa J_) = (0)” s
L= J(ki)xse (w, ky)
(0)
Xcdw(w7 kH)
Xcdw(w, k‘H, kJ_) = . (3.25)
1=V (kL)X (@, k)

These are shown diagrammatically in figure 3.1 (a) and (b).

To try and get some physical intuition about what this appnation involves, we can
demonstrate the terms neglected in the RPA, shown in figdrerBese are paths which leave
one chain then return to the same chain, thus requiring fpaitit correlation functions on
that chain. In section 3.4 we will talk about the first cori@es to RPA, however we can see
from the diagram that higher order terms will be less imparby a factorl /2, wherez, is
the transverse coordination number. Hence one can corfgfddrexact in the limit of infinite
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Figure 3.2: A figurative illustration of the paths ignoredive Random Phase Approximation.
(a) An example of a path treated correctly, (b) An examplegHth incorrectly treated because
it returns to the same chain.

connectivity, e.g. a Bethe lattice.
The critical temperature is extracted from these equatigrite condition that the sus-
ceptibility have an instability av = 0, i.e.

JoxXOw=0,kT) =1 or
VaxD (w=0,kT) = 1. (3.26)

Here we have explicitly assumed a nearest-neighbour afit&in interaction allowing us to
write J(k, = 0) = z, J. Just to clarify notation/(k, ) as a function is the Fourier transform
of the inter-chain hopping] as a number is the strength of the inter-chain hopping.
When K. = 1 the bare susceptibilities are equal to each other and tireréfe insta-
bility occurs in that channel where the interchain interacts stronger. This can be demon-
strated explicitly in the mean-field approximation: herereglace the interaction term

Lig = YAV cos[V2r(®, — ®,,)] + J cos[vV27(0,, — 0,,)]}
~ 2, V{cos|V2r®)) cos[V2r®,] + 2z, J(sin[v270)) sin[v270,].  (3.27)

This can be written as

L = VA24 B2Tr[(cosyI +io'siny)g + c.d],

A = Veilcos[Varnd]), B = Jz (sin[v270)), tam:% (3.28)

whereg is as defined in 3.15. The constant matrix can be removed bsetledinition ofg.
After that it becomes evident that the free energy depenlysooni? = A2 + B2, The mean
field equations are

oF AOF
A = —VZJ_a—A - _sz_ﬁﬁa
B = —JZJ_8—F = —JZJ_EﬁF (329)

0B ROR
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From this it is clear that the only case where bdttand B are simultaneously non-zero is
V=J.

If K. # 1, the instability still occurs in the stronger channel, altgh this now depends
not only on the values df’ and.J but also onk. andA,, the crossover point being

1 1
(i—ivc> R (UK)K/ . (3.30)

For definiteness let us assume that the instability occutseiisuperconducting channel
which is the most likely case foK. > 1. Note that the duality property of the effective
Lagrangian (3.14) undek’ — 1/K, V < J, © <« ® means that all of the results in this and
the next section are identical for the CDW channel.

In a Tomonaga-Luttinger liquid with the ultraviolet cutfak, the static susceptibility
for the operator with scaling dimensidrwas given in section 2.3:

T(d/2 + ivek/4xT) |

(1= d/2 + ivek/AxT)

2 <27rT (3.31)

(0) — 2 g
X (k) sin wd A

A
r=(1-
znnd(B1) -

In the absence of a magnetic field, the structurg ofieans that the instability will occur at
k=0.

3.3.3 Zero magnetic field; the critical temperature

Substituting 3.31 witlht = 0 into equation 3.25 we obtain

(3.32)

A, (272 . TXd/2)TX(1—d)\ 7=
B (22t A —0)

c:27r

Below the transition temperature the long-wavelength dlattons of superconducting
order parameter are three-dimensional. The amplitudeuiticins are however mostly one-
dimensional and their spectral weight is concentrated @laosertain energy which plays the
role of a pseudo-gap. The zero temperature value of the psgajl can be found from the
mean-field theory combined with the exact results for the-§4ordon model. In this approach
one approximates the inter-chain interaction

J > cos[\/2rK;1(O, — O,,)], (3.33)

<nm>

by the one-dimensional (i.e. no chain index) term:

2p cos[y/2r K71O), (3.34)

where

2u = Jzy Ag{cos[y/2r K710]). (3.35)
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Figure 3.3: A graph off./A, againstd. The valued = 1 corresponds to the BCS limit,
decreasing corresponds to increasing repulsion.

This expectation value is known exactly [53]:

(cos[\/2r K 1O])
(1+ &)1 — d/2) <F(é+%>F(1—%>>(d_2)< W€>d(Ac>d (3.36)

2sin —

16sin7g I'(d/2) 4/ 2 AV
where the charge gaf. is the soliton mass in the sine-Gordon model, and is relatgdoty
L@/2)  (_2rE/2) \* (Ac>2-d )
- — AZ. 3.37
hE =) <ﬁF(% vg) &) & (837

In all these equations| = 1/2K, is the scaling dimension of the fietdV> %< '© and¢ =
1/(2 — d). These mean-field relations are solved to give

A, = A

3
tan M)\ 2r2)

Jer 1 €] 77 [0 = d/2) (T +§ym) ]
A, 2(d—2) 2] [ ( ) ] . (3.39)

The ratioT,/A. which is often considered in the theory of supercondugtistplotted
as a function off in figure 3.3. Its numerical value in certain limits is:

T. \/5 N

E(d —0) = 4~ 077, (3.39)
T. . _ 3V3r(D(2/3)1(5/6))
Kc(d =1/2) = o T (3/0)° ~ 0.404. (3.40)

In the limitd — 1 which corresponds to weak coupling, our expressiongfandA. diverge
in this approximation. However their ratio can still be exated. Writingz = 1 — d and
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expanding all the gamma functions as Taylor seriesgives us the BCS value

T, 1 |
_C — = — 1 T = Y =~
) (d—1) 5 }E% 14+ (In2+ v)z] —e 0.567, (3.41)

wherevy ~ 0.57722 is Euler’s constant.

3.3.4 Phase diagram in a magnetic field

A magnetic field affects the inter-chain interaction in tlhiparconducting channel (3.7). In
this case the instability corresponding to the latticeatioms| should be taken at wave vector
2e(H[x x 1])/c, wherez is the unit vector along the chains. Therefore the RPA doitefor
the transition is by

1= JxO{k = 2¢(Hx x 1])/c} (3.42)

To keep the calculations as simple as possible, let us cengie simplest possible
situation when a given chain has four nearest neighboutsdegephson couplings and.J,
and the magnetic field lays in the plane. Combining equation 3.42 and equation 3.31 we
obtain the equation for the critical temperature:

2 2

o T G2 .| _T/2 +iab.H,/T.) | _Td/2 + iab,H./T.)
(TC(O)> - P\r(1 —d/2 +iab.H,/T,) YIT(1 —d/2 +iab,H,/T.)
_ L(d/2) [ _
C=(J.+Jy) Ta—d/2) a = ev,/2mc (3.43)

We now discuss the solution of this equation which descrélegsral interesting effects.

e A possibility of a re-entrance behaviour.

Let us consider the case when in-plane interactions arefsiot J, = J,, b, = b, and
the magnetic field is directed at 4&ngle, = H, = H. This gives it the maximal
power to suppress.. A numerical solution of equation 3.43 is plotted in figuré &)

for various values of the scaling dimensiénWe see that there is a range of magnetic
fields for which the superconductivity exists in an intermaéel range of temperatures.
To study the stability of these solutions one needs to haveoa glescription of the
ordered state in magnetic field, which we hope to obtain ifuhee.

At T, — 0 equation 3.43 can be solved analytically which allows ustcaet the value
of critical field at7,, = 0:

H.(0)

1/(1-d)
_ 2 T,(0) (F(l - d/2)> (3.44)

e b I'(d/2)
This is plotted in figure 3.4 (b) along with the numerical smo for H**.

¢ Anisotropy of the phase diagram.
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Figure 3.4: (a) The critical temperature as a function of nedig field for various values of
d. (b) The critical magnetic field as a function @&xf We plot both the value off which gives
T, — 0 and the maximum value df seen in graph (a). The magnetic field is measured in the

units of2ehbv /c.
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Figure 3.5: Angular dependence of the critical magnetidfidrhis is plotted ford = 1/2.
The graph is qualitatively similar for other valuesdbfin actual fact, the system will be driven
to a CDW ground state before the SC transition temperatuesdo zero - see the text.

Another prediction following from equation 3.43 is an anispy of the phase diagram.
This can be illustrated by an analytical solution of theicaitfield for which7, — 0.
Setting7,. — 0 in equation 3.43 we find

J. J, C

(OzHybz)Z(l—d) + (aszy)Q(l—d) = [Tc(o)]z(l_d), (3.45)

wherea is an unimportant constant factor. This is plotted in figure. 3Ve must be
careful to remember however that this is a first order meaa diglculation, and further
corrections will give a critical flux in all directions, eveamhen the field is pointing
directly along one of the crystal axis.

e SC-CDW transition.

The above calculations are all calculated assuming we arpamameter range such that
the ground state atf = 0 is superconducting. However, as we increase the magnetic
field and thus reduce the SC transition temperature, we gatiyget to a regime where
Tepw > Tse as the CDW instability is not affected by the magnetic fieldthAs point
which can happen either by increasing magnetic field (figu4¢ & by changing the
angle of the magnetic field (figure 3.5), we get a first orderditéon from a supercon-
ducting to a CDW state. The latter would be a very unusuatefteobserve in a real
material.

3.4 Corrections to RPA

The analysis of the previous sections was based on the RPAalistic situations the number
of nearest neighbours is never large, so it is important exktow robust the RPA is. We
will calculate corrections to RPA in the simplest case cdseem magnetic field. We shall
also restrict ourselves t&. = 1 (d = 1/2 for both interactions).

The basic RPA calculation involves only the stronger of the interactions - for clarity
let us again take this to be J. However as we mentioned be®mowuld expect the presence of
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the other competing interaction of the same scaling dinoertsi also play a role. In particular
we expect there to be a mode with a gap/ef V, seen in equation 3.22 and in the two chain
model. This will be very important around the point= J as it will become massless thereby
increasing fluctuations and decreasing the transition éeatpre. This can be investigated by
looking at the first correction to the RPA formula - figure 8)1(

In terms of the fieldg> andd, this diagram can be expressed as

Sy = VQZJ_ {<ei\/ﬁe(a)ez\/ﬂ@(l)e—i\/ﬁ¢(2)e—i\/ﬁ®(b)> N <ei\/ﬂ@(a)e—i\/ﬂ®(b)><€i\/ﬁ¢(1)e—i\/ﬂ¢(2)>}

% <€—i\/ﬂ<1>(1)ei\/ﬂq>(2)>
+ Jzzl [<6i\/§®(a)ei\/ﬂe(1)e—z‘\/ﬂ@@)e—i\/ﬁ@(b)> - <6i\/ﬂ®(a)e—i\/ﬁ®(b)><€i\/ﬁ®(l)6—i\/ﬁ®(2)>}

X (=IO GiVITO () (3.46)

Y

wherea,b are the start and end points ahd are the intermediate points to be integrated over.
Substituting in the expectation values from equation 2dliategrating gives the revised RPA
equation for the transition temperature:

where the coefficients are given by
1 /7 00 1 1
AJ:—/ /d—:—321412
0 7 Jo ar —o0 x|sinh(x+z'7')| 27 (1/4,1/2),
1 /7 00 1 1
Al = = / dridryd / dzydzyd
! 8 Jo CTHATRATY [ e xb|sinh(xb+i7'b)| | sinh(x19 + i712)|?

l| sinh(2y + 47 || sinh(we +ime)| 1]
| sinh(xe + i7o)|| sinh(zp; + i7p1)| ’
1 1
| sinh(zp, + i73,)| | sinh(x1g + i712)[?
sinh(xy + i71) sinh(xy — i79) sinh(xys + i7y2) sinh(xy — i71) s 1
(sinh(:cl — im) sinh(zy + i72) sinh(xye — i72) sinh(xp + inl)) -

1 s o]
AV = = / drdrydr, / dydzadz,
T 0 —00

(3.48)

with z15 = 29 — 27 and soonB(z,y) = I'(z)I'(y)/I'(x + y) is a Beta function.
The integrals are evaluated numerically by Monte-Carltntégques [54] with values
calculated over finite volumes then scaled to infinity. Theuhes are

Al 4.377,
Al 34.81 +0.02,
AY —33.01 4+ 0.02. (3.49)
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Figure 3.6: (a) A plot off,. againsti” and.J, (b) A cross section df,. against” along the line
V + J = 0.1. In these plots, we have taken = 2 to allow these corrections to be clearly
seen, although for this approach to be valid, we require> 3.

Hence the correction to the transition temperature is

T. 1 V2
~1+—1042-040(— . 3.50
A(]JZJ_ _I_ZJ_ [ <J> ‘| ( )

This expression is valid foy > V. If V > J, the expression is exactly the same, but with
V' andJ interchanged. This is plotted in figure 3.6 and gives a dip t@acritical point as
expected.

It is interesting to note that in the absence of the secoretantion term, i.e.V =
0, these correction raise the transition temperature adwdRPA value. This differs from
models of coupled spin chains where RPA tends to overedithat transition temperature
[38, 39].

3.5 Single Particle Spectral Function and other experimen-
tal signatures

To help relate these results to experiment we will look aeti@ution of the spectral functions.
These can be seen by Angle Resolved Photoemission Speyo@RPES) as we go from
one phase to the next.

3.5.1 Above the transition temperature

We begin our discussion above the transition temperatuszenhe chains can be considered
uncoupled and the system shows one dimensional like balvawothis case, our model 3.2 is
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simply a Luther-Emery liquid [19]. The correlation funat®in the spin-sector can be written
as a form-factor expansion [20] but results are only knowr¥fe= 0, and the first correction

for T << A, in [55]. Although finite temperature results are known in tharge sector, the
convolution of this with the spin sector does not admit toyeasalytical analysis. However, at
the Luther-Emery pointi. = 1/2 (see section 2.1.4) where the spin sector can be rewritten in
terms of free fermions, a number of analytic results can bevered. Details of this are found

in [56] and [43], here we limit ourselves here to a discussibine overall gross features.

At the Luther-Emery pointX; = 1/2, the field operators in the refermionised form
can be thought of as spin soliton creation and annihilatijperators. Hence the spin part of
the spectral function can be written as the sum of a cohenmeatspin soliton part and an
incoherent multi-soliton piece

Ay(k,w) = Zy(k)dw + Eo(k)] + Gt (k, w) (3.51)

where the multi-soliton piece &t = 0 is zero below the threshold energy = 3E,(k/3). As
the solitons can be written as free fermions, their spectsum

E (k) = /A2 + (v,k)2, (3.52)

Away from the Luther-Emery point fok'; < 1/2, soliton-antisoliton bound-states form which
will shift the threshold energy slightly.
The convolution with the charge sectd (k) = v.|k|) gives the result

ki) = S0 () (2 )5

™ v, E apAg
vs(k — q) w+ Ey(k—q)+vq
dg|1l — =——%1|h
% / 9 [ Es(k — q)] et 3 [ 27T
E.(k—q)—
< he l“’ + Eo(k—g) ch] +.. (3.53)
2nT

where the. .. refer to the 3 spin soliton and higher contributions and = v./xT is the
thermal length. In this expression,

he(k) = Re l(Qi)"B (9 ;Zk 1— 9)] . (3.54)

Although this is calculated only at the Luther-Emery poaiiig expected that the basic features
remain the same throughout the spin-gap region (and fumthier in the regior/, < T <
A, even when the spin sector is far more complicated). Theeshhthe spectral functions
is plotted in the way typical in ARPES as various Energy [hsttion Curves (EDC's) at
constant momenta and momentum distribution curves (MD&'€onstant energy in figure
3.7, showing the effects of a spin-gap.

We see that in the MDC at the Fermi-level, it is hard to distish between this sys-
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Figure 3.7: The single spin soliton contributids;, to the MDCs atv = 0 (left) and EDCs
atk = 0 (right), of a Luther-Emery liquid K, = 1/2), with v./vs = 3, A;/T = 3 and a)

0. =0,b)d. = 0.2, and c)f. = 0.4. The asymptotic contribution of the three spin soliton
piece, to the EDCs, near its zero temperature threshetd—3A,, is indicated by the dashed
lines. Taken from [56].

tem and a coherent electron-like peak broadened by tenuperatiowever, in the EDC, the
asymmetry and long tails give away that this is a stronglgriaatting system.

3.5.2 The ordered Phase

The single-particle spectral function requires excitioghba spin and charge excitation within
the one dimensional chains. To excite a spin-soliton takegrergyA,. In the three-
dimensional ordered phase, this then leaves a term in theltdaran

U cos [\/ZW/KC(@Z — @fn)] cos [\/%q);j cos [\/ﬂ@fn} : (3.55)

where®? has a soliton present. This is shown in figure 3.8. When orksloaly at the charge

sector, the effect of the soliton is to change the sign of tberaction term on one side of the
soliton. This is compensated for by a soliton in the charggosewhich is bound to the spin
soliton. This turns out to have an enetgy. /2 [57].

1As a brief aside, it is interesting to note that if only two irfssare coupled, then &, = 1 a collective mode
in both chains has zero energy so the total energy of theatixgitis simplyA,. Because this involves modes in
more than one chain however, it can not be extended to theo€aseinfinite number of chains.
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Figure 3.8: A soliton ind;.

4 35 3 25 2 15 1 05 0 05

W/As

Figure 3.9: The temperature evolution of the spectral fionct The dashed line depicts
A(kp,w) at temperaturd” = A,/3 > T, for the parameters., = 0.3, K, = 1/2 and
vs/v. = 0.2. The solid line represents the spectral function at zerg&zature. A cohererdt
function peak onsets ne@y at energyA\, = A, + A.(0)/2. Here we assuma, /A (0) = 5.
The multi-particle piece starts at a threshal.(0) away from the coherent peak. The exact
shape of the incoherent piec€lat= 0 is schematic. Figure from [43].

Hence, the rest energy of an 'electron’ is
Ag=As+ A2 = A, (3.56)

and this would be the gap seen in single particle spectrossogery different fromA. which
would be seen in Josephson tunnelling. Hencelfox T, < A,, the one hole spectral
function has a coherent piece and a multiparticle incoheece,

A(k,w) = Z(k)d|w — E(k)] + G™) (k, w) | (3.57)

where
E(k) = \JvZk? + A3 . (3.58)

This follows from the fact that the bound state of a spin saliand a charge soliton has the
same quantum numbers as a hole. The multiparticle piece timeshold slightly above the
single hole threshold at = £(k) + 2A.. The evolution of this spectral function as one passes
through the phase transition is shown in figure 3.9.

To probeA., one would have to look at experiments involving pairs otetens, such
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as Andreev tunnelling. In the context of sine-Gordon modglis the soliton mass. Solitons
correspond to spatial changes in the superconducting ghasd hence to vortices. Therefore
A, is the minimal energy necessary to create a vortex. It shalstnibe noticed that at < 1
the sine-Gordon model has not only solitons, but boundstakech, being neutral, should be
interpreted as vortex-antivortex pairs. Ak 1/2 the energy of the first bound state is smaller
than the soliton.

There are a number of experimental implications of theradpgivo energy scales.

1. The gap seen in single-particle spectroscopigshanges only slightly with temper-
ature, and furthermore is unrelated@a Physically, this is saying that it is the onset
of phase coherence and not the onset of pairing that is irpioidr superconductivity.
This has been talked about experimentally in the contexighf-ii,. and the pseudo-gap
phase for many years now.

2. Experiments involving singlet pairs of electrons sucladreev tunnelling would see
a gap much more related 10.

3. The presence of two different correlation lengths ingptieat different measurements
of the order-parameter will be depressed over differeriadies. For example, near an
impurity which locally destroys the superconducting g, single particle density of
states will recover over a distan€¢g and this is what would be seen in for example
tunnelling microscopy. However, the magnetic core radrosiiad a vertex as would be
seen inuSR would be of ordet..

4. Because the superconducting state comes not from a Eggmd but from a state with
'pre-formed’ pairs, the temperature evolution of the eatotin spectrum in the ordered
phase will be very different from a conventional supercandu In BCS theory, the
guasi-particle energy is shifted by the opening of the gajhsdifetimes of excitations
are strongly temperature dependent belowin our case, the quasi-particles are already
there abovd’,, so it is only the spectral weight (and not the energies etfilife) that is
strongly temperature dependent.

3.6 A Word about Two Dimensions

In two dimensions the RPA approach in the previous two sestimust break down com-
pletely, as spontaneous symmetry breaking is forbiddemé&wtermin-Wagner theorem. We
can see how this comes about by looking at figure 3.1(c). Thecton we looked at in-
volved only bare couplings to the bare correlation functidrhe process of making these
lines 'thick’ involves much numerical complication and gérise to only small corrections in
three or higher dimensions [38]. However in two dimensidinsse corrections have infra-red
divergences and drive the transition temperature back down

Nevertheless we still get a transition in two dimensionss df the Kosterlitz-Thouless
[58, 59] type. Let’s look closer at Coulomb coupling in twerdinsions. The Lagrangian for
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the coupled chains can be written

L= Z { 0ui)? A{ cos[B(¢i — ¢i+1)]} . (3.59)

S

By making the approximation
2

—cos ¢ = %(cos o), (3.60)

which comes from the diagrammatic expansion of the vertexaipr, we can write this as

L= Z { Duri)® + J (¢ — ¢i+1)2} ) (3.61)
with the self-consistent relation

J = JAB*cos B(d; — dis1))

dq, dg 1—cosqu
— JAP o / o J o
G exp { ’ Xn: 2w 21 w2 + qf + 4 sin(q1/2) .

At T = 0 this relation becomes

J = JAﬁ%xp( B \/A_)

JA, B <£) , (3.63)

Af

whered = 32/4x as before. A4 increases, the self-consistent value/okill decrease, but
for an estimate of the behaviour of the transition tempeesttis relation will suffice.
The Kosterlitz-Thouless transition temperature [13, B9} ~ V'J hence we have

J\ ==
Txr ~ A <A_s) (3.64)
giving the same order of magnitude as the ordering temperatthigher dimensions (3.32).

Hence in two dimensions, although the nature of the trawsis different, the energy
scales involved are the same as in higher dimensions. Tenmajbr difference occurs when
approaching the SU(2) critical point where the presence rfraAbelian symmetry in two
dimensions means that the transition temperature will th@ero at this point. The qualitative
phase diagram in two dimensions is shown in figure 3.10.
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Figure 3.10: The modified phase diagram for our model in twoettisions

N

CHAINS LADDERS

Figure 3.11: Structure ¢fr;,Cuy,O4; after [60]. The compound consists of alternating planes
of copper oxide chains and ladders.
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3.7 Example experimental systems

3.7.1 The telephone number compound

The class of materialSry,_,Ca,CuysOy4; are built up from alternating layers of weakly cou-
pled CuO, chains andCu, O3 two-leg ladders. The material shows a spin gap in both okthes
one-dimensional units [61] making it a prime candidate faglecation of our model. Because
our only requirement in the spin-sector was that it was gdpper theory is still valid even if
the superconductivity originates from the ladders.

Forx > 11.5, these materials show superconductivity under press@reés[l and NMR
studies [61] also indicate possible charge ordering at Eawpterature and ambient pressure.
Recent measurements of the electrodynamic response [6d]dumfirmed the presence of
CDW in this class of compounds. One of the most interestingsmeements however is the
DC resistivity [63], which shows a number of features:

e In Sry 5Cayq.5Cusy Oy below about 4 GPa pressure, the temperature dependence of th
resistivity perpendicular and parallel to the laddersfiedent. This indicates that differ-
ent mechanisms are governing the transport in these twotidins, consistent with the
spin-gap concept. Above 4 GPa the temperature dependetieeresistivity anisotropy
becomes weak, which indicates that single particle hoppietgveen ladders is now
possible, i.e. the spin gap has vanished and we have a cevgsav conventional two-
dimensional metallic behaviour. This is consistent with pnessure dependence of the
spin gap observed in recent NMR experiments [60].

o At sufficiently high temperatures, coherent inter-laddearge dynamics is also seen.
The temperature where this occurs is consistent with the Niterminations of the
spin gap, so we may conclude that the transport propertigsiomaterial are indeed
governed by weakly interacting one-dimensional spin-gapmits.

In figure 3.12 a phase diagram of this material is shown [65]lo# calcium doping,
there is charge ordering before spin ordering, so our madielapplicable. However under
increased levels of calcium doping or pressure, the spingtge largest energy scale in the
model meaning that our theory may describe the nature ofréimsition between the CDW
and the SC phases.

In our model, takingx,. ~ 1 we have

Joff  ~ (AS/A)tz/Asa
Ver ~ (As/M)Ve. (3.65)

The size of the spin gap is reasonably constant as we chafgencaloping and pressure,
however under pressure the hopptngill increase which makes the inter-ladder Josephson
coupling stronger until eventually the material becomes@esconductor instead of having
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Figure 3.12: Phase diagram for the spin gap and superconducansition temperature
against Ca doping ifir;4sCus4O4;. After [65].

a CDW ground state. Unfortunately, the complexity of the enat as well as having both
physical and chemical pressure makes it difficult to saylangtmore qualitative than this.

It would be interesting for this material to measure the lefgarticle gap in the su-
perconducting region. This may be achieved via optical ootidity measurements. For the
Luttinger liquid parameteK,. ~ 1, our model then predicts the rafio/A. to be the non-BCS
value of order of).4.

Also in this material T, is very small in comparison to the Fermi energju,, so the
magnetic field effects on the superconducting state shauktiong. This would be an inter-
esting experiment to perform.

3.7.2 [(-Sodium Vanadate

The phase diagram (figure 3.14) of the compouhla, 35V205 is remarkably similar to
that of Sri,Cuy,O4;. Structurally, the material is quasi-one-dimensionaluffeg3.13) and
contains both ladders and chains. At ambient pressures thex metal-insulator transition
at 134K, and although the low temperature phase is chargeremdit isn't a simplek
charge-density wave [66]. At a lower temperature, T=22Kdtlie a further transition into a
canted-anti-ferromagnetic state. It was recently disa/§67] that under pressure, there is a
superconducting state with transition temperatflire- 8K. This is very interesting as it is for
the stoichiometric compound without any chemical dopimgl also it is the first observation
of a superconducting state in the Vanadium Oxides.

It is not yet known if there is a spin-gap under high pressabewe the superconducting
transition temperature, but there is some evidence thatihy be the case:

e By simply extrapolating the anti-ferromagnetic orderieghperature in figure 3.14, it
will eventually exceed the charge gap.
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Figure 3.13: Structure gf-Nay 35V,05. After [68]. Similar to the previous section, chains
and ladders are both present - this time of vanadium oxide.

2 B-Nay 33V,05

0 2 4 6 8 10
P (GPa)

Figure 3.14: Pressure-Temperature Phase DiagratyNg, 33V, 05. After [67]. The triangles

obtained from the Neel temperature are indicative of tha gpp in the system, but this has
only been measured for low pressure. The squares are thgeebatering temperature, so
representative of the charge gap, and the circles are thedaoy of the superconducting

phase.
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¢ We additionally have evidence from a number of other mdtetieat the spin gap does
not significantly change with external pressure.

e The similarity between the phase diagrams 3.14 and 3.12estgthat the supercon-
ducting state could be described by our theory.

This is a very interesting material to study experimenialhd more data should be available
soon.



Chapter 4
Mott Insulators

Wisdom is knowing what to do next; virtue is doing it.
—David Star Jordan

4.1 Physical Motivation

The Bechgaard salts TMT$K and TMTTRX were the first organic compounds to show
superconductivity, and furthermore have a remarkably pichse diagram showing all sorts
of properties interesting to the theorist, for example tietaon-Fermi-liquids or Mott In-
sulators. Figure 4.1 shows the structure of the buildingkdoof these materials, and figure
4.2 shows a unified experimental phase diagram for theseegirep. For a review of these
properties, see [69, 70]. However, the behaviour gets ewanger when a magnetic field is
applied. The magnetoresistance in (TMTSH) at low temperatures in its metallic state was
measured in 1998 by Chashechkina and Chaikin [71] and redesaime surprising features.
The magnetoresistance showed a striking angular depeadenth large dips at the
'magic-angles’ where the the ratio of the flux through twoloé trystal planes is a rational
number with a small denominator - Figure 4.3. Basically thsans that at high fields, the

2 .

G NYyug——"Y—r—9 2

s i
RS i
i =Tl

Figure 4.1: Structure (after [69])

50
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Figure 4.2: Unified experimental phase diagram for the TM poamds (from [69]). Either
pressure or chemical changes (increasing pressure con@spo going from the TMTTF to
the TMTSF family and changing the anions) yields the sameghfMI: Mott insulator, LL:
Luttinger liquid metal, FL: Fermi liquid metal, SP: spinibds, AF: antiferromagnetic spin-
density wave, SC: superconducting]. The TMTTF family isuilasing at ambient pressure
whereas the TMTSF family shows good metallic behaviour atréeemperature.

magnetoresistance depends on the orientation of the figkdrespect to the crystal axis and
not direction of current flow. Magic-angle effects had beesdjrted beforehand by Lebed
[72, 73], but he predicted peaks in magnetoresistance antgic angles rather than dips
which are seen. Furthermore, the temperature dependerbe ofagnetoresistance is very
curious. Without a magnetic field applied, the temperat@getddence shows a conducting
like behaviour {R/dT > 0). As the magnetic field is applied, this turns to insulatiike |
(dR/dT < 0), but at the magic angles, it returns to conducting like.

This led Chashechkina and Chaikin to propose [74] that systeshs could be modelled
as Mott-insulating chains which become conducting wheerinhain hopping is taken into
account. A magnetic field acts to dephase this inter-chaiploag at all but the magic angles,
and therefore we should obtain the metal-insulator treomsds a function of angle as is seen
in experiments.

To test this proposal, we choose a simple model of a one dioraddVott Insulator [75]
and treat the inter-chain coupling within the Random Phggaréximation (RPA). Although
going beyond RPA as in the previous chapter would be nicalithieulty of calculating multi-
point correlation functions in the one dimensional Mottulador model relegate this as future
work.

We start by introducing the model in the absence of the fiélelh show how the equa-
tions are modified when an external magnetic field is preseévd.then go on to calculate
numerically the single particle density of states for darthoices of the parameters which
are of physical interest. In the presence of interchain mgput the absence of the mag-
netic field, there is a coherent mode in the system. We showllamalau levels form in this
coherent mode of the system, and see that the density o stepends strongly on the angle
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Figure 4.3: Magnetoresistance of(TMTSIPF; at low temperature (T=1.2K) and high pres-
sure (p=9.2kbar) as a function of angle of magnetic field. dHagis is the least conducting
axis, the graphs are similar for the magnetoresistanceeobtiier axis. The different curves
are for different magnetic fields, the strongest being tipectove at 7.8T. After [74].

of the applied magnetic field. However, we find that our sinmptalel is not strong enough to
reproduce the experimental results, even qualitatively.sfgest some reasons for this, and
propose some additions to the model.

4.2 The Model and 1D Green’s Function

The model we consider is the quasi-one-dimensional Hublverdel, a prototypical lattice
model of correlated electrons:

H = Y H)+ Y i) +HC.
l l,m,j,o
l ! ! l !
qY = =30t he + U nlnl) (4.1)
7,0 J

Herel, m label chainsj labels the sites along a given chain, and we will assume wat dralf
filling so Umklapp processes are important. As usiBly is the Hamiltonian of uncoupled
chains and the full Hamiltonian involves adding an inteaichhopping term to this.

The 1D retarded Green’s function was calculated in the tiedabry limit using the form
factor method (see section 2.2.2) by Essler and Tsvelik [Hgre, we reproduce the main
points of their derivation.

The Hamiltonian 4.1 can be bosonised as in section 2.1,theguh independent spin
and charge sectors. In this case, the spin-sector is a deddry a free boson and the charge
sector by a sine-Gordon model (c.f. the opposite in the pre/chapter):

Lo = 5 [07(0:9.)° +0.(0,9.)?]

1
2
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L. = %[Uc_l(arq)c)Z + Uc(a:cq)S)Q] + Acos(GP.) , (4.2)

wherev, = vp — Uag/27, v. = vp + Uap/27 and 8> = 8r. If we consider further
density-density interactions (eg nearest neighbour sémil then we get the same form for
the bosonised Lagrangian, but with < 8.

The spin-sector is trivial as it is a free massless bosonhéncharge sector, the first
non-vanishing form-factor is between the vacuum and aextiadf state of one spinon and one
antiholon. Techniques of integrability require this foractor to be a constant [75]. Combin-
ing this with Lorentz invariance gives the first term in thenfiefactor expansion of the charge
part of the single-particle Greens function to be (up to a erical factor)

/OO do e%/% exp {—AT cosh§ — AL sinh

Ve

B exp[—A\/m] 4.3)

VUT + 1T ’

whereA is the single particle spectral gap which is half the gap se@ptical spectroscopy
experiments. The leading corrections to this involve staentaining one holon and two
antiholons or vice versa and are thus of or@g€e—347). Combining 4.3 with the free spin
sector gives

(B (7)1 (0, 0)) ~ 2o SRV 7P ] (4.4)

C 2n \/(UST +ix)(v.T + ix) 7

where the constanf, = 0.9218 is chosen so that the field operators satisfy the standard
conformal normalisation.
This can then be Fourier-transformed to give the resultferétarded Green'’s function

2 e
G w,q) = ~Zoy/ ey
1+O‘\/m2—i—vgq2 2

21—«
2 2,2 _ . ,2) _— 2
xl<m+\/m +v2q w) 1+a(w+ch)]

=

(4.5)

wherea = vs/v. andZ, = 0.9218. For spin velocity equal to charge velocity, it simplifies to

Zy A
_ 1 4.
Gin(a,w) w—q ( A2+q2—w2> (4.6)

For the rest of this chapter we stick with = v, for simplicity, and because the difference in
charge and spin velocities is unlikely to significantly afféhe properties we are interested in.

In the first approximation, we assume that the 1D Green’stionén a magnetic field
is not changed significantly from this.
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Figure 4.4: Dispersion of the coherent mode along the chiagttibn for several values of
Tr = _ZOtJ_(k)

4.3 Inter-chain coupling and the magnetic field

4.3.1 RPA in the absence of a magnetic field

We use the usual RPA approximation (see section 3.3.2) toaddeak inter-chain hopping

-,

G (w;q, k) = Gip(w, q) + 1o (k). (4.7)

The square-root singularity in the one-dimensional Gietmiction will give rise to a coherent
mode in the full Greens function for arbitrarily small at

Gih(w,q) +tL(k) = 0. (4.8)

Fort, /A > 3.61, this equation has a solution for= 0 so the coherent mode will be soft and
the three-dimensional system will be a metal. This is showfigure 4.4.

We also show in figure 4.5 the shape of the Fermi surface wheemtér-chain hopping
puts the Mott insulator into its metallic state. We see thatobtain little pockets of Fermi
surface in this state. We should point out that there is aratalculation for the same model
using Dynamical Mean Field Theory (DMFT) rather than the Ripproximation [76]. This
gives very different results, where the Fermi-surface emdegery close to the non-interacting
system. There is no reason why one should expect these twoxap@ations to give the
same results, RPA is exact in the infinite connectivity linBfVFT is exact in the infinite
dimensional limit. It is not possible to say which result gslibbe closer to that of a real
three-dimensional system without further calculationahhat this time has not been done.
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Figure 4.5: Fermi Surface from RPA calculation when theeaysis driven into a metallic
state by the interchain coupling. We see that we get littlkpts of Fermi-surface.

4.3.2 Magnetic field parallel to chain direction

The magnetic field will modify the hopping term by the Peiddstorp — p — eff/c [77].
We will use units where = ¢ = 1. This will give rise to an effective inter-chain hopping.
Thus for an appropriate range of bare adding a magnetic field could cause a metal-insulator
transition.

Choose the vector potential so thét = Hy, A, = 0, A, = 0. This change$, —
t.e1Y. The RPA equation thus becomes

(GTE(W) + el + ty) G(w;q, kar ky) =1, (4.9)

wherey = 0/0k,. This is equivalent to the Hofstadter problem of an electno@ two dimen-
sional lattice in a magnetic field. The in the denominator of the RPA equation is replaced
by its eigenvalues in the Hofstatdter problem [78]. Eox t,, these eigenvalues have a very
intricate fractal like structure, however this rapidly afigpears as the system becomes more
anisotropic. The eigenvalues of the Hofstadter problenpbrited in figs 4.6, 4.7 and 4.8.

The properties of the coupled Mott insulators then dependhese eigenvalues. In
particular, there will be a strong dependence on the larggsinvalue: if this is above the
single chain gap then the electron-like propagating mod#hénchain direction, given by
Gl_fl)(w,q) = FEhosstadter Will have low energy excitations. However as the strengtihef
magnetic field changes, the largest eigenvalue also chaagdsf this falls below the gap,
then the coherent electron-like mode will be gapped, whithdnastically affect the transport
properties.

The possibility of seeing any of this fractal structure witcboupled Mott insulators is
remote, as the eigenvalues will be smoothed out by dispemsithe chain direction, as well
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Figure 4.6: Eigenvalues against magnetic fieldz, = 1. There is an intricate fractal-like
pattern.
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Figure 4.7: Eigenvalues against magnetic fiejd¢, = 0.5.
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Figure 4.8: Eigenvalues against magnetic field7, = 0.2. Most of the fine structure has
gone.
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as by any anisotropy in two interchain hopping terms. Thatise is included mainly as a
model curiosity than as any experimental predictions.

4.3.3 Magnetic field perpendicular to chain direction

In the experiments, the magnetic field was perpendiculanéahain direction. In this case,
we pick the vector potentiad, = Hyz, A, = —H,z, A, = 0. In an external magnetic field,
momentum is no longer a good quantum number, so the Grearédn becomes a matrix,

G(wv kJ_7 q, q/)
The modified RPA equation is

Gip(w,q)G(w. k59,4
— t,e"G(w, ki;q— Hyo )
— e ™G(w, kg + Hy, q)
— tee*G(w, k59— Hy, q)
— ™ G(w kg + H,.q)
=0(q—¢). (4.10)

For H,/H, rational, this is a matrix equation and can be solved nurakyidn order to
control the singularities in numerics, the 1D Green'’s fiortis modified by

Gyt — Gyt +1n, (4.11)

where it is understood that— 0+. At a qualitative level, we can think of as a temperature
like broadening parameter.

4.4 Density of states

The easiest physical quantity to investigate is the singtége density of states (DoS)
plw) = =S [ dk1dGlw, k15 q,q). (4.12)

In the absence of inter-chain coupling, the density of st&eero beloww = A. In
the presence of inter-chain coupling, a coherent mode forrtiss region and the Mott gap is
filled in. In the presence of a magnetic field, this coherentiengplits into Landau levels, as
shown in figure 4.9.

The finite width of the Landau levels is due to the third dimensoupling. With a
cosine dispersion, their shape is given by

o)=Y !

D (4.13)
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Single Particle Density of States of a Mott Insulator in a magnetic field

tx = 0.2, ty = 1.6, h=0.3, theta=0
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Figure 4.9: The variation of the density of states with theddlening parameter

where the sum is over the positions of the Landau levgls This is clearly demonstrated in
figure 4.10 where the third dimension hopping is less thahgmelau level splitting.

We can now see how changing the angle of the magnetic fieldeimfles the relative
width of each Landau level - figure 4.11. The hopping pararaeteandt, here are chosen to
give an anisotropy similar to the experimental value, aneleatotal magnitude that puts the
system just on the metallic side of the metal-insulatorgitéon in the absence of the external
field.

The guestion of low temperature DC transport depends onéhsity of states at the
Fermi-levelo = 0. This is plotted in figure 4.12 as a function of angle of theligolfield. We
see a very strong variation with the angle. We see that thmiati@n becomes even stronger as
the broadening variable — 0 in figure 4.13. We also see that for lower magnetic fields, the
shape becomes more interesting. Some lower magnetic figgsdated in figure 4.14.

In figure 4.16 we can how the DoS varies withat lower magnetic fields. Where the
density of states rises with decreastig a metal and where it decreases with decreasiisg
an insulator. So on this figure we can clearly see metal-atsutransitions as the angle of the
magnetic field is varied.

4.5 Interpretation and Extensions to the model

The results of this simplified model can be interpreted dsvid:

e The one-dimensional chains are Mott insulators, with alehpgrticle gap, and no
electron-like excitations.

¢ Adding interchain hopping to these chains generates a enharode. Depending on
the strength of the interchain terms, this mode may be gampetdmay become soft in
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Single particle density of states of Mott insulator in a magnetic field
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Figure 4.10: Demonstrating the shape of the density of statehe limit of Landau-level
splitting greater than the third dimension coupling

Single particle density of states for a mott insulator in a magnetic field
h=2.0,eta=0.1
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Figure 4.11: The variation of the density of states with angfi magnetic field in a large
magnetic field.
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Mott insulator in a magnetic field
tx = 1.8, ty=0.1, eta=0.1
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Figure 4.12: The variation of the density of states at theriré&vel with angle of magnetic
field.
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Figure 4.13: The variation of the density of states at theriré&vel with angle of magnetic
field.
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Figure 4.14: The variation of the density of states at theriré&vel with angle of magnetic
field.
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Figure 4.15: The variation of the density of states at theriré&vel with angle of magnetic
field.
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Figure 4.16: The variation of the density of states with negrfield at different broadening
parameters

which case we have a metal-insulator transition.

e Adding a strong magnetic field perpendicular to the chaiedfion causes this mode
to split into Landau 'bands’ (because we are in a 3D systern2B9. When looking
at simply the density of states and integrating over all mutanethe position of these
bands depend both on the strength and the angle of the madjekti This can cause a
metal-insulator transition as the angle varies.

e This metal-insulator transition however depends on thetegasitions of the Landau
levels which in turn depends on the strength of the magnelit éind so will not repro-
duce magic angle effects where the position of the dips d&pety on the angle and
not on the strength of the magnetic field.

It may be that looking at the single particle density of statetoo simplistic a view
and if we start looking at conductivity then the magic andgfeas will occur. However, it
is not obvious that one would be able to reproduce the expertiah results with this model.
The idea that the magnetic field dephases the interchainiigppd therefore affects a metal
insulator transition is correct. However, the material ey strong anisotropy in theand
c directions and within the RPA approximation, this meansehs very little effect of the
third coupling as they are in some sense just summed toge®aing beyond RPA takes
account of hopping off a chain and back onto the same chaihe&y the changes in phase in
hopping from the magnetic field become much more importamhisamay reproduce magic
angle effects. However, the problems of calculating thetinpalrticle correlation functions
in the 1D case along with the extra difficulty of applying irtieain perturbation theory in a
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magnetic field means that this is a difficult problem for fetahought. The results of this
chapter however show that the idea is promising, althougkdoré yet have the best way to

tackle this problem.



Chapter 5
The quantum Ising model

The power of accurate observation is frequently called @gm by those who

don't have it. —George Bernard Shaw

The Ising model is a generic model for many quantum and dalksystems. Besides
extensive applications to spin systems (here we refer theereto [79, 80, 81]), the model
is also used to describe interacting electric dipoles (likeystems with orbital degrees of
freedom [82]) or arrays of interacting Josephson junctigeg, for example [83]). Reduced
dimensions are the most interesting because here the mddkite strongest correlations.

In one dimension the quantum Ising model (see equation Jolhes exactly solvable
by means of Jordan-Wigner transformation which convedgstin Hamiltonian into a Hamil-
tonian of non-interacting fermions. In general the spenthas a gap which is closed when
the transverse magnetic field is equal to the exchange aitege 0). There is also an exact
solution when the magnetic field hag-@omponent, although only when thecomponent is
equal toJ [84]. This solution predicts a rich spectrum with as manyighteparticles and a
hidden E symmetry. An interesting question is whether some of thssifeating physics may
survive in realistic systems which are almost never trulg-dimensional. In this chapter, we
will introduce a quasi-one-dimensional quantum Ising maaled show that in certain regions
of parameter space, one-dimensional effects are cleasilylei[2].

We begin by reviewing the many fascinating properties ofothe dimensional quantum
Ising model. We then introduce the quasi-one-dimensior@ehand show how the inter-
chain coupling as usual gives rise to a finite temperaturereciphase. We calculate the
phase diagram within the RPA approximation and then go oadk &t correlation functions
in the ordered phase. We discover that deep in the orderes ptiee correlation functions are
very one-dimensional in character, allowing the posgiboif seeing some of the physics of
the quantum Ising chain in real three dimensional maten@sshow that Sodium Vanadate is
a good candidate material for description by our model, amdHioff by a brief aside linking
our work to the three dimensional classical Ising model.

64
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5.1 The one dimensional quantum Ising model

5.1.1 The modelatl’ =0

A full review of all the work done on the one-dimensional guwsn Ising model is the subject
of an entire book by itself, see for example [79, 80, 81]. Heegyive a concise, self contained
but by no means complete review of the model, concentratiniticular on the results that
will be useful later.

The quantum Ising model was first introduced by De GennestfB8&jodel the order-
disorder transition in double-well ferroelectric matésjdor example KHPO,. Each proton
of the hydrogen bond can occupy one of two minima of a doublésxeated by the oxygen
atoms. These two possibilities are are represented by apsgin at each site, with* =
+1/2 corresponding to one of the minima amtl= —1/2 the other. The operatei” is then
a tunnelling term between the two minima; including alsccetestatic dipolar interaction
between neighbouring sites gives the effective low-enpsgpudo-spin Hamiltonian

Hip=-JY {oio0 + (1+g)o5}. (5.1)
The model shows competition between the ordering térnd the tunnelling ternd (1 + g).

This model has a hidden symmetry, involving dual fields. Deéimlual lattic§n+1/2}
with fields defined by

n
z _
Hny1/2 = I1 77,

3 <.
ol
-

0, = 111725 (5.2)
j=1
so that
MZ—1/2NZ+1/2 = Op,
OpOny1 = :qu+1/2' (5.3)

In terms of the new variables, the Hamiltonian preserve®its

1
Hip=-J(1+g) Z <M2—1/2Nfz+1/2 + mﬂf“rlﬂ) : (54)

n

We see that the self-duality pointgs= 0 - as we will show later this corresponds to a quantum
phase transition. The fields are sometimes known as the disorder operators.
The model can be solved by a Jordan-Wigner transformatiawviie

o’ = 2ala, —1,
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Figure 5.1: Phase Diagram of model (5.1). /At= 0 there is an ordered phase for< 0
which has(c*) # 0. ForT = 0 andg > 0, the system is a quantum paramagnet, and by
the duality 5.2, we havéu®) # 0 in this region. At finite temperature, long range order is
forbidden by the Mermin Wagner theorem. There are crossdgéren by the dashed lines)
where the single-particle energy gap ~ T between the low-temperature behaviour and a
universal quantum critical regime.

(al + ay), (5.5)

where the Fermi operatoussatisfy the usual anti-commutation relations

{an,aT } = Onm, {@n,an}=0. (5.6)

The Hamiltonian becomes quadratic
Hip = JY [~ = a,) (a1 + @) + (g + D(a], = a,)(d, +an)] . (B.7)

which can be easily diagonalised to give the spectrum

e(k) = 2J1/g? + 4(g + 1) sin(k/2). (5.8)

We see that this is gapless@at= 0 where the model is critical. Fgr < 0 the model is an a
'quantum ordered’ phase whete*) # 0 atT = 0. Forg > 0 it is a 'quantum disordered
phase’ where in fact*) # 0 atT = 0. The phase diagram is shown in figure 5.1.

Although we have mapped the model on to free fermions aneéllyesolved it exactly,
it is still not easy to extract spin-spin correlation fulcts because our transformation was
non-local in space. The correlation functions are mostyeaaiculated in terms of a form
factor expansion - see section 2.2.2 and also [86].

The relevant minimal form factors were calculated in secf@®.2:

F(6y,...,6,) = [ tanh (‘gi;@j), (5.9)

1<J
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wheren is odd for correlators of* and even for correlators @f (in the disordered phase).
To lowest order, the correlation function is

Zo(mao/ﬂ)1/4
— (,Uk:)Z —m2’

X1p(w, k) (5.10)
whereZ, = 1.8437 is fixed by the conformal normalisation 5.21 of the field opers This
is valid for smallw. In real space, it corresponds to long distance asymptotics

Zo(mao/v)1/4
T

x1p(r) = Ko(mr) +O(e™) (5.11)

The next term in the form factor expansion, the three partoitribution can be repre-
sented as

X3(52)
Xl §= 0)
/ fQ2x)fly + ) fly — x)
3 47T (s/m)? — [1 + 4 coshz(cosh z + coshy)]’
f(z) = tanh*(z/2), (5.12)

wheres? = w? — (vk)? and is plotted in Fig. 5.2. The imaginary part of this termigttis the
contribution to the structure factor) and of all higher terimthe series is zero belaw= 3m,
however all terms in the expansion contribute towards tlaé part atw = 0. Fortunately
the contribution from higher order terfare negligible at smakl (see e.g. [88]). We see
explicitly in this case thaks(s = 0)/x1(s = 0) = 0.0002 so that 5.10 is indeed a very good
approximation for smals.

5.1.2 The model at finite temperature - scaling behaviour

The correlation functions at finite but low temperature camill approximated[79] by adding
the quantum dephasing time,, into equation 5.10:

Zo(mao/v)1/4
(W +1/7y)? = (vk)* =

LIn fact, for this model it turns out one can sum all the termihmseries and write the result exactly in terms
of the solution of a Painleve equation [86]:

(o(r)o(0)) = sinh @ exp {—i /00 duu [<j—§) — sinh? X] } (5.13)

wheres is the scaling variable = mr/2 andx(s) is a solution of the radial sinh-Gordon equation

XlD(u),k‘) = (515)

d?x ld
ds? s

X o
2 = 2sinh(2x) (5.14)

which under the transformatiaon = e~ X is equivalent to the Painleve Il equation [87]. The abilibywrite
correlation functions in terms of non-linear differentguations seems to be specific to this model, and although
a very nice result, is not that useful in terms of extractimg energy behaviour.
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Figure 5.2: The three particle contribution to the dynamstesceptibility for a single chain
normalised to the one-particle contributionsat 0.

The quantum dephasing time can be estimated in a semiadhsgproximation. For an
excitation, the decay rate will be given by

1
— ~e /T (5.16)
Vg Tk

The dephasing time is given by summing over all of these
2 [ dEk
1 = — k——e=r/T
m = 2 /0 T

2 o)
= = / depe= /T
™ Jm

= (27/m)e ™7, (5.17)

See [79] for a more detailed calculation.

5.1.3 The critical model in a magnetic field

Adding an external field to the model 5.1 gives

Hip =Y {=Jjlo*(n)o*(n+1) + (1 + g)o"(n)] + ho*(n)} , (5.18)
which turns out to be integrable at= 0 [84]. The details are messy, but it can be shown
that the model has a hidddry symmetry, and an infinite number of conserved charges. The
solution has eight different particles, whose masses amghtgewere calculated in [89] and
are listed in table 5.1.
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Lmg/ra | 2 | [mifra | 2
1,000 | 0.247159] | 2.956 | 0.0021898
1,618 | 0.0690172 | 3.218 | 0.0011328
1,989 | 0.0209579 | 3.891 | 0.0001623
2.405 | 0.0122653 | 4.783 | 0.0000055

Table 5.1: The masses and weights of the particles of thedomensional quantum Ising
model in a magnetic field (after [89]). The first three paesclie below the incoherent contin-
uum which begins at = 2m;.

T
. h=0
ordered phase
h=0
9e
° QCP g

Figure 5.3: Expected Phase Diagram of model (5.20); thergrdemeter ~ (o). Esti-
mates ofg. and7.(g = 0) are given by equation 5.27 and equation 5.26 respectivelthd
vicinity of ¢ = 0, T' = 0 the physics is well described by model 5.18.

5.2 The gquasi-one-dimensional model

Now we go on to consider the quasi-one-dimensional (meaasngsual weakly coupled one-
dimensional chains) quantum Ising model described by th@dong Hamiltonian:

H = Y Hp+ Y Junli—j)oi(n)a;(m), (5.19)
) = =73 {oim)oi(n+1)+ (1+g)of(n)}, (5.20)

wherei, j label the chains,, m label the sites on the chain andare the Pauli spin operators.
For simplicity we discuss the case whekg,(i — j) = J, (i — j) if n = m and0 otherwise,
although the extension to the more general case followislisy

We would expect a non-zero inter-chain coupling to exterdaitiered region to finite
temperatures and to shift the critical couplingjtet 0 as shown schematically in figure 5.3.

The spectrum and dynamics of the model close to the tranditie are very well un-
derstood [90]. The transition itself falls into the 3D Isingpdel universality class and the
Quantum Ciritical Point (QCP) falls into the 4D Ising modelvansality class. We concen-
trate our attention on the region of phase diagram well beél@transition line where new
non-universal physics can be found. We will demonstratertba-trivial physical effects are
possible in this region.



CHAPTER 5. THE QUANTUM ISING MODEL 70

Although model 5.20 is a lattice model, we will be working iretfield theoretic limit
where we fix the normalisation of the magnetisation opetaydhe standard conformal field
theory condition:

ag/v) V4
X1p(7,x) = (o(1,2)0(0)) = %, lr| — 0, (5.21)

wherer? = 7% + (z/v)?, 7 is the Matsubara time, = Jjq, is the on-chain velocity and, is
the lattice spacing in the chain direction.

There are three energy scales in this problem: the on chaiplicg J, the spectral gap
for a single chainn = |g|.Jj, and the inter-chain coupling, . In order to treat the model as
weakly coupled chains we must have < J; and in order to apply the continuous limit field
theoretic techniques to solve the uncoupled chains, we havstm < J;. However,n and
J, can both be of the same order of magnitude.

5.2.1 The Phase Diagram

To estimate the critical temperature, we use the RPA to talkethe three dimensional sus-
ceptibility

x(w, kiky) = [xip(w, k) — JL (k)] (5.22)
and then look forv = 0 divergences in the correlation function which signify a eleping
instability. In this expressiony; p is the susceptibility of a single chain:

Xip(w, k) = =i % /0 © dteet (0% (¢, n), 07 (0,0)]). (5.23)

We begin by considering the ling = 0 where the uncoupled chains are critical. We
showed in section 2.3 that at finite temperature the spingprelation function 5.21 becomes

/s
B (nTag/v)? !
Xap (7, x) = lsinh(ﬂT(x/v —i7))sinh(7T (z/v +1i7)) | (5-24)
The Fourier transform (5.23) gives the dynamic suscepiiijd1]
Xip(w =0,k = 0) = %(2%Tao/v)_7/4 sin g32(1/16, 7/8), (5.25)

whereB(z,y) = I'(z)'(y)/T'(z +y) is the Beta functioh From equation 5.22 we extract the
transition temperature:

a/7

ZJ_JJ_

Jj

Now let us estimate the position of the Quantum Critical P¢RPICP) on they axis.

T./J) = 2.12 [

(5.26)

°Note that although the equation contains the rather illngefilattice spacingy, it is always in the combi-
nationv/ag = J meaning that this equation relates the static suscepyibilithe bare parameters independent
of any high energy cut-off as it must for a well defined theory.
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Again we use the RPA equation (5.22) substituting in the esgion for the dynamical spin
susceptibility 5.10 of the off-critical Ising model. We caee that the QCP wheile — 0 is
given by the condition

ge = 1.42(z, T,/ IV, (5.27)

The RPA expression for the susceptibility at the QCP is

1

hiky) ~
e kik) ~ R — vk,

(5.28)

wherev, = (1/2)Zog'/*J; (dZJl(kl = 0)/dki). In the vicinity of QCP the low-energy
behaviour of the quantum Ising model is universal and fallghe universality class of the
(d+2)-dimensional classical Ising model, where d is the Ipenof transverse dimensions.
Sinced = 2 corresponds to the upper critical dimension of that modhel fluctuations give
only logarithmic corrections to RPA in three dimensions.

Near the critical point, we can examine the shape of the phasedary. For low tem-
perature, the correlation functions at finite temperatarelie well approximated by 5.15. The
RPA then gives the condition for a singularity.at= 0, kK = 0 as

m? + 1/7‘1/2) = Z0J||Jlgl/4, (5.29)

so the transition temperature in the vicinity of the critipaint is approximately

I = LA/ —mm{/y
y = g(ZO(JL/J|)g_7/4—1)1/2. (5.30)

For g < 0, uncoupled chains are completely ordered’at 0, and atl" > 0 andm not
too small there is order on a length scale

£o = v(2mT /7)1 2em™/T. (5.31)

A crude estimate for the transition temperature can be gy

JJ_ gc(Tc) ?
which gives )
m

5.2.2 Dispersion in the ordered phase

In the ordered state expression 5.23 has to be modified. Naomad has to replace, p by the
dynamical susceptibility calculated in the presence offattve magnetic field generated by
the neighbouring chains [92]. In other words, in calculgtin, one has to use the following
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Hamiltonian:

Hip =Y {=Jjlo*(n)o*(n+1) + (1 + g)o"(n)] + ho*(n)} , (5.34)

n

with the self-consistency relation
h=J.(q=0)(c?). (5.35)

Now we go on to calculate the dispersion and spectrum witteérotdered phase, where
we have to considel # 0. Model 5.34 is exactly solvable only gt = 0 [84]. As we
have mentioned, the spectrum consists of eight particleshndre listed in table 5.1. The
contributions to the dynamical susceptibility for smaldecline quickly with the growth of
the particle mass and the decrease in spectral weight of duemTherefore the magnetic
susceptibility atl” = 0 can be well approximated by keeping only the first three poé&sw
the incoherent continuum

4m% 23 Zz
XID(S) - <157TJ||h> ; §2 — nga (536)

with s defined as before. In this model, the mass scale is given by[93

my(h)/Jy = ai(h/J)¥",
a; = 4.40490858, (5.37)

and the single-particle expectation value is

(0°(0)) = as(h/I"",
as = 1.07496. (5.38)

The self-consistency relations 5.35 therefore give

15/14
hJp = laadi(0)/]
4/7
m/JH = o |:O[2JJ_(O)/J”:| . (539)
In the RPA 5.22, the dispersion is given by the condition
1 Z;
AR T
~ 4m? ? o J1(ky)
= = 4
J1 (157m> Jo = asmi= (5.40)

where the final relation is obtained from the self-consitelations withn; = (4/157)%a% /ay =
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0.130. To second order i, this is solved to give

. Z;m3J
$2/m?=m2/mi+ ZJ, |1+ %] . (5.41)

In numerical values this gives for the first three modes

1.0+ 0.032.J, (k1 )/J.(0),
(s/m)* = { 2.618 4 0.009.J, (ky)/.J.(0), (5.42)
3.956 + 0.003.J, (k) /J. (0).

The relative weights of each mode are not significantly cedrfgom those for the pure one-
dimensional case.

It is remarkable how weak the dispersion in the perpendialitaction is, the ordered
phase remains very one-dimensional in character even whes) is not very small.

We can obtain some results slightly away from the integrébés. In the neighbour-
hood of the QCP wherk is small, the dynamic susceptibility is given by 5.10 witle tinass
replaced by [94]

m — m[l + (h/J||)2 + O(h4)]. (5.43)

For smallh, we must also have
() =x(w=0,k=0)h, (5.44)

which combined with the mean-field condition (5.34) gives

h 1
b -1 (5.45)
d J g [Jll/(ZoJL(O))} /

v (5.46)

m/J| = (ZoJ(0)/))
Here, the dispersion in the perpendicular direction is naianger than in 5.42. It is given by
5.28 at the QCP; in the vicinity af, the gap is given in the ordered phaserby~ (g. — g)?,
to be contrasted witim ~ (g — ¢.) atg > g..

Our results indicate that some of the beautiful physics @inqum Ising model in mag-
netic field with a hidden Esymmetry may be observed even in arealistic quasi-onerdiioeal
model in its ordered phase far from the transition line (m¥icinity of point O on figure 5.3).

At this point it may be possible to observe at least three i@ti@eaks in the dynamical mag-
netic susceptibility whose relative strength is approxehal : 0.28 : 0.09 (see equations
5.36 and Table 5.1). At this point the spectrum is extremal+dimensional in character. We
expect that when one moves along theaxis of the phase diagram in figure 5.3 towards the
QCP, the excitation gaps will decrease and the transvesgerdion will grow. At the QCP
the spectrum is three-dimensional gapless and the spinespielation function is given by
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Figure 5.4: A schematic diagram showing what happens todherent modes as a function
of g. To the left of the figure, we have three coherent modes witly vae-dimensional
dispersions. As we move to the right, the transverse digpegows and the overall mass
scale decreases until all modes collapse at criticality.

equation 5.28 with logarithmic corrections. These coroms will convert the pole into a con-
tinuum; at criticality all excitation modes will collapseto it. This is illustrated schematically
in figure 5.4.

5.3 Application to o’ Sodium Vanadate

The layered oxidey’-Sodium Vanadate (Na)D;) was first studied back in the 1970’s [95],
but more recently there has been a lot of renewed interelséimaterial following the discov-
ery of a phase transition at Kelvin [96]. This phase transition shows a number of intengs
properties:

e Below T,, there is a simultaneous onset of charge ordering and op@fia spin gap
[95].

e BelowT,, there is also a large increase in the unit cell, which dauiniéwo directions
and increases by a factor of 4 in the direction perpendidaltre layers [97].

e This was initially thought to be a spin-Peierls transitibat the strong suppression of
T, with magnetic field characteristic of spin-Peierls matsn@as not seen in Na)Ds
[98].

e Also, the spin gap at low temperatures is of orfler 100K, [96, 99] which gives the
value2A /T, ~ 6 which is very different from the canonical BCS-value3o$ typical
of Spin-Peierls systems.

e X-ray studies [100, 101, 102] show that abdfie all Vanadium sites are equivalent,
Va*®*, whereas belowW, they are not, although the ordering is still controversiald].

These all go to indicate that it is not the opening of the gap-that drives the transition. This
is further corroborated by careful experiments [104, 10Bicl show there are actually two
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O——7 00— 00—

Figure 5.5: Structure of Sodium Vanadate (after [109]). Vaeadium ions for two-leg lad-
ders in the ab plane, with lines of Sodium atoms between ffezda

Fidd

Figure 5.6: The pseudo-spin/charge ordering mappingr(df@8]). The spin refers to the spin
of the electrons, the pseudo-spin as to whether it sits ongper or lower leg of the ladder.

second-order transitions, the first onélat ~ 34K leads to charge ordering and the second
about0.3K lower opens the spin gap. Thus one wants a model in whiclgehandering is the
driving force and the opening of the spin gap a secondargteffe

Sodium Vanadate is made up of quarter filled ladders, seesfigud, with the coulomb
repulsion between the legs of the ladders such that the lenggrstates all have one electron
per rung. A number of authors [106, 107] proposed a spings&un model, where the
spin refers to the real spin of the electrons, and the twonsigeées of the pseudospin refer
to whether a particular electron is on the upper or lower lethe ladder - see figure 5.6.
The operator® is then a hopping term between the legs, afdF is the interaction between
neighbouring electrons, which depends on whether theyatedn the same leg or not. Once
we have mapped the ladders to spins, the lattice becomessaapeadimensional frustrated
lattice - figure 5.7. The pseudo-spin Hamiltonian then synfg@icomes our Hamiltonian 5.20.

To try and quantitatively calculate anything of physicaénest for this system, we would
have to take into account not only the spin fluctuations, &g the change in lattice param-
eters accompanying the transitions. This is beyond theesobphe present work as there
are many competing effects in this material. However, we staggest that the low energy
isospin excitations which should be experimentally obaleler with optical absorption [108]
will be very one dimensional in character, and may show a rexrabdistinct modes as given
in section 5.2.2.
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b

Figure 5.7: Showing the pseudo-spin lattice after the mapfafter [108]). When each rung
of the ladders becomes a single site in our effective moldeluhderlying lattice is triangular.

5.4 Link to the 3D Ising Model

The one-dimensional quantum Ising model is equivalentHendcaling limit) to the two di-
mensional classical Ising model [110] with the relatipa- (7' — T.) /1. Hence coupled
chains in the quantum case corresponds to coupled planis oiassical case. Within RPA,
the scaling exponents can be obtained easily from equatk$ They arey = 1, v = 1/2
which are the mean-field values as expected in this appraiximadn this approximation, we
see that the critical temperature for the isotropic 3D Isimadel (which is outside the range
of applicability of RPA) can be read off equation 5.27

Tc - TCO

c0

= 1.422}" (5.47)

whereT, is the transition temperature for the 2D Ising model giverib¥t(2 Jiyprane/7%) = 1,
andz, = 2 because we are coupling planes together. This giy&s = 0.228 which is not
far from the true numerical result/ 7. = 0.222. So as in previous work, we see that RPA
actually gives a pretty good estimate of the transition terafure.

Another interesting thing is to look at the crossover from 2D to the 3D Ising model,
to which end we consider a 3D Ising model with interactioesgth./ in the xy plane andi.J
in the z direction. The RPA then gives

Tc - TcO
TcO

= 1.42(2a)"7, (5.48)

where all temperatures are measured in unitg.dfor smalla, this should be fairly accurate
although there is currently a complete lack of Monte Carkadiar the anisotropic Ising model
to compare it to.



Chapter 6
Final remarks

Like Olympic medals and trophies, all it signifies is that teeeiver has done
something of no use to anybody a little better than everyletsby
—Joseph Heller (Catch 22)

In this thesis we were looking at selected models of stronglyelated electrons. The
models were all quasi-one-dimensional so we could use épht recipe to solve them;
namely solving the one dimensional subsystem exactly bynmegpowerful non-perturbative
techniques and then adding in some higher-dimensionalioguperturbatively.

o We first considered a model of unconventional supercondtictintroduced as a possi-
ble model for High-Tc materials in a stripe phase, but moséyapplied to structurally
one-dimensional compounds. Within the RPA approximatiencalculated the transi-
tion temperature for gener&l.. We calculated the rati@./A. whereA, is the zero
temperature gap in the charge sector. We saw that this desré&low the BCS value
as the coupling strength is increased. We also looked atrbgegies of our model
in a magnetic field, noting in particular the extreme anoyrof the phase diagram,
and the possibility of SC-CDW transitions as you vary sttbray even angle of mag-
netic field. We then went on to calculate the first correctitmg.. in the vicinity of
the critical point which is decreased because of the irdgrpktween the two interac-
tions. We finally showed that in two dimensions where RPA ksedtown completely,
we get a transition of the Kosterlitz-Thouless type whichk the same energy scales as
the ordering transition in higher dimensions.

¢ We then went on to consider unusual magneto-resistancepiegpmeasured in Bech-
gaard salts, namely large dips in the magneto-resistaricegic angles’, with a corre-
sponding insulator-metal transition in the temperatugedelence at these points. Our
model consisted of one-dimensional Mott insulating chaiitk enough interchain hop-
ping to drive the system to a metallic state. We concentratechlculating the density
of states as a function of the strength and angle of the magredtd. We showed that
although our model had some of the properties needed toiexpEmeasured results,
it was oversimplified and although promising in some respesitl not reproduce the
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magic angle effects seen in experiments. We suggestecasexégnsions to the model
which may be necessary to explain this phenomena.

e We finished by considered a model of coupled quantum Isingnshawe saw that
within the RPA approximation, we could calculate the phaagrdm of the model and
the dispersion in the ordered phase. The most interesting th how one dimensional
the excitations are in the three dimensional ordered phase.

Throughout this work, we have tried to motivate much of oaatlty from real materials.
As real materials are always far more complicated than oopldied models, the application
of the models to the materials has been mostly only at thatgtiad level. However we see
the solution of these models as a starting point to make metegleld calculations on individ-
ual materials. Executing these more specific calculatiassyell as attempting to refine our
general solutions by going beyond RPA are obvious futurections for research. The overall
message from this thesis is that the world of many electraolhdias many unexplored pos-
sibilities. And starting from somewhere different than giynturning the e-e interactions off
can give a lot of insight into the strange and wonderful waoridtrongly correlated systems.
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