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Don’t search for the answers, which could not be given to you now, because you

would not be able to live them. And the point is, to live everything. Live the ques-

tions now. Perhaps then, someday far in the future, you will gradually, without

even noticing it, live your way into the answer.

–Rilke



Abstract

In this thesis, we deal with quasi-one-dimensional field theories by which we mean strongly

anisotropic higher dimensional models. One way to solve such quasi-one-dimensional models

is to split them into a one-dimensional part and a weaker inter-chain perturbation on this.

The one-dimensional model can then be solved exactly by techniques such as bosonisation or

integrability, and the weak inter-chain part can be treatedperturbatively by using the Random

Phase Approximation (RPA), or beyond this. This allows us tocomment on concepts such

as dimensional crossover, and by treating the one-dimensional fluctuations exactly, we access

phases not accessible by conventional perturbation theory. In this thesis, we report results

for three such models: the first is a model of non-BCS superconductivity where a spin-gap

in the one dimensional chains leads to pairing, even for repulsive interactions. We look at

the interplay between a superconducting and a charge density wave ground state. The second

model is that of a Mott insulator, where we are specifically looking at the effects of a magnetic

field on the model. We look at the density of states as the angleof the magnetic field is varied.

The third system is the quantum Ising model, a generic model of two-state systems, where

we calculate the correlation functions in the ordered phase. All three models are motivated by

reference to real materials with a strong structural anisotropy.
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Chapter 1

Introduction

“Begin at the beginning,” the King said gravely, ”and go on till you come to the

end: then stop”.

–Lewis Carroll

The topic of strong correlations in condensed matter physics is a fascinating story of

mystery and surprise.

To understand strong correlations we must first understand weakly correlated systems,

for example Fermi liquid theory [3, 4]. The easiest thing to do as a first approximation in

an interacting field theory is to simply ignore the interactions. It turns out in many models

of condensed matter physics, this rather drastic looking step is not such a bad thing to do.

The effect of ’weak’ interactions is merely to renormalize the excitations (quasi-particles) of

the non-interacting system. Basically, this means that youmap your model of interacting

electrons onto a model of free electron like particles, where properties such as mass are a

parameter different from the bare (free) electron mass. Because nothing unusual happens,

one can calculate these effective parameters from the original theory as a perturbation series;

where including more terms gives a more accurate result.

A strongly-correlated system is a system where we can not do this; the interactions

change the nature of the ground-state and/or the quantum numbers of the excitation spectrum.

It is not possible to obtain the characteristics of the system perturbatively by smoothly switch-

ing on the interaction from the free model.

We must then say what it means to ’solve’ such a model. This requires in a certain region

of parameter space mapping the model onto a weakly-interacting systems, where you can then

read off the ground state and excitation spectra and quantumnumbers. The residual interac-

tions can be treated perturbatively and do not give any qualitative change to the results. We

must stress that in most cases this can only be done in certainlocalised regions of parameter

space. Elsewhere, the spectrum may be (and usually is) completely different.

There are two ways of solving physical problems in condensedmatter: a ’top-down’ and

a ’bottom-up’ approach. In the ’bottom-up’ approach, one writes down some exact Hamilto-

nian for the system and then tries to approximately solve it using powerful computation tech-

niques. This is in some sense the most fundamental approach.You start with no assumptions
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CHAPTER 1. INTRODUCTION 6

about your system and you see what you can find out. This can be very satisfying when it gives

correct answers for questions such as the band-gap in semiconductors. However, it will often

offer very little physical insight into the system. For this, the top-down approach is preferred.

You start by looking at your system and making some guess as towhat the important physical

features of it are. You then construct some simplified Hamiltonian retaining these features

which you then hope to be able to solve analytically.

In this thesis, the feature that we concentrate on is a strongstructural anisotropy of

hopping or interactions meaning that the system is effectively one-dimensional. Our model

Hamiltonian is therefore going to be one-dimensional.

There are many interesting features of one dimensional models. Firstly, interaction ef-

fects are usually much stronger. This can be understood verynaively by simple phase space

arguments: two particles in two or more dimensions have to betravelling at a specific angle

to ’collide’ with each other. In one dimension, merely having different velocities is sufficient

to ensure eventual meeting. Secondly, there are a wealth of techniques available to come up

with exact solutions of one-dimensional models, so we can accurately say what our model

Hamiltonian predicts about the system in question, and thensay any discrepancies are due to

our model being over-simplified rather than an incorrect or incomplete solution to the model.

Of course, a true one-dimensional model is almost always over-simplified when trying to

describe a three dimensional solid. Most importantly, three dimensional crystals show phase

transitions, whereas one dimensional ones do not. So for many purposes we need to extend

our exactly solvable one-dimensional models to have some weak inter-chain coupling before

we can make definite predictions about the system. This is thetopic of this thesis.

Quantitative predictions
for real strongly anisotropic

3D systems
Exactly Solvable

1D Model
Pertubation Scheme

(RPA or beyond)

Figure 1.1: An overview of the approach taken in this thesis

In chapter 2 we introduce the mathematical tools available to us in one-dimension. The

principle of bosonisation is central to this thesis, so we spend some time discussing this: talk-

ing about the Luttinger model, spin-charge separation and gap formation. We then introduce

two other techniques that are commonly used to solve one dimensional problems: integrabil-

ity and conformal field theory. Many results from these techniques will be used, although we

derive few new ones so this part of the introduction is meant only to give a flavour and some

physical insight into the methods so the reader can understand where the results come from.

In chapter 3, we introduce our first model system: a model of spin-gapped chains weakly

coupled together. It turns out that the spin gap promotes superconductivity, we look at the in-

terplay between this ground state and a charge density wave ground state induced by Coulomb

interactions between the chains. We then look at the rather interesting effects of a magnetic

field on our model of non-BCS superconductivity. Also in thischapter, we introduce our per-

turbation method to add inter-chain couplings to the one-dimensional solution. Although this
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is a perturbation theory, it is not in interaction strength as the one dimensional interactions are

treated exactly. In this sense, the method is rather confusingly known as a non-perturbative

solution. This allows us to see possibilities not accessible by conventional perturbation the-

ory, and allows us to comment on phenomena such as non-Fermi-liquids and dimensional

crossover.

Chapter 4 then goes on to look at a complimentary model, wherethe one-dimensional

chains have a charge-gap rather than a spin-gap, i.e. the chains are Mott Insulators (meaning

that the insulating behaviour comes from the electron-electron interactions rather than band

structure). It turns out that adding an inter-chain hoppingterm to this system can drive it to a

rather unusual metallic state. The central question in thischapter is what happens to this state

in a magnetic field, a question very pertinent to recent experimental results.

Finally, in chapter 5, we look at a quasi-one-dimensional spin-chain model. A large

number of interesting results are known about the quantum Ising model in one-dimension, our

question here is how robust are some of these results againstinter-chain interactions. When

we form an ordered phase, it is necessarily three-dimensional, but in this chapter we show that

for certain regions of parameter space this ordered phase will show a lot of one dimensional

properties, a signature that should be visible in experimental results.

In each chapter, we try to motivate and support the model withreference to real materials

to which the model could be at least partially applied. It wasthe original aim of this work

to then fully apply our solutions to these materials to attempt to come up with quantitative

predictions about the materials. Unfortunately, the complexity of the materials we talk about

in this thesis means that such detailed calculations are outside the scope of this work. However,

we believe that a solution of the underlying models is a good starting point for any attempt to

accurately describe these materials.



Chapter 2

Techniques in one dimension

As far as the laws of mathematics refer to reality, they are not certain, and as far

as they are certain, they do not refer to reality.
–A. Einstein

One dimensional models are the perfect place to explore the effects of strong correla-

tions. Not only are the effects of correlations the strongest, there also exists a wealth of math-

ematical techniques which facilitate the study of such systems. The three main techniques are

as follows:

1. Bosonisation, which comes about from the low energy excitations in a 1D Fermi liquid

being limited to the vicinity of the two Fermi points,

2. Exact solutions of integrable models which have the property that the scattering matrix

factorises due to strong kinematic constraints in one dimension, and

3. Conformal Field Theory (CFT), which comes from special properties of the conformal

group in 1+1D and is useful for critical phenomena.

The first of these points is central to most of the thesis, so wespend some time discussing it.

Many results from integrability and CFT will be used although we derive no new ones so we

simply give a brief overview of what each of these techniquesinvolves.

2.1 Bosonisation

For one-dimensional field theories of interacting electrons, bosonisation is usually the starting

point. We begin by giving some physical intuition why this isa good idea in one dimension,

then go on to derive the mathematical relations between an interacting Fermi system and a

Bosonic model. This also serves to introduce the notation used throughout much of this thesis.

2.1.1 A heuristic view

In a one dimensional system, the Fermi surface is simply two points. A low energy excitation

above the ground state involves taking an electron near one of these points, and exciting it

8
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π0 k

k

F

εF

–kF

ε(k)

k

E

Figure 2.1: Particle/hole excitations in a 1D electron system. Because the Fermi surface
is simply two points, the low energy low-momentum excitation spectrum collapses onto a
narrow line. The width is related to the curvature of the spectrum at the Fermi-points, so
becomes zero if one linearises the spectrum - see the text. After [5].

k

Ek

k

kx

ky

kF

Figure 2.2: Particle-hole excitations in a 2D electron system. k is the momentum in some
direction, the full spectrum would be found by rotating the graph about it’s origin into the
page. Because of the choice of angle for the excitations, there is a continuum of low-energy
particle hole excitations, meaning that the particle and hole must be considered as independent
excitations. After [5].

to a vacant spot just outside the Fermi surface, leaving a hole. The momentum transfer is

q = ke − kh and the energy isǫq = Ee − Eh. As shown in figure 2.1, the low energy

excitations are then a coherent state of the electron and thehole, and so the excitation can be

considered a single bosonic state. In two or three dimensions, there will be a range ofǫq to

go with any one momentum transfer (figure 2.2), so one must still consider the excitations as

independent particles and holes.

The power of bosonisation is that upon adding certain electron-electron (e-e) interactions

it turns out that the bosons are robust (naively because the interactions affect the particles and

holes in similar ways). Although it is then difficult to say how the excitations are made out of

the original electrons, we find they are renormalised bosonsrather than renormalised fermions

as in Fermi-liquid theory. This is the essence of bosonisation, it is all made rather more

concrete in the next section.

As a historical aside, it was realised by Bloch as early as 1934 that hole-electron pairs

are bosonic in nature, but it was Tomonaga in 1950 [6] who firstshowed that these were

elementary excitations in one dimension. Luttinger then proposed a one-dimensional model

[7] which was solved by a method similar to today’s bosonisation procedure by Mattis and

Leib [8]. The first modern field-theoretic approach to bosonisation was given by Heidenreich

et. al. [9] and gave the solution to the model proposed by Luther and Peschel [10]. Around

the same time, the same ideas were being developed starting from the equivalence between

the sine-Gordon and massive Thirring models [11, 12]. Thereare a number of good reviews
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of the bosonisation procedure, for example Tsvelik, Nersesyan and Gogolin [13] or Emery

[14]. Another good and very complete review is von Delft and Schoeller [15], but the one we

follow closest is Senechal [5] who uses the field theory formulation. In this section, we do

not attempt to give a proof of the procedure, but merely give the basics with as much physical

motivation as possible.

2.1.2 The free boson and the free electron

To show the equivalence between an electronic model and a bosonic model, we first consider

the relevant properties of the bosonic Gaussian model defined by the action

S =
1

2

∫

dτdx
[

1

v
(∂τΦ)2 + v(∂xΦ)2

]

, (2.1)

whereτ is Matsubara time,v is a velocity andΦ is a scaler bosonic field. AtT = 0, it is

relatively simple to show (see eg [16]) that the single particle Green’s function is

G(z, z̄) = 〈Φ(z, z̄)Φ(0, 0)〉 =
1

4π
ln

(

R2

zz̄ + a2
0

)

, (2.2)

wherez = x + iτ , R is the system size anda0 is the lattice spacing which are introduced to

regularise the system. Now, defining the correlation functions of bosonic exponents:

F (1, 2, . . . , N) = 〈eiβ1Φ(ξ1) . . .eiβNΦ(ξN )〉, (2.3)

we find that (see [13] for details)

F (1, 2, . . . , N) =
∏

i>j

(

zij z̄ij
a2

0

)βiβj/4π (R

a0

)−(
∑

i
βi)

2/4π

. (2.4)

For an infinite system,R → ∞ and we get the neutrality condition that the correlation function

of exponents is only non-zero if
∑

i

βi = 0. (2.5)

We see that the propagator factorises into independent leftand right moving parts, which are

functions ofz andz̄ only respectively. Hence we can define the chiral componentsof the field

Φ(z, z̄) = φ(z) + φ̄(z̄), (2.6)

and consider correlation functions of eiβφ and eiβφ̄ separately. We must understand however,

that this factorisation is a property of the correlation functions only and not a restriction onΦ

in a path integral. We also define the dual field

Θ(z, z̄) = φ(z) − φ̄(z̄), (2.7)
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which satisfies∂zΦ = ∂zΘ and∂z̄Φ = −∂z̄Θ, or in other words∂xΘ = ∂τΦ. The equal time

commutation relations between the field and the dual field is

[Φ(x),Θ(x′)] = −iθ(x − x′) (2.8)

where theθ(x) on the right hand side is a step function which demonstrates the non-local

relation betweenΦ andΘ. This leads us naturally to define

Π(x, τ) = ∂xΘ(x, τ), (2.9)

which is the conjugate momentum to the fieldΦ satisfying[Θ(x),Φ(x′)] = iδ(x− x′).

We now move on to a fermionic model. The continuum Hamiltonian of non-interacting

one-dimensional electrons obtained by linearising the spectrum around the two Fermi points

(see figure 2.1) is

HF = −ivF

∫

dx
(

ψ†∂xψ − ψ̄†∂xψ̄
)

, (2.10)

whereψ is the low energy excitations near the right Fermi point,ψ̄ is near the left Fermi

point andvF is the Fermi-velocity. The electronic annihilation operator at sitex is therefore

expanded as
cx√
a0

= ψ(x)eikFx + ψ̄(x)e−ikF x. (2.11)

Unless the curvature of the spectrum around the Fermi pointscannot be ignored, equation

2.10 is a universal model for the low-energy excitations of non-interacting one dimensional

fermions. The anti-commutation relations between the fields are

{

ψ(x), ψ†(x′)
}

= δ(x− x′),
{

ψ̄(x), ψ̄†(x′)
}

= δ(x− x′),
{

ψ(x), ψ̄†(x′)
}

= 0. (2.12)

The propagator is easily calculated

〈ψ†(z)ψ(z′)〉 =
1

2π

1

z − z′
(2.13)

The bosonisation gives the equivalence between the two models if

ψ =
1√
2π

e−i
√

4πφ(z),

ψ̄ =
1√
2π

ei
√

4πφ̄(z̄), (2.14)

We also define the currents

J = ψ†ψ,

J̄ = ψ̄†ψ̄. (2.15)
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Fermionic representation Bosonic representation

Action
∫

dτdx
[

ψ†∂zψ + ψ̄†∂z̄ψ̄
]

1
2

∫

dτdx
[

1
v
(∂τΦ)2 + v(∂xΦ)2

]

Left moving ψ(z), ψ†(z) 1√
2π

e∓i
√

4πφ(z)

Right moving ψ̄(z̄), ψ̄†(z̄) 1√
2π

e±i
√

4πφ̄(z̄)

Scattering across FS ψ̄†ψ + ψ†ψ̄ 1
π

cos
[√

4πΦ(z, z̄)
]

Left Current J = ψ†ψ i√
π
∂zφ

Right Current J̄ = ψ̄†ψ̄ −i√
π
∂z̄φ̄

Table 2.1: A bosonisation dictionary.

Bosonizing these requires a little care. In order to remove divergences from the theory, we

must consider the vertex operators eiβφ(x) to be normal ordered. The normal ordering then

means that to multiply two together, we must use the formula

eiαφ(z)eiβφ(z′) = eiαφ(z)+iβφ(z′)e−αβ〈φ(z)φ(z′)〉, (2.16)

which follows from the Baker-Campell-Hausdorff formula. This is explained in detail in [5].

Writing the current asJ = limǫ→0 ψ
†(z)ψ(z+ ǫ) and using the above formula, one derives the

bosonised form of the current operators:

J =
i√
π
∂zφ,

J̄ =
−i√
π
∂z̄φ̄. (2.17)

Note that this is not a proof of the equivalence of the two models, merely a demonstration

at the level of the correlation functions. For a rigorous proof, see the articles cited in the

introduction. Also, at this point, it is not clear why bosonizing the theory is useful. This

becomes apparent in the next section when we considering interactions in the one dimensional

electron gas. We give a summary of the results of this sectionin table 2.1.

2.1.3 Spin, interactions and the Luttinger model

When considering real electrons, we add a spin indexψσ, σ =↑, ↓. In the bosonisation we

must then add additional anti-commuting factors known as Klein factors to ensure the anti-

commutation of the different species of fermion. These wereintroduced into the Bosonisation

procedure by Haldane [17, 18]. For many purposes, the Klein factors play very little role, and

one can simply project them out, although one must be carefuldoing so. In this work, it turns

out that this is the case so we will not discuss them here.

The boson field may be combined into spin and charge components

Φc =
1√
2

(Φ↑ + Φ↓) ,

Φs =
1√
2

(Φ↑ − Φ↓) . (2.18)
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g1 g2

g3 g4

backward dispersion

forwardUmklapp

Figure 2.3: The four low energy scattering processes for onedimensional electrons. Con-
tinuous lines denote right moving electrons, dashed lines denote left moving electrons. Spin
indices are suppressed. After [5]

This will turn out to be a useful parameterisation when we addthe interactions. The non-

interacting Hamiltonian is simply the sum of the charge and spin sectorsH0 = Hc,0 +Hs,0.

In the low energy limit, interactions between electrons arelimited to the vicinity of the

Fermi points and fall into four different categories - see figure 2.3.

• Back scattering

H1 = vF g1

∑

σ

ψ†
σψ̄σψ̄

†
−σψ−σ. (2.19)

• Dispersion

H2,c = vFg2,c(J↑ + J↓)(J̄↑ + J̄↓),

H2,s = vFg2,s(J↑ − J↓)(J̄↑ − J̄↓). (2.20)

• Umklapp (half-filling only because of momentum conservation)

H3 =
1

2
vFg3

∑

σ

ψ†
σψ

†
−σψ̄σψ̄−σ +H.C. (2.21)

• Forward scattering

H4,c =
1

2
vFg4,c

[

(J↑ + J↓)
2 + (J̄↑ + J̄↓)

2
]

,

H4,s =
1

2
vFg4,s

[

(J↑ − J↓)
2 + (J̄↑ − J̄↓)

2
]

. (2.22)

Applying our bosonisation dictionary, 2.1, we will rewriteeach of the interactions in

terms of the bosonic fields. To begin with, we neglect the scattering across the Fermi points

(i.e. the backwards and Umklapp scattering), what we are left with is then known as the

Tomonaga-Luttinger model [6, 7]. The beauty of this model isthat its bosonised form is still

a model of (renormalised) free bosons.

The charge and spin sectors of the interactions decouple, and we can write

HT.L. = Hc + Hs, (2.23)
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where

Hµ = H0,µ + H2,µ + H4,µ,

H0,µ =
vF
2

[

Π2
µ + (∂xΨµ)

2
]

,

H2,µ =
−vF g2,µ

2π

[

Π2
µ − (∂xΨµ)

2
]

,

H4,µ =
vF g4,µ

2π

[

Π2
µ + (∂xΨµ)

2
]

,

(2.24)

with µ = c, s. This gives

Hµ =
vµ
2

[

KµΠ
2
µ +

1

Kµ

(∂xΨµ)
2

]

, (2.25)

where

Kµ =

√

π − g2,µ + g4,µ

π + g2,µ + g4,µ

vµ = vF

√

(

1 +
g4,µ

π

)2

−
(

g2,µ

π

)2

. (2.26)

The parametervµ is the renormalised Fermi velocity andKµ is called the Luttinger

liquid parameter. If the spin sector is to remain SU(2) invariant, we must haveKs = 1 as

the only term to change this,g2,s is not spin rotation invariant (notice howeverg4,s is, and this

can strongly renormalize the spin velocity). In the charge sector,Kc can take a wide range of

values, and this can be seen in experimental systems.

We see that the spin and charge sectors renormalize differently and independently lead-

ing to the phenomenon of spin-charge separation. The correlation functions can be obtained

by multiplying together the spin and charge components. However, in the presence of interac-

tions across the Fermi surface (i.e. theg2 term), the left and right bosons become mixed. To

show this, we rescale the Hamiltonian 2.25 to put it back intocanonical formΨ′ = Ψ/
√
K

which implies the opposite scaling for the conjugate momentumΠ′ = Π
√
K. So the left and

right parts are not simply rescaled by
√
K, they are mixed:

φ =
1

2
(Ψ + Θ) → φ′ =

1

2

(

1√
K

Ψ +
√
KΘ

)

,

φ̄ =
1

2
(Ψ − Θ) → φ̄′ =

1

2

(

1√
K

Ψ −
√
KΘ

)

. (2.27)

Expressing the old right and left bosons in terms of the new ones gives

φ = cosh ξ φ′ + sinh ξ φ̄′,

φ̄ = sinh ξ φ′ + cosh ξ φ̄′, (2.28)
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whereK = e2ξ. This is basically a Bogoliubov transformation in the mode expansion. Hence

for example, in the caseKs = 1 (spin isotropic system) butKc 6= 1 we have the following

expression for the fermionic field operator

ψ↑(x, τ) =
1√
2π
e−i

√
4πφ↑

=
1√
2π
e−i

√
2πφce−i

√
2πφs

=
1√
2π
e−i

√
2π cosh ξ φ′ce−i

√
2π sinh ξ φ̄′ce−i

√
2πφs. (2.29)

The Luttinger liquid is a critical model with power-law behaviour in correlation func-

tions. The exponents of these power laws depends only on the Luttinger liquid parameter.

These correlation functions are easy to write down once we have carried out all the transfor-

mations leading to eq. 2.29 because the correlation functions of bosonic exponents are given

by 2.4. The propagator for a real electron is of course the sumof our left and right moving

parts

G↑(x, τ) = 〈ψ↑(x, τ)ψ
†
↑(0, 0)〉 + 〈ψ̄↑(x, τ)ψ̄

†
↑(0, 0)〉. (2.30)

Once more concentrating on the caseKs = 1,Kc 6= 1, we have

〈ψ↑(x, τ)ψ
†
↑(0, 0)〉 =

1

2π
〈e−i

√
2π cosh ξ φ′c(zc)ei

√
2π cosh ξ φ′c(0)〉

×〈ei
√

2π sinh ξ φ̄′c(z̄c)e−i
√

2π sinh ξ φ̄′c(0)〉
×〈e−i

√
2πφ′s(zs)ei

√
2πφ′s(0)〉

=
1

2π

1

(vcτ − ix)(1/2) cosh2 ξ

1

(vcτ + ix)(1/2) sinh2 ξ

1

(vsτ − ix)1/2

=
1

2π

1

(vcτ − ix)1/2

1

|vcτ − ix|θc

1

(vsτ − ix)1/2
, (2.31)

where

θc =
1

4

(

Kc +
1

Kc
− 2

)

. (2.32)

Similarly, the left moving sector:

〈ψ̄↑(x, τ)ψ̄
†
↑(0, 0)〉 =

1

2π

1

(vcτ + ix)1/2

1

|vcτ + ix|θc

1

(vsτ + ix)1/2
. (2.33)

The exponentθc turns out to be a very useful parameterisation ofKc, θc = 0 corresponds to

the non-interacting systemKc = 1. Also, by Fourier transforming equation 2.31 (see eg [13]),

we see that the single particle density of states behaves as

ρ(ω) ∼ |ω|θc. (2.34)

Similarly, the momentum distribution function at the Fermilevel

n(k) = n(kF ) − α sgn(k − kF )|k − kF |θc , (2.35)
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whereα is some constant. In a similar manner, spin-spin and density-density correlation

functions can be calculated in this model [5].

Notice that in deriving the Luttinger model, we said very little about the underlying

microscopic Hamiltonian. The exact model chosen will put restrictions on the value of the

parametersKs andKc, but the Luttinger model is universal for many microscopic models.

However, the model itself is unstable to many perturbations: for example Umklapp or back-

wards scattering as we will see in the following section, or some interchain coupling as we

will see in section 2.4.

2.1.4 The sine-Gordon model and gap formation

We now go on to bosonise the Umklapp and backwards scatteringinteractions of figure 2.3.

This gives rise to cosine terms in the Hamiltonian which leads to the sine-Gordon model and

gap formation. In the spin sector, this can come about for many reasons from theg1 term. In

the charge sector, it requires commensurate filling to have the Umklapp processes. The model

still has full spin-charge separation:

G(x, τ) = Gspin(x, τ)Gcharge(x, τ). (2.36)

However, now one or both ofGspin,charge has a gap. If one of the sectors is gapped and the

other is critical, then the model is known as the Luther-Emery liquid [19].

In this section, we concentrate on one sector only, and assume it is gapped. The bosonised

action in terms of the canonical bosons is

S =
1

2

∫

d2x (∂µΦ(x))2 + V cos
(√

8ΠKφ(x)
)

. (2.37)

whereV depends on theg1 andg3 terms.

In the sine-Gordon model, the combination
√

8πK is usually written asβ and the prop-

erties of the model depend very strongly on the value of thisβ. The sine-Gordon model is

integrable for all values ofβ, hence many exact results are known about it. A number of these

are mentioned in section 3.3.3. Many correlation functionsare also known, for a full review

see [20]. Here, we review the simply state the basic properties of the model. Ifβ2 > 8π, then

it can be shown that the cosine term is irrelevant in an RG sense, however ifβ2 < 8π, i.e.

K < 1 then the model has a gap.

It was shown by Sydney Coleman [11] that model 2.37 can be refermionised as the

massive Thirring model

H = iṽ[Ψ̄†∂xΨ̄ − Ψ†∂xΨ] + ∆̃[Ψ†Ψ̄ + H.c.] + g̃Ψ†Ψ̄†Ψ̄Ψ, (2.38)

where

ṽ = v
(

1

4K
+K

)

,
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∆̃ =
πV

Λ
,

g̃ = 2πv
(

1

4K
−K

)

. (2.39)

It is very strange indeed that our original interactingmasslessfermions got rewritten first as a

bosonic model, then as a model of interactingmassivefermions.

We see that at the special pointK = 1/2 i.e. β =
√

4π known as the Luther-Emery

point, the refermionised model is non-interacting. The relationship between these fermions

and the original electrons is very difficult to describe, as we are a) dealing with only one

sector of excitations, and b)K = 1/2 is a very strongly interacting model; these fermions

can be thought of as solitonic excitations of either spin or charge. Once we are away from

K = 1/2, the fermions are interacting: ifK > 1/2 the lowest energy excitations are still the

solitons however ifK < 1/2, we have bound states of solitons known as breathers which have

a lower energy than the solitons themselves.

2.2 Integrability

Not all one-dimensional models are integrable, but many of the most important are and it is the

methods of exact solution of integrable models that perhapsgive the most insight into strongly

correlated systems, giving solutions unaccessible by conventional perturbation theory.

The basic idea behind integrability is the reduction of the problem to two body dynamics.

This is through the factorisation of the scattering matrix,the scattering ofN particles can be

written as a product ofN(N − 1)/2 two-particle scattering so long as the outcome does not

depend on the order in which the particles scatter. This is encompassed within the Yang-

Baxter equations (for a review see [21, 22]). It turns out that dynamical systems with such

factorisable S-matrices have as a common feature an infiniteset of conservation laws. This

is rigorously shown in [23]. One can imagine this connectionin one-dimension by simply

considering the scattering of two identical particles. Energy and momentum conservation

imply in one dimension that the incoming two momenta and the outgoing two momenta be

identical. This means that the only possible solutions of the equationsp1 + p2 = p′1 + p′2 and

p2
1 + p2

2 = p′21 + p′22 is p1 = p′1, p2 = p′2 or p1 = p′2, p2 = p′1. In both these cases, we discover

we have not only conservation of energy and momentum but conservation of all powers of

momentapn1 + pn2 = p′n1 + p′n2 . This then raises the obvious question of why aren’t all one

dimensional models integrable? The answer is that the particles also have internal degrees

of freedom, and these internal quantum numbers must also have factorised scattering for the

model to be integrable.

The method of building up theS-Matrix from the Yang-Baxter equations is sometimes

known as the Quantum Bootstrap approach. Historically, thefirst way to attack integrable

systems was the Coordinate Bethe Ansatz which was first applied to the XXX Heisenberg

chain in 1931 [24]. Here, one can write down the exact form of the many-body wave function

because of certain factorisation properties from the infinite set of conservation laws. From this
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wave-function, one can calculate physical properties of the system. A third method is based

on the algebraic structure of the factorisation equations and is known as the Algebraic Bethe

Ansatz, or the Quantum Inverse Scattering Method. This is fully reviewed in [25]. All of

these methods are equivalent, although each have their advantages and disadvantages in terms

of calculation techniques.

2.2.1 The S-matrix

The S-matrix is the heart of an integrable model. It is represented pictorially as

S12 = 1 2

time

We will mostly be dealing with theories with Lorentz invariance, so we parameterise the

energy and momentum by the rapidityθ:

E = m cosh θ,

p = m sinh θ, (2.40)

so scattering between two particles is simply a function ofθ12 = θ1 − θ2. We also note here

thatθ → θ + iπ changesE → −E, p → p so this can be considered as changing a particle

into its antiparticle.

The Yang-Baxter factorisation equations are the most important property of the inte-

grable model. They can be represented pictorially as

1 2 3 1 2 3

=

S12(θ12)S13(θ13)S23(θ23) = S23(θ23)S13(θ13)S12(θ12). (2.41)

Basically what this is saying is that if three particles scatter off each other, it doesn’t matter

which order they do so in.

For a well defined theory, theS-matrix must be unitary:

=

1 2 1 2

1 = S12(θ12)S21(θ21). (2.42)

These conditions are also true for non-relativistic theories if we parameterise the scatter-

ing by the momentum transfer rather than the rapidity. The final condition, crossing-symmetry

is a purely relativistic effect, which is represented as
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= =

S12(θ12) = S2̄1(θ21 + iπ) = S21̄(θ21 − iπ). (2.43)

There are also a number of properties relating to the formation of bound states. A bound

state shows up as a pole in the S-matrix, which means that if there are no bound states, then the

S-matrix must have no poles in the physical sheet (i.e.0 < Imθ < π. For more information

on the bound states, see for example [26].

These properties are enough to exactly determine theS-matrix, which can then be used

to determine many observable properties of the system. We give only one extremely simple

example which will be used later in this thesis, for the one dimensional Quantum Ising Model

(section 5.1).

H = −J
∑

n

{

σznσ
z
n+1 + (1 + g)σxn

}

. (2.44)

In this case, the Jordan-Wigner transformation reduces themodel to free fermions. Hence the

asymptotic states are free fermions so the scattering matrix is trivial:

S = −1. (2.45)

2.2.2 Form-factors and correlation functions

Form factors are off-shell scattering amplitudes

FO
ǫ1...ǫn(θ1, . . . , θn) = 〈0|O|θ1, . . . θn〉ǫ1...ǫn, (2.46)

whereθn are the rapidities of some excitations in the system andǫn denotes other internal

quantum numbers. These are simply matrix elements of the operatorO with various excited

states, however the expression 2.46 is limited to integrable models for the following reason.

If one doesn’t have factorised scattering, then multi-particle excitations can not be simply

written in terms of the rapidities of each excitations, thisis an incomplete parameterisation of

the state.

The form factors can be calculated in a bootstrap approach similar to theS-matrix [20,

27, 28, 26]. Again the equations come about as consequences of the factorisation of the

S-matrix. Firstly, the end result of annihilating the excitations by the operatorO must be

the same as if two of them scatter first. This is known as Watson’s equation, and can be

represented pictorially as:

�� �
O
. . . . . . =

�� �
O

�
�
A

A. . . . . . (2.47)

FO
...ij...(. . . , θi, θj , . . .) = FO

...ji...(. . . , θj , θi, . . .)Sij(θi − θj). (2.48)
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Changing particles to anti-particles, we get conditions known as crossing relations which

can be represented:

�� �
Oconn.
. . .

= �

�� �
O

. . .
= �

�� �
O
. . .

(2.49)

ǭ1〈 θ1 | O(0) | p2, . . . , pn 〉in,conn.ǫ2...ǫn
= FO

ǫ1ǫ2...ǫn
(θ1 + iπ, θ2, . . . , θn) (2.50)

= FO
ǫ2...ǫnǫ1

(θ2, . . . , θn, θ1 − iπ). (2.51)

Finally, we can relate form-factors with different numbersof excitations by a recursion

relation:

1

2i
Resθ12=iπ

�� �
O
. . .

= ���� �
O
. . .

−

#  
!�

�� �
O
. . . (2.52)

Resθ12=iπF
O
1...n(θ1, . . .) = 2iC12 F

O
3...n(θ3, . . .) (1 − S2n . . . S23) , (2.53)

whereC12 is the charge conjugation matrix with elementsCαα′ = δᾱα′ which basically ensures

charge conservation in the above expression. In words, whatthis expression is saying is that

the particles all being annihilated by the operatorO is equivalent to two of them annihilating

each other and the rest being annihilated byO.

Again, there are also a number of relations dealing with bound states which we don’t

mention here. This set of equations were proposed by Smirnov[20] as generalisations of those

in the original articles [29, 30]. After solving these equations, one has to associate which local

operators in the original theory correspond to which solution. This is typically done by looking

at a perturbation expansion and matching it up to the exact solution.

Using our Ising model example 2.44 withS = −1, the above formula’s reduce to

F (n)(θ2, θ1, θ3, . . . , θn) = −F (n)(θ1, θ2, θ3, . . . , θn),

F (n)(θ1 − 2iπ, θ2, . . . , θn) = F (n)(θ1, θ2, . . . , θn),

Resθ12=iπF
(n)(θ1, θ2, θ3, . . . , θn) = −2F (n−2)(θ3, . . . , θn). (2.54)

Looking at the first two, with the additional requirement that there is no bound state so aside

from θ12 = iπ (there must be no other poles in the physical sheet0 ≤ ℑθ ≤ π because there

are no bound states), we see that the minimal solution for thetwo particle form-factor is

F (θ1, θ2) = tanh

(

θ1 − θ2
2

)

. (2.55)

Using the third equation in 2.54 we can build up all the rest ofthe form factors

F (n)(θ1, . . . , θn) =
∏

i<j

tanh

(

θi − θj
2

)

. (2.56)
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It turns out that ifn is odd these relate to the spin field and ifn is even they relate to the

disorder field - see section 5.1

Correlation functions can be calculated in terms of the formfactors. This is obtained by

inserting a complete set of states:

χO = 〈0|O(x, t)O|0〉

=
∑

n

1

n!

∫ ∞

−∞

n
∏

i=1

dθi
2π

〈0|O(x, t)|θ1, . . . , θn〉〈θ1, . . . , θn|O|0〉

=
∑

n

1

n!

∫ ∞

−∞

n
∏

i=1

dθi
2π
e−i[mt cosh θi−mx sinh θi]|Fǫ1...ǫn(θ1, . . . , θn)|2. (2.57)

For low-energy excitations in a massive field theory, retaining only the first couple of terms

in the expansion can be a very good approximation. There is a similar method that can give

finite temperature correlation functions - see [31].

The Fourier transform of the retarded correlation functiongives us

χ(ω, k) =
∑

n

1

n!

∫ ∞

−∞

n
∏

i=1

dθi
2π

{

δ(k −m
∑

sinh θj)

ω −m
∑

cosh θj + iǫ
− δ(k +m

∑

sinh θj)

ω +m
∑

cosh θj + iǫ

}

× |Fǫ1...ǫn(θ1, . . . , θn)|2. (2.58)

The imaginary part gives the structure factor.

A(ω, k) =
∑

n

1

n!

∫ ∞

−∞

n
∏

i=1

dθi
2π
δ(ω −m

n
∑

i=1

cosh θi)δ(k −m
n
∑

i=1

sinh θi)

× |Fǫ1...ǫn(θ1, . . . , θn)|2. (2.59)

The structure factor is a very nice thing to calculate in thisway because it turns out if you

terminate the expansion afterN terms, the expression is exact up to energiesω = Nm1, and

furthermore, the structure factor is directly related to what is measured in the experimental

probe Angular Resolved Photoemission Spectroscopy (ARPES).

This ends our brief summary of integrable systems. Basically, the main points are that

strong kinematic constraints in one dimension mean that formany models you get factorisation

of the S matrix, which can lead to an exact solution of the model. This allows you to calculate

many things of physical interest such as thermodynamics or correlation functions.

2.3 Conformal Field Theory

Although conformal field theory will not play a big role in this thesis, some results will be used

so we feel it useful to review the basic idea here. For a generic model at arbitrary temperature,

there will be at least two length scales in a system, the lattice spacinga0 and the correlation

lengthξ. The presence of these lengths means that there is no symmetry of the model under

1This can be seen by noting that the minimum value ofm
∑n

i=1
cosh θi is nm when all theθi = 0, and so if

ω is less than this, the delta function in equation 2.59 can never be satisfied.
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scale transformations. However, at certain critical points (i.e. near a phase transition),ξ can

get very large so when looking at correlations on length scales betweena0 andξ, the system

will have an (approximate) scale invariance. In a system with local interactions, an immediate

extension to this would be that the system also has a local scale invariance [32], i.e. conformal

transformations2. Such symmetries occur in all dimensions, however it turns out that only

in two dimensions does conformal symmetry alone put huge restrictions on the correlation

functions due to a peculiarity of the conformal group in two dimensions.

The group of conformal transformations is a finite group, requiring d(d + 1)/2 param-

eters in ad + 1 dimensional field theory, so it puts relatively few constraints on the form of

the correlation functions. The exception is in1 + 1 dimensions where the expression is only

for conformal transformations that are well defined everywhere. There are an infinite number

of conformal transformations (i.e. any analytic function)that are still equivalent to local di-

lations, although not regular everywhere. This provides a very powerful tool for calculating

correlation functions in a wide class of critical theories in 1 + 1 dimensions.

Conformal field theory has grown into a field of its own since the 1984 seminal paper

by Belavin, Polyakov and Zamolodchikov [33]. For reviews ofthe field see [34, 35]. For the

purposes of this thesis, we will derive only one result, the correlation functions of bosonic

exponents on a torus which is equivalent to the finite temperature correlation functions of a

Luttinger liquid.

The analytic function

z(ξ) = sinh(πξ/L) (2.60)

transforms the infinite complex plane into a strip of widthL in theτ -direction. This therefore

mapsT = 0 correlation functions onto finiteT correlation functions, whereL = 1/T . Hence

within the Gaussian model 2.1, the zero-temperature correlation function

〈e−iβΦ(x,t)eiβΦ(0,0)〉 =
1

zd
1

z̄d
(2.61)

will become at finite temperature

〈e−iβΦ(x,t)eiβΦ(0,0)〉 =

{

πT

sinh[πT (x− vt)]

}d {
πT

sinh[πT (x+ vt)]

}d

(2.62)

whered = β2/8π. This can be Fourier transformed to give

χ(0)(q) =
2

Λ2
sin πd

(

2πT

Λ

)−2+2d

Γ2(1 − d)

× Γ(d/2 + i(ω + vq)/4πT )

Γ(1 − d/2 + i(ω + vq)/4πT )

Γ(d/2 + i(ω − vq)/4πT )

Γ(1 − d/2 + i(ω − vq)/4πT )
, (2.63)

whereΛ is the ultra-violet cutoff.
2A conformal transformation is a transformation which permits local scale changes and local rotations so

long as angles are preserved everywhere.



CHAPTER 2. TECHNIQUES IN ONE DIMENSION 23

2.4 From one dimension to quasi one dimension

When considering strongly anisotropic materials, treating them first as strictly one dimen-

sional systems should be a good starting point. However it cannot be the end of the story.

True one dimensional systems do not exhibit phase transitions into states with broken symme-

try. This was first addressed in 1975 [36] for the case of coupled classical Ising chains. The

authors treated the inter-chain interaction in the mean-field and looked for fluctuations around

it, a procedure which has since become known as the Random Phase Approximation (RPA).

It is only recently that attempts to go beyond this level of approximation have come into the

literature [37, 38, 39], showing that the somewhat unjustified looking RPA is in fact the first

term in a more general expansion, and that in most of the casesinvestigated the corrections to

this are small.

We postpone a discussion of the RPA and beyond to section 3.3.2 where we can make

the derivation more concrete for the particular model we aredealing with. For now, we simply

give some brief scaling arguments about what can happen whenwe add interchain coupling to

a one-dimensional model, and when we expect to be able to use perturbation theory.

Consider adding weak interchain electron hopping between Luttinger liquids.

H =
∑

i

Hi
LL +

∑

i,j

∫

dxdτt⊥(i− j)ψ†
i (x)ψj(x) (2.64)

At large distances, the Green’s function of the Luttinger liquid behaves as|x|−1−α. Hence

each term in the perturbation expansion int⊥ will have a factorωα−1
‖ which diverges for

α < 1. We can therefore define a new energy scaleteff = t
1/(1−α)
⊥ . This characterises for

example the crossover temperature above which the effects of t⊥ are covered by temperature

and the system behaves as a Luttinger liquid. At temperatures lower than this, the interchain

coupling is a strongly relevant operator and will change theground state, either to a Fermi

liquid3, superconductor, CDW or whatever depending on the nature ofthe interactions. At

these low temperatures, we would be extremely wary of a perturbation expansion int⊥ about

the Luttinger liquid. However, if we consider a one-dimensional model with either a spin

or charge gap, the long distance asymptotics in one dimension fall off exponentially and we

would expect a perturbation expansion int⊥ to work well. These are the cases we consider in

the following chapters.

3It was pointed out by Anderson [40] that in some cases though,one has to be careful applying scaling
arguments, and the LL fixed point can sometimes be stable in two dimensions.



Chapter 3

Superconductors

My definition of an intellectual is someone who can listen to the William Tell

Overture without thinking of the Lone Ranger.

–Billy Connolly

3.1 Physical motivation

Since the discovery in 1986 of the so called High Temperaturesuperconductors [41] there has

been a lot of interest from theorists for non-BCS theories ofsuperconductivity. One of the

more interesting models involves a quasi-one dimensional system. The application of such

theories to the High-Tc materials is a separate discussion in itself, as these materials have

CuO2 planes which are structurally two-dimensional. However, there is much theoretical and

experimental evidence [42] that there are ‘stripe’ correlations over a wide range of tempera-

tures which make the low-energy electron dynamics in these planes locally one-dimensional.

Although a discussion of stripes is beyond the scope of this thesis, this quasi-one dimensional

non-BCS model is interesting in its own right as there are many structurally one-dimensional

materials such as the Bechgaard salts (organic superconductors).

In certain temperature regimes, the one-dimensional chains are Luttinger liquids so we

have spin-charge separation (see section 2.1.3) and we suppose that there is a gap in the spin

sector. Single particle hopping between chains must necessarily involve real electrons which

are some bound state of both spin and charge excitations. Which means that single particle

hopping is strongly suppressed because it requires energies greater than the spin gap, and so

the most relevant inter-chain interaction is pair-hoppingwhere we have a pair consisting of

both an up and down spin, so it has no net spin. Having these ’pre-formed’ pairs is obviously

a good start for superconductivity, and it certainly creates an interesting and furthermore solv-

able example of a non-BCS like transition where the temperature for formation of pairs and

that of condensation are not identical. One has to be very careful about the term ’pre-formed

pair’ however, as you have to remember the excitations with good quantum numbers on the

individual chains themselves are still spin-charge separated.

Here we discuss a simple model of a non-BCS superconductor, where the formation of

24
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superconducting pairs on one-dimensional chains is triggered by the formation of a spin gap.

The three-dimensional coherence is established through the inter-chain Josephson coupling.

This competes with the Coulomb interaction between the chains, which can destroy the super-

conductivity and establish Charge Density Wave (CDW) ordering. We first introduce our low

energy effective model by deriving it from a model of coupledspin-gapped chains - basically

what we do is integrate out the spin degrees of freedom. We show that there is a critical line

with enhanced symmetry between the two ordered phases, and go on to calculate the critical

temperature by combining exact results on the chains with the Random Phase Approximation

(RPA) to deal with inter-chain interactions. We also consider the effect of a magnetic field on

the phase diagram, which shows some rather interesting behaviour. We calculate corrections

to the RPA, and show that they are numerically small for estimating the transition tempera-

ture but can help give us more insight into the interplay between the two different ordered

states near the critical line. We then show how the single particle spectral function evolves as

you go through the phase transition, and discuss how properties of the solution may manifest

themselves in experimentally observable features. Finally, we introduce a couple of quasi-one-

dimensional spin gapped materials that may lend themselvesto such a treatment, although the

complexity of these materials means that a detailed application of the theory to the materials

is outside the scope of this thesis.

The model we use has been considered in some detail [43] in thecontext of high-Tc
superconductivity. It was assumed that the one-dimensional behaviour came about from the

formation of stripes [42]. Since in some stripe pictures, fluctuations of the stripes dephase

the CDW coupling [44], only the superconducting inter-chain interaction was considered in

[42]. However, more recently [45] the model 3.14 has been considered a good description of

a ’caricature of a stripe ordered state’ in the Hubbard model. In this chapter, we consider the

model as a description of materials that are structurally quasi-one-dimensional, although it is

worth remembering that there may be many features of the solution that are relevant for the

high-Tc materials also. The scaling properties of the solution havebeen known as early as

1975 [46] and discussed many times since. However the prefactors, the interplay between the

SC and CDW phases, the effects of the magnetic field and the corrections to RPA were all new

work in our paper [1].

3.2 The model

The pure one-dimensional part of the Hamiltonian density can be written in its Bosonised form

(section 2.1):

Hchain = Hcharge + Hspin, (3.1)

Hα =
vα
2

[Kα(∂xΘα)
2 +K−1

α (∂xΦα)
2] − Vα cos(

√
8πΦα), (3.2)

whereα = spin, charge and[Θ(x),Φ(y)] = iθ(x− y).
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We suppose the one dimensional electron gas is sufficiently incommensurate that there is

no Umklapp scattering soVcharge = 0. However, we want to look specifically at the case where

a spin-gap∆s is present, which means thatVspin 6= 0 andKs ≤ 1. Now, if we are at the SU(2)

symmetric point, the sign ofVspin is fixed to be positive, and may come, for example from

next-nearest neighbour exchange. Ryzhkov and Millis considered another possibility of spin

gap formation in a single chain. In their scenario the gap is generated by an Ising anisotropy in

the spin sector. In this caseVspin is negative. The spectrum of the model is independent of the

sign ofVspin, but the vacuum configuration ofφspin changes and therefore different operators

acquire finite amplitudes. In the case of SU(2) symmetry, theoperators which acquire finite

amplitudes and whose correlations are enhanced are the singlet superconducting (SSC) and

CDW order parameters respectively. However, with the Isinganisotropy, the corresponding

operators are thez-component of triplet superconductivity (TSC) and thez-component of Spin

Density Wave (SDW). Note that in the latter case, the order parameters will also have Ising

anisotropy. In this work, we will not worry too much about themicroscopic origins of the spin

gap, and will limit ourselves to the case where we are lookingat the interplay between SSC

and CDW. The alternative case, TSC to SDW was worked out in [47], and we will refer to

some of the similarities and differences throughout this chapter.

The spin gap blocks single-particle tunnelling processes between the chains at low en-

ergies. Then the virtual multi-particle processes generate pair hopping so the most relevant

interchain interaction comes from the Josephson coupling of the superconducting order pa-

rameters and the Coulomb backscattering

Hinter = V ρ2kF
n ρ−2kF

m + J∆n∆
†
m, (3.3)

where the subscripts refer to chain number. Using our bosonisation dictionary, table 2.1, we

see that

ρ =
∑

σ

{

ψ†
σψσ + ψ̄†

σψ̄σ + e−2ikF

(

ψ̄†
σψσ + ψ†

σψ̄σ
)

+ (4kF terms)
}

=
1√
2π
∂xΦc + A cos(2kFx+

√
2πΦc) cos

√
2πΦs + (4kF terms), (3.4)

and

∆ ∼ (ψ↑ψ̄↓ + ψ↓ψ̄↑)

= cos(
√

2πΘc) cos(
√

2πΦs). (3.5)

We now derive the magnitude of the effective Josephson coupling. We start from a single

particle hopping term in our bare Hamiltonian density

Hhopping =
t

2a0

∑

n 6=m

{

ψ†
n(x)ψm(x) + ψ̄†

n(x)ψ̄m(x)
}

, (3.6)

After opening the spin-gap, the effective Hamiltonian density only involves pair hopping as
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shown above:

Hsc =
1

2∆−1
s

Jeff

∑

n 6=m
: cos[

√
2π(Θn − Θm)] : . (3.7)

These are virtual processes involving an intermediate energy ∆s, hence theJeff will have

a factor t2/∆s. We must also remember that our effective theory has an ultra-violet cut-

off determined by the spin-gap, so we must account for the change in cut-off in the nor-

mal ordering, and finally we replace anything involving the spin field by its average value

〈cos(
√

2πΦs)〉 ∼ (∆s/Λ)Ks/2. Putting this all together gives

Jeff ∼
(

∆s

Λ

)Ks+1/Kc−1 t2

∆s

(3.8)

wheret is the single particle hopping andΛ is related to the original bandwidth.

Interaction (3.7) has scaling dimension

dsc = 1/(2Kc), (3.9)

and therefore is relevant even for repulsive interactions in the charge sector provided they are

not too strong (Kc > 1/2). This is a well known effect of the spin gap; it generates preformed

pairs making it easy for them to condense [48].

Now we consider the inter-chain Coulomb coupling. In the bare system, we have a term

Hcoulomb =
V0

a0

∑

n 6=m
ρn(x)ρm(x), (3.10)

with ρ(x) the charge density on each chain, andV0 is the strength of the inter-chain Coulomb

coupling. When we open a spin gap, the uniform part merely changes the chemical potential,

so the most relevant operators are the2kF components of the CDW. Once more, replacing all

occurrences of the spin field with its average value and changing the ultraviolet cut-off in the

normal ordering, we generate an effective interaction in the charge sector

Hcdw =
1

2

Veff

∆−1
s

∑

n 6=m
: cos[

√
2π(Φn − Φm)] : (3.11)

where

Veff ∼
(

∆s

Λ

)Ks+Kc−1

V0. (3.12)

The corresponding scaling dimension is

dcdw = Kc/2. (3.13)

We will also be considering the effect of a magnetic field. We introduce an external

magnetic fieldH directed perpendicular to the chains. This couples to the superconducting



CHAPTER 3. SUPERCONDUCTORS 28

order parameter but doesn’t affect the coulomb coupling. Inprinciple, the material will have a

Meissner effect, expelling the magnetic field from the inside of the superconductor. However,

because of the reduced dimensionality, we would expect the Meissner effect to be very weak

(i.e. the materials are strongly type II superconductors),particularly near the phase transition

which is the region we are most interested in. Hence we can assume that the magnetic field that

couples to the superconducting order parameter is simply the external magnetic field, which

will be a good approximation for all but the weakest of applied fields.

The effective action for coupled chains is therefore

Leff =
1

2Kc

∑

n

(∂µΦn)
2 +

1

2

∑

n 6=m
{Vnm : cos[

√
2π(Φn − Φm)] :

+ Jnm : cos[
√

2π(Θn − Θm − 2eHbnmx/c)] :}. (3.14)

wherebnm is the projection of the inter-chain lattice vector on the direction perpendicular both

to the chains and the magnetic field and the expression has∆s as the ultraviolet cut-off. We

will be considering nearest-chain interactions only, i.e.Vnm = V, Jnm = J for neighbouring

chains and zero otherwise. In what follows we will be most interested in the caseKc ≈ 1

when both interactions are important.

Note also that at this point, our effective action deals onlywith the charge sector, any

details of the spin-sector except for the gap have been integrated out. So this model is more

universal than its derivation, and can be applied to such cases as when the one-dimensional

units are for example ladders rather than chains where they can acquire a Haldane spin-gap

[49, 50].

To complete the introduction, we present the hierarchy of energy scales present in the

system:

1. The highest energy scale is the spin gap∆s. Below ∆s the system is described by

competing CDW and SC fluctuations.

2. There is a transition temperature at which either〈cos
√

2πΘ〉 or 〈cos
√

2πΦ〉 are formed.

According to the mean field calculation, these order parameters cannot be formed si-

multaneously. Thus we are either in CDW or SC phase, but the temperature of their

formation goes smoothly through the pointV = J .

3. We will see that there is a third energy scale associated with the gap for another mode

which becomes soft at the critical point. This mode is not seen in the first order RPA

calculations, but its effects can be noted by looking at the first correction to RPA.
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3.3 Low temperature phase diagram: Critical temperature

and magnetic field effects

We now go further down in temperature where the inter-chain coupling becomes important,

and we get dimensional crossover to a three-dimensional ordered phase.

In the case where there are two coupled chains, the model 3.14was solved by Sheltonet

al [51]. There are two modes; one symmetric in the two chains andthe other antisymmetric.

In the presence of the inter-chain interactions, the symmetric mode remains gapless and the

antisymmetric sector splits into two Majorana fermions with gaps (V + J) and (V - J).

For an infinite number of chains, we expect to see a similar sort of behaviour. The

gapless symmetric mode in the the case of two chains will in some sense be the Goldstone

mode in our infinite system and we expect to see a range of othermodes with gaps ranging

from V − J to V + J . We will see that within the basic RPA we cannot reproduce this

behaviour: the properties will depend only on the stronger of V andJ . However when we go

beyond the first order term we can start probing the interplaybetween these two competing

interactions.

3.3.1 An Effective theory of the Critical Point

For a general value ofKc the symmetry of the model 3.14 is U(1)×U(1) which corresponds

to independent global shifts ofΦ andΘ. WhenKc = 1 andV = ±J the symmetry increases

and becomes SU(2). To see this we use the non-Abelian bosonisation description [13, 52]. At

Kc = 1 the exponentsexp[±i
√

2πΦ], exp[±i
√

2πΘ] have conformal dimensions (1/4,1/4) and

can be understood as matrix elements of the tensor fieldgab from the S=1/2 representation -

the first primary field of the levelk = 1 Wess-Zumino-Novikov-Witten (WZNW) model (for

a discussion of this model, see e.g. Itzykson and Drouffe[35]):

ĝ =





exp[i
√

2πΦ] exp[i
√

2πΘ]

exp[−i
√

2πΘ] exp[−i
√

2πΦ]



 . (3.15)

The Gaussian part of the action becomes the sum of the WZNW actions from individual

chains:

1

2

∑

n

(∂µΦn)
2 →

∑

n

W [gn], (3.16)

and the interaction term in (3.14) can be written as

Lint =
∑

n 6=m
{(V − J)

∑

a=1,2

[g(aa)
n [g+

m](aa) + (n→ m)] + JTr(gng
+
m + gmg

+
n )}. (3.17)

This description is convenient since it contains only mutually local fields and therefore can be

considered as the Ginzburg-Landau theory.

In three spatial dimensions the system undergoes a phase transition into the ordered state
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where the matrixg acquires an average value throughout the system. In the longwave limit

one can replace the last term in (3.17) by

(∂yg)(∂yg
+), (3.18)

and omitting the time dependence of the fields we obtain the following Ginzburg-Landau free

energy:

F = b−2
0

∫

dxd2rTr[
va0

16π
(∂xg

+∂xg) + Jb20(∇⊥g
+∇⊥g)] + Fanisotropy, (3.19)

whereb0 is the lattice constant in the transverse direction and

Fanisotropy = (V − J)b−2
0

∫

dxd2r
∑

a=1,2

g(aa)[g+](aa). (3.20)

We can now re-parameterise the theory. The order parameter is the SU(2) matrixg. Its

relation to the CDW and SC order parametersΘ andΦ are:

g = exp[iσ3(Φ + Θ)/4] exp[iσ1α/2] exp[iσ3(Φ − Θ)/4]. (3.21)

The Ginzburg-Landau free energy density is

F =
1

2
ρ[cos2(α/2)(∇Θ)2 + sin2(α/2)(∇Φ)2] +

1

2
ρ(∇α)2 + (V − J) cosα. (3.22)

This is interpreted as follows: whenV − J is positive,α is pinned atπ so that the coefficient

in front of (∇Φ)2 is non-zero and henceΦ, the CDW order parameter, is constant throughout

the material. WhenV − J is negative,α is pinned at0 and hence it isΘ, the superconducting

order parameter that acquires an expectation value. WhenV − J = 0 we are at the critical

point where the free energy of the superconducting and insulating phases becomes equal, and

we obtain an extra soft mode. The effects of thisV −J mode will be considered when looking

more quantitatively at the transition.

In the alternative case of the transition between TSC and SDW, the symmetry at the

quantum critical point is enhanced from U(1)×U(1) toSO(4) [47], although this calculation

is specifically for the case of a bipartite lattice.

3.3.2 The Random Phase Approximation

To begin with, we will estimate the critical temperature using the RPA. Our effective La-

grangian can be written as the sum of a 1D part and an inter-chain interactionLeff = L1D +

Linter where

L1D =
1

2Kc

∑

n

(∂µΦn)
2
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(a)

= +

(b)

(c)

= + + ...

Figure 3.1: (a) The basic RPA diagram, (b) The Dyson series for RPA, (c) The first correction
term. In these diagrams, the dashed lines represent the 1D chains, the dots indicate vertex
operators ofΦ or Θ, the wiggly lines are the inter-chain interactions, and each diagram is an
irreducible correlator.

Linter =
1

2

∑

n 6=m
{Vnm : cos[

√
2π(Φn − Φm)] :

+ Jnm : cos[
√

2π(Θn − Θm)] :}, (3.23)

where we have ignored the magnetic field for now for simplicity. We are interested in calcu-

lating the correlation functions

χsc = 〈e2πiΦ(ω,k)e−2πiΦ(ω,k)〉, and

χcdw = 〈e2πiΘ(ω,k)e−2πiΘ(ω,k), 〉 (3.24)

as these are the channels in which we may have an instability.

Our starting theory isL1D and we want a perturbing series inLinter. Because our starting

theory isn’t a free theory (in terms of thee2πiΦ(ω,k) fields), we don’t have Wick’s theorem.

However, up to the level of RPA, the perturbation expansion is identical with conventional

perturbation theory:

χsc(ω, k‖, k⊥) =
χ(0)
sc (ω, k‖)

1 − J(k⊥)χ
(0)
sc (ω, k‖)

,

χcdw(ω, k‖, k⊥) =
χ

(0)
cdw(ω, k‖)

1 − V (k⊥)χ
(0)
cdw(ω, k‖)

. (3.25)

These are shown diagrammatically in figure 3.1 (a) and (b).

To try and get some physical intuition about what this approximation involves, we can

demonstrate the terms neglected in the RPA, shown in figure 3.2. These are paths which leave

one chain then return to the same chain, thus requiring multi-point correlation functions on

that chain. In section 3.4 we will talk about the first corrections to RPA, however we can see

from the diagram that higher order terms will be less important by a factor1/z⊥ wherez⊥ is

the transverse coordination number. Hence one can considerRPA exact in the limit of infinite
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(a)
(b)

Figure 3.2: A figurative illustration of the paths ignored inthe Random Phase Approximation.
(a) An example of a path treated correctly, (b) An example of apath incorrectly treated because
it returns to the same chain.

connectivity, e.g. a Bethe lattice.

The critical temperature is extracted from these equationsby the condition that the sus-

ceptibility have an instability atω = 0, i.e.

Jz⊥χ
(0)
sc (ω = 0, k;T ) = 1 or

V z⊥χ
(0)
cdw(ω = 0, k;T ) = 1. (3.26)

Here we have explicitly assumed a nearest-neighbour inter-chain interaction allowing us to

write J(k⊥ = 0) = z⊥J . Just to clarify notation,J(k⊥) as a function is the Fourier transform

of the inter-chain hopping,J as a number is the strength of the inter-chain hopping.

WhenKc = 1 the bare susceptibilities are equal to each other and therefore the insta-

bility occurs in that channel where the interchain interaction is stronger. This can be demon-

strated explicitly in the mean-field approximation: here wereplace the interaction term

Lint =
∑

m

{V cos[
√

2π(Φn − Φm)] + J cos[
√

2π(Θn − Θm)]}

≈ z⊥V 〈cos[
√

2πΦ]〉 cos[
√

2πΦn] + z⊥J〈sin[
√

2πΘ]〉 sin[
√

2πΘn]. (3.27)

This can be written as

Lint =
√
A2 +B2Tr[(cos γI + iσ1 sin γ)g + c.c],

A = V z⊥〈cos[
√

2πΦ]〉, B = Jz⊥〈sin[
√

2πΘ]〉, tan γ =
B

A
, (3.28)

whereg is as defined in 3.15. The constant matrix can be removed by theredefinition ofg.

After that it becomes evident that the free energy depends only onR2 = A2 +B2. The mean

field equations are

A = −V z⊥
∂F

∂A
= −V z⊥

A

R

∂F

∂R
,

B = −Jz⊥
∂F

∂B
= −Jz⊥

B

R

∂F

∂R
(3.29)
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From this it is clear that the only case where bothA andB are simultaneously non-zero is

V = J .

If Kc 6= 1, the instability still occurs in the stronger channel, although this now depends

not only on the values ofV andJ but also onKc and∆s, the crossover point being

(

t2

∆s

vc

) 1

2−1/2Kc

∼
(

V

vc

)

1

2−Kc/2

. (3.30)

For definiteness let us assume that the instability occurs inthe superconducting channel

which is the most likely case forKc > 1. Note that the duality property of the effective

Lagrangian (3.14) underK → 1/K, V ↔ J, Θ ↔ Φ means that all of the results in this and

the next section are identical for the CDW channel.

In a Tomonaga-Luttinger liquid with the ultraviolet cut-off ∆s the static susceptibility

for the operator with scaling dimensiond was given in section 2.3:

χ(0)(k) =
2

∆2
s

sin πd
(

2πT

∆s

)−2+2d

Γ2(1 − d)

∣

∣

∣

∣

∣

Γ(d/2 + ivck/4πT )

Γ(1 − d/2 + ivck/4πT )

∣

∣

∣

∣

∣

2

. (3.31)

In the absence of a magnetic field, the structure ofχ means that the instability will occur at

k = 0.

3.3.3 Zero magnetic field; the critical temperature

Substituting 3.31 withk = 0 into equation 3.25 we obtain

Tc =
∆s

2π

(

2Jz⊥
∆s

sin πd
Γ2(d/2)Γ2(1 − d)

Γ2(1 − d/2)

) 1

2−2d

. (3.32)

Below the transition temperature the long-wavelength fluctuations of superconducting

order parameter are three-dimensional. The amplitude fluctuations are however mostly one-

dimensional and their spectral weight is concentrated above a certain energy which plays the

role of a pseudo-gap. The zero temperature value of the pseudo-gap can be found from the

mean-field theory combined with the exact results for the sine-Gordon model. In this approach

one approximates the inter-chain interaction

J
∑

<nm>

cos[
√

2πK−1
c (Θn − Θm)], (3.33)

by the one-dimensional (i.e. no chain index) term:

2µ cos[
√

2πK−1
c Θ], (3.34)

where

2µ = Jz⊥∆s〈cos[
√

2πK−1
c Θ]〉. (3.35)



CHAPTER 3. SUPERCONDUCTORS 34

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.2 0.4 0.6 0.8 1d

T c
/

c
∆

Figure 3.3: A graph ofTc/∆c againstd. The valued = 1 corresponds to the BCS limit,
decreasingd corresponds to increasing repulsion.

This expectation value is known exactly [53]:

〈cos[
√

2πK−1
c Θ]〉

=
(1 + ξ)πΓ(1 − d/2)

16 sin πξ Γ(d/2)

(

Γ(1
2

+ ξ
2
)Γ(1 − ξ

2
)

4
√
π

)(d−2) (

2 sin
πξ

2

)d (
∆c

∆s

)d

, (3.36)

where the charge gap∆c is the soliton mass in the sine-Gordon model, and is related to µ by

µ =
Γ(d/2)

πΓ(1 − d/2)

(

2Γ(ξ/2)√
πΓ(1

2
+ ξ

2
)

)d−2 (
∆c

∆s

)2−d
∆2
s. (3.37)

In all these equations,d = 1/2Kc is the scaling dimension of the fieldei
√

2πK−1
c Θ, andξ =

1/(2 − d). These mean-field relations are solved to give

∆c = ∆s

[

Jz⊥
∆s

1

2(d− 2)
tan

πξ

2

]
1

2−2d





πΓ(1 − d/2)

Γ(d/2)

(

Γ(1
2

+ ξ
2
)
√
π

2Γ(ξ/2)

)(d−2)




1

1−d

. (3.38)

The ratioTc/∆c which is often considered in the theory of superconductivity is plotted

as a function ofd in figure 3.3. Its numerical value in certain limits is:

Tc
∆c

(d = 0) =

√
2

8
≈ 0.177, (3.39)

Tc
∆c

(d = 1/2) =
3

16

√
3π(Γ(2/3)Γ(5/6))3

Γ(3/4)8
≈ 0.404. (3.40)

In the limitd→ 1 which corresponds to weak coupling, our expressions forTc and∆c diverge

in this approximation. However their ratio can still be evaluated. Writingx = 1 − d and
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expanding all the gamma functions as Taylor series inx gives us the BCS value

Tc
∆c

(d→ 1) =
1

2π
lim
x→0

[1 + (ln 2 + γ)x]
1

x =
1

π
eγ ≈ 0.567, (3.41)

whereγ ≈ 0.57722 is Euler’s constant.

3.3.4 Phase diagram in a magnetic field

A magnetic field affects the inter-chain interaction in the superconducting channel (3.7). In

this case the instability corresponding to the lattice directionsl should be taken at wave vector

2e(H[x̂× l])/c, wherex̂ is the unit vector along the chains. Therefore the RPA criterion for

the transition is by

1 =
∑

l

Jlχ
(0)
sc {k = 2e(H[x̂× l])/c} (3.42)

To keep the calculations as simple as possible, let us consider the simplest possible

situation when a given chain has four nearest neighbours with Josephson couplingsJz andJy
and the magnetic field lays in theyz plane. Combining equation 3.42 and equation 3.31 we

obtain the equation for the critical temperature:

C

(

Tc
Tc(0)

)(2−2d)

= Jz

∣

∣

∣

∣

∣

Γ(d/2 + iαbzHy/Tc)

Γ(1 − d/2 + iαbzHy/Tc)

∣

∣

∣

∣

∣

2

+ Jy

∣

∣

∣

∣

∣

Γ(d/2 + iαbyHz/Tc)

Γ(1 − d/2 + iαbyHz/Tc)

∣

∣

∣

∣

∣

2

C = (Jz + Jy)

∣

∣

∣

∣

∣

Γ(d/2)

Γ(1 − d/2)

∣

∣

∣

∣

∣

2

, α = evc/2πc (3.43)

We now discuss the solution of this equation which describesseveral interesting effects.

• A possibility of a re-entrance behaviour.

Let us consider the case when in-plane interactions are isotropic: Jz = Jy, bz = by and

the magnetic field is directed at 45o angleHz = Hy = H. This gives it the maximal

power to suppressTc. A numerical solution of equation 3.43 is plotted in figure 3.4 (a)

for various values of the scaling dimensiond. We see that there is a range of magnetic

fields for which the superconductivity exists in an intermediate range of temperatures.

To study the stability of these solutions one needs to have a good description of the

ordered state in magnetic field, which we hope to obtain in thefuture.

At Tc → 0 equation 3.43 can be solved analytically which allows us to extract the value

of critical field atTc = 0:

Hc(0) =
2πc

e

Tc(0)

bv

(

Γ(1 − d/2)

Γ(d/2)

)1/(1−d)
(3.44)

This is plotted in figure 3.4 (b) along with the numerical solution for Hmax
c .

• Anisotropy of the phase diagram.
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Figure 3.4: (a) The critical temperature as a function of magnetic field for various values of
d. (b) The critical magnetic field as a function ofd. We plot both the value ofH which gives
Tc → 0 and the maximum value ofH seen in graph (a). The magnetic field is measured in the
units of2eh̄bv/c.
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y

Figure 3.5: Angular dependence of the critical magnetic field. This is plotted ford = 1/2.
The graph is qualitatively similar for other values ofd. In actual fact, the system will be driven
to a CDW ground state before the SC transition temperature drops to zero - see the text.

Another prediction following from equation 3.43 is an anisotropy of the phase diagram.

This can be illustrated by an analytical solution of the critical field for whichTc → 0.

SettingTc → 0 in equation 3.43 we find

Jz
(αHybz)2(1−d) +

Jy
(αHzby)2(1−d) =

C

[Tc(0)]2(1−d)
, (3.45)

whereα is an unimportant constant factor. This is plotted in figure 3.5. We must be

careful to remember however that this is a first order mean field calculation, and further

corrections will give a critical flux in all directions, evenwhen the field is pointing

directly along one of the crystal axis.

• SC-CDW transition.

The above calculations are all calculated assuming we are ina parameter range such that

the ground state atH = 0 is superconducting. However, as we increase the magnetic

field and thus reduce the SC transition temperature, we eventually get to a regime where

TCDW > TSC as the CDW instability is not affected by the magnetic field. At this point

which can happen either by increasing magnetic field (figure 3.4) or by changing the

angle of the magnetic field (figure 3.5), we get a first order transition from a supercon-

ducting to a CDW state. The latter would be a very unusual effect to observe in a real

material.

3.4 Corrections to RPA

The analysis of the previous sections was based on the RPA. Inrealistic situations the number

of nearest neighbours is never large, so it is important to check how robust the RPA is. We

will calculate corrections to RPA in the simplest case case of zero magnetic field. We shall

also restrict ourselves toKc = 1 (d = 1/2 for both interactions).

The basic RPA calculation involves only the stronger of the two interactions - for clarity

let us again take this to be J. However as we mentioned before we would expect the presence of
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the other competing interaction of the same scaling dimension to also play a role. In particular

we expect there to be a mode with a gap ofJ − V , seen in equation 3.22 and in the two chain

model. This will be very important around the pointV = J as it will become massless thereby

increasing fluctuations and decreasing the transition temperature. This can be investigated by

looking at the first correction to the RPA formula - figure 3.1(c).

In terms of the fieldsφ andθ, this diagram can be expressed as

δχ = V 2z⊥
[

〈ei
√

2πΘ(a)ei
√

2πΦ(1)e−i
√

2πΦ(2)e−i
√

2πΘ(b)〉 − 〈ei
√

2πΘ(a)e−i
√

2πΘ(b)〉〈ei
√

2πΦ(1)e−i
√

2πΦ(2)〉
]

×〈e−i
√

2πΦ(1)ei
√

2πΦ(2)〉
+ J2z⊥

[

〈ei
√

2πΘ(a)ei
√

2πΘ(1)e−i
√

2πΘ(2)e−i
√

2πΘ(b)〉 − 〈ei
√

2πΘ(a)e−i
√

2πΘ(b)〉〈ei
√

2πΘ(1)e−i
√

2πΘ(2)〉
]

× 〈e−i
√

2πΘ(1)ei
√

2πΘ(2)〉, (3.46)

wherea,b are the start and end points and1,2 are the intermediate points to be integrated over.

Substituting in the expectation values from equation 2.4 and integrating gives the revised RPA

equation for the transition temperature:

1 =
Jz⊥
Tc

[

AJ0 + AJ1
J2z⊥
T 2
c

+ AV1
V 2z⊥
T 2
c

]

(3.47)

where the coefficients are given by

AJ0 =
1

π

∫ π

0
dτ
∫ ∞

−∞
dx

1

| sinh(x+ iτ)| =
1

2π
B2(1/4, 1/2),

AJ1 =
1

π3

∫ π

0
dτ1dτ2dτb

∫ ∞

−∞
dx1dx2dxb

1

| sinh(xb + iτb)|
1

| sinh(x12 + iτ12)|2

×
[

| sinh(x1 + iτ1)|| sinh(xb2 + iτb2)|
| sinh(x2 + iτ2)|| sinh(xb1 + iτb1)|

− 1

]

,

AV1 =
1

π3

∫ π

0
dτ1dτ2dτb

∫ ∞

−∞
dx1dx2dxb

1

| sinh(xb + iτb)|
1

| sinh(x12 + iτ12)|2

×




(

sinh(x1 + iτ1) sinh(x2 − iτ2) sinh(xb2 + iτb2) sinh(xb1 − iτb1)

sinh(x1 − iτ1) sinh(x2 + iτ2) sinh(xb2 − iτb2) sinh(xb1 + iτb1)

)1/2

− 1





(3.48)

with x12 = x2 − x1 and so on.B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is a Beta function.

The integrals are evaluated numerically by Monte-Carlo techniques [54] with values

calculated over finite volumes then scaled to infinity. The results are

AJ0 = 4.377,

AJ1 = 34.81 ± 0.02,

AV1 = −33.01 ± 0.02. (3.49)
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Figure 3.6: (a) A plot ofTc againstV andJ , (b) A cross section ofTc againstV along the line
V + J = 0.1. In these plots, we have takenz⊥ = 2 to allow these corrections to be clearly
seen, although for this approach to be valid, we requirez⊥ ≥ 3.

Hence the correction to the transition temperature is

Tc
AJ0Jz⊥

≈ 1 +
1

z⊥

[

0.42 − 0.40
(

V

J

)2
]

. (3.50)

This expression is valid forJ > V . If V > J , the expression is exactly the same, but with

V andJ interchanged. This is plotted in figure 3.6 and gives a dip near the critical point as

expected.

It is interesting to note that in the absence of the second interaction term, i.e.V =

0, these correction raise the transition temperature above the RPA value. This differs from

models of coupled spin chains where RPA tends to overestimate the transition temperature

[38, 39].

3.5 Single Particle Spectral Function and other experimen-

tal signatures

To help relate these results to experiment we will look at theevolution of the spectral functions.

These can be seen by Angle Resolved Photoemission Spectroscopy (ARPES) as we go from

one phase to the next.

3.5.1 Above the transition temperature

We begin our discussion above the transition temperature where the chains can be considered

uncoupled and the system shows one dimensional like behaviour. In this case, our model 3.2 is
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simply a Luther-Emery liquid [19]. The correlation functions in the spin-sector can be written

as a form-factor expansion [20] but results are only known for T = 0, and the first correction

for T << ∆s in [55]. Although finite temperature results are known in thecharge sector, the

convolution of this with the spin sector does not admit to easy analytical analysis. However, at

the Luther-Emery point,Kc = 1/2 (see section 2.1.4) where the spin sector can be rewritten in

terms of free fermions, a number of analytic results can be recovered. Details of this are found

in [56] and [43], here we limit ourselves here to a discussionof the overall gross features.

At the Luther-Emery pointKs = 1/2, the field operators in the refermionised form

can be thought of as spin soliton creation and annihilation operators. Hence the spin part of

the spectral function can be written as the sum of a coherent one spin soliton part and an

incoherent multi-soliton piece

As(k, ω) = Zs(k)δ[ω + Es(k)] +G(multi)
s (k, ω) (3.51)

where the multi-soliton piece atT = 0 is zero below the threshold energyω3 = 3Es(k/3). As

the solitons can be written as free fermions, their spectrumis

Es(k) =
√

∆2
s + (vsk)2. (3.52)

Away from the Luther-Emery point forKs < 1/2, soliton-antisoliton bound-states form which

will shift the threshold energy slightly.

The convolution with the charge sector (Ec(k) = vc|k|) gives the result

A(k, ω;T ) =
c2

π3

λ2
T

vc

(

a0

λT

)2θc+
1

2

(

2vs
a0∆s

)

3

8

×
∫

dq

[

1 − vs(k − q)

Es(k − q)

]

hθc+
1

2

[

ω + Es(k − q) + vcq

2πT

]

× hθc

[

ω + Es(k − q) − vcq

2πT

]

+ . . . , (3.53)

where the. . . refer to the 3 spin soliton and higher contributions andλT = vc/πT is the

thermal length. In this expression,

hθ(k) = Re

[

(2i)θB

(

θ − ik

2
, 1 − θ

)]

. (3.54)

Although this is calculated only at the Luther-Emery point,it is expected that the basic features

remain the same throughout the spin-gap region (and furthermore in the regionTc < T <

∆s, even when the spin sector is far more complicated). The shape of the spectral functions

is plotted in the way typical in ARPES as various Energy Distribution Curves (EDC’s) at

constant momenta and momentum distribution curves (MDC’s)at constant energy in figure

3.7, showing the effects of a spin-gap.

We see that in the MDC at the Fermi-level, it is hard to distinguish between this sys-
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Figure 3.7: The single spin soliton contribution,G1, to the MDCs atω = 0 (left) and EDCs
at k = 0 (right), of a Luther-Emery liquid(Ks = 1/2), with vc/vs = 3, ∆s/T = 3 and a)
θc = 0, b) θc = 0.2, and c)θc = 0.4. The asymptotic contribution of the three spin soliton
piece, to the EDCs, near its zero temperature thresholdω = −3∆s, is indicated by the dashed
lines. Taken from [56].

tem and a coherent electron-like peak broadened by temperature. However, in the EDC, the

asymmetry and long tails give away that this is a strongly interacting system.

3.5.2 The ordered Phase

The single-particle spectral function requires exciting both a spin and charge excitation within

the one dimensional chains. To excite a spin-soliton takes an energy∆s. In the three-

dimensional ordered phase, this then leaves a term in the Hamiltonian

U cos
[

√

2π/Kc(Θ
c
n − Θc

m)
]

cos
[√

2πΦs
n

]

cos
[√

2πΦs
m

]

, (3.55)

whereΦs
n has a soliton present. This is shown in figure 3.8. When one looks only at the charge

sector, the effect of the soliton is to change the sign of the interaction term on one side of the

soliton. This is compensated for by a soliton in the charge sector, which is bound to the spin

soliton. This turns out to have an energy1 ∆c/2 [57].

1As a brief aside, it is interesting to note that if only two chains are coupled, then atKc = 1 a collective mode
in both chains has zero energy so the total energy of the excitation is simply∆s. Because this involves modes in
more than one chain however, it can not be extended to the caseof an infinite number of chains.
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Figure 3.9: The temperature evolution of the spectral function. The dashed line depicts
A(kF , ω) at temperatureT = ∆s/3 > Tc for the parametersθc = 0.3, Ks = 1/2 and
vs/vc = 0.2. The solid line represents the spectral function at zero temperature. A coherentδ-
function peak onsets nearTc at energy∆0 = ∆s + ∆c(0)/2. Here we assume∆s/∆c(0) = 5.
The multi-particle piece starts at a threshold2∆c(0) away from the coherent peak. The exact
shape of the incoherent piece atT = 0 is schematic. Figure from [43].

Hence, the rest energy of an ’electron’ is

∆0 = ∆s + ∆c/2 ≈ ∆s, (3.56)

and this would be the gap seen in single particle spectroscopies, very different from∆c which

would be seen in Josephson tunnelling. Hence forT ≪ Tc ≪ ∆s, the one hole spectral

function has a coherent piece and a multiparticle incoherent piece,

A(k, ω) = Z(k)δ[ω − E(k)] +G(multi)(k, ω) , (3.57)

where

E(k) =
√

v2
sk

2 + ∆2
0 . (3.58)

This follows from the fact that the bound state of a spin soliton and a charge soliton has the

same quantum numbers as a hole. The multiparticle piece has athreshold slightly above the

single hole threshold atω = E(k)+2∆c. The evolution of this spectral function as one passes

through the phase transition is shown in figure 3.9.

To probe∆c, one would have to look at experiments involving pairs of electrons, such
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as Andreev tunnelling. In the context of sine-Gordon model,∆c is the soliton mass. Solitons

correspond to spatial changes in the superconducting phaseΘ and hence to vortices. Therefore

∆c is the minimal energy necessary to create a vortex. It shouldalso be noticed that atd < 1

the sine-Gordon model has not only solitons, but bound states which, being neutral, should be

interpreted as vortex-antivortex pairs. Atd < 1/2 the energy of the first bound state is smaller

than the soliton.

There are a number of experimental implications of there being two energy scales.

1. The gap seen in single-particle spectroscopies∆0 changes only slightly with temper-

ature, and furthermore is unrelated toTc. Physically, this is saying that it is the onset

of phase coherence and not the onset of pairing that is important for superconductivity.

This has been talked about experimentally in the context of high-Tc and the pseudo-gap

phase for many years now.

2. Experiments involving singlet pairs of electrons such asAndreev tunnelling would see

a gap much more related toTc.

3. The presence of two different correlation lengths implies that different measurements

of the order-parameter will be depressed over different distances. For example, near an

impurity which locally destroys the superconducting gap, the single particle density of

states will recover over a distanceξs, and this is what would be seen in for example

tunnelling microscopy. However, the magnetic core radius around a vertex as would be

seen inµSR would be of orderξc.

4. Because the superconducting state comes not from a Fermi-Liquid but from a state with

’pre-formed’ pairs, the temperature evolution of the excitation spectrum in the ordered

phase will be very different from a conventional superconductor. In BCS theory, the

quasi-particle energy is shifted by the opening of the gap sothe lifetimes of excitations

are strongly temperature dependent belowTc. In our case, the quasi-particles are already

there aboveTc, so it is only the spectral weight (and not the energies or lifetime) that is

strongly temperature dependent.

3.6 A Word about Two Dimensions

In two dimensions the RPA approach in the previous two sections must break down com-

pletely, as spontaneous symmetry breaking is forbidden by the Mermin-Wagner theorem. We

can see how this comes about by looking at figure 3.1(c). The correction we looked at in-

volved only bare couplings to the bare correlation function. The process of making these

lines ’thick’ involves much numerical complication and gives rise to only small corrections in

three or higher dimensions [38]. However in two dimensions,these corrections have infra-red

divergences and drive the transition temperature back downto 0.

Nevertheless we still get a transition in two dimensions: itis of the Kosterlitz-Thouless

[58, 59] type. Let’s look closer at Coulomb coupling in two dimensions. The Lagrangian for
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the coupled chains can be written

L =
∑

i

{

1

2
(∂µφi)

2 − J

∆−1
s

cos[β(φi − φi+1)]

}

. (3.59)

By making the approximation

− cosφ =
φ2

2
〈cosφ〉, (3.60)

which comes from the diagrammatic expansion of the vertex operator, we can write this as

L =
∑

i

{

1

2
(∂µφi)

2 + J̃(φi − φi+1)
2
}

, (3.61)

with the self-consistent relation

J̃ = J∆sβ
2〈cosβ(φi − φi+1)〉

= J∆sβ
2 exp







−β2 T
∑

n

∫

dq⊥
2π

dq‖
2π

1 − cos q⊥

ω2
n + q2

‖ + 4J̃ sin2(q⊥/2)







. (3.62)

At T = 0 this relation becomes

J̃ = J∆sβ
2 exp

(

−β
2

2π
ln

∆s√
2J̃

)

= J∆sβ
2

(

2J̃

∆2
s

)d

, (3.63)

whered = β2/4π as before. AsT increases, the self-consistent value ofJ̃ will decrease, but

for an estimate of the behaviour of the transition temperature this relation will suffice.

The Kosterlitz-Thouless transition temperature [13, 59]TKT ∼
√
J̃ hence we have

TKT ∼ ∆s

(

J

∆s

)

1

2−2d

(3.64)

giving the same order of magnitude as the ordering temperature in higher dimensions (3.32).

Hence in two dimensions, although the nature of the transition is different, the energy

scales involved are the same as in higher dimensions. The only major difference occurs when

approaching the SU(2) critical point where the presence of anon-Abelian symmetry in two

dimensions means that the transition temperature will dropto zero at this point. The qualitative

phase diagram in two dimensions is shown in figure 3.10.



CHAPTER 3. SUPERCONDUCTORS 45

Tc

V/J

SC CDW

Figure 3.10: The modified phase diagram for our model in two dimensions

Figure 3.11: Structure ofSr14Cu24O41 after [60]. The compound consists of alternating planes
of copper oxide chains and ladders.
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3.7 Example experimental systems

3.7.1 The telephone number compound

The class of materialsSr14−xCaxCu24O41 are built up from alternating layers of weakly cou-

pledCuO2 chains andCu2O3 two-leg ladders. The material shows a spin gap in both of these

one-dimensional units [61] making it a prime candidate for application of our model. Because

our only requirement in the spin-sector was that it was gapped, our theory is still valid even if

the superconductivity originates from the ladders.

Forx ≥ 11.5, these materials show superconductivity under pressure [62, 63] and NMR

studies [61] also indicate possible charge ordering at low temperature and ambient pressure.

Recent measurements of the electrodynamic response [64] have confirmed the presence of

CDW in this class of compounds. One of the most interesting measurements however is the

DC resistivity [63], which shows a number of features:

• In Sr2.5Ca11.5Cu24O41 below about 4 GPa pressure, the temperature dependence of the

resistivity perpendicular and parallel to the ladders is different. This indicates that differ-

ent mechanisms are governing the transport in these two directions, consistent with the

spin-gap concept. Above 4 GPa the temperature dependence ofthe resistivity anisotropy

becomes weak, which indicates that single particle hoppingbetween ladders is now

possible, i.e. the spin gap has vanished and we have a crossover to a conventional two-

dimensional metallic behaviour. This is consistent with the pressure dependence of the

spin gap observed in recent NMR experiments [60].

• At sufficiently high temperatures, coherent inter-ladder charge dynamics is also seen.

The temperature where this occurs is consistent with the NMRdeterminations of the

spin gap, so we may conclude that the transport properties ofthis material are indeed

governed by weakly interacting one-dimensional spin-gapped units.

In figure 3.12 a phase diagram of this material is shown [65]. At low calcium doping,

there is charge ordering before spin ordering, so our model is inapplicable. However under

increased levels of calcium doping or pressure, the spin gapis the largest energy scale in the

model meaning that our theory may describe the nature of the transition between the CDW

and the SC phases.

In our model, takingKc ≈ 1 we have

Jeff ∼ (∆s/Λ)t2/∆s,

Veff ∼ (∆s/Λ)V0. (3.65)

The size of the spin gap is reasonably constant as we change calcium doping and pressure,

however under pressure the hoppingt will increase which makes the inter-ladder Josephson

coupling stronger until eventually the material becomes a superconductor instead of having
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Figure 3.12: Phase diagram for the spin gap and superconducting transition temperature
against Ca doping inSr14Cu24O41. After [65].

.

a CDW ground state. Unfortunately, the complexity of the material as well as having both

physical and chemical pressure makes it difficult to say anything more qualitative than this.

It would be interesting for this material to measure the single-particle gap in the su-

perconducting region. This may be achieved via optical conductivity measurements. For the

Luttinger liquid parameterKc ≈ 1, our model then predicts the ratioTc/∆c to be the non-BCS

value of order of0.4.

Also in this material,Tc is very small in comparison to the Fermi energyv/a0, so the

magnetic field effects on the superconducting state should be strong. This would be an inter-

esting experiment to perform.

3.7.2 β-Sodium Vanadate

The phase diagram (figure 3.14) of the compoundβ-Na0.33V2O5 is remarkably similar to

that of Sr14Cu24O41. Structurally, the material is quasi-one-dimensional (figure 3.13) and

contains both ladders and chains. At ambient pressure, there is a metal-insulator transition

at 134K, and although the low temperature phase is charge ordered, it isn’t a simple2kF
charge-density wave [66]. At a lower temperature, T=22K there is a further transition into a

canted-anti-ferromagnetic state. It was recently discovered [67] that under pressure, there is a

superconducting state with transition temperatureTc = 8K. This is very interesting as it is for

the stoichiometric compound without any chemical doping, and also it is the first observation

of a superconducting state in the Vanadium Oxides.

It is not yet known if there is a spin-gap under high pressuresabove the superconducting

transition temperature, but there is some evidence that this may be the case:

• By simply extrapolating the anti-ferromagnetic ordering temperature in figure 3.14, it

will eventually exceed the charge gap.
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Figure 3.13: Structure ofβ-Na0.33V2O5. After [68]. Similar to the previous section, chains
and ladders are both present - this time of vanadium oxide.

.

Figure 3.14: Pressure-Temperature Phase Diagram ofβ-Na0.33V2O5. After [67]. The triangles
obtained from the Neel temperature are indicative of the spin gap in the system, but this has
only been measured for low pressure. The squares are the charge-ordering temperature, so
representative of the charge gap, and the circles are the boundary of the superconducting
phase.
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• We additionally have evidence from a number of other materials that the spin gap does

not significantly change with external pressure.

• The similarity between the phase diagrams 3.14 and 3.12 suggests that the supercon-

ducting state could be described by our theory.

This is a very interesting material to study experimentally, and more data should be available

soon.



Chapter 4

Mott Insulators

Wisdom is knowing what to do next; virtue is doing it.

–David Star Jordan

4.1 Physical Motivation

The Bechgaard salts TMTSF2X and TMTTF2X were the first organic compounds to show

superconductivity, and furthermore have a remarkably richphase diagram showing all sorts

of properties interesting to the theorist, for example metallic non-Fermi-liquids or Mott In-

sulators. Figure 4.1 shows the structure of the building blocks of these materials, and figure

4.2 shows a unified experimental phase diagram for these properties. For a review of these

properties, see [69, 70]. However, the behaviour gets even stranger when a magnetic field is

applied. The magnetoresistance in (TMTSF)2PF6 at low temperatures in its metallic state was

measured in 1998 by Chashechkina and Chaikin [71] and revealed some surprising features.

The magnetoresistance showed a striking angular dependence, with large dips at the

’magic-angles’ where the the ratio of the flux through two of the crystal planes is a rational

number with a small denominator - Figure 4.3. Basically thismeans that at high fields, the

Figure 4.1: Structure (after [69])

50
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Figure 4.2: Unified experimental phase diagram for the TM compounds (from [69]). Either
pressure or chemical changes (increasing pressure corresponds to going from the TMTTF to
the TMTSF family and changing the anions) yields the same phases [MI: Mott insulator, LL:
Luttinger liquid metal, FL: Fermi liquid metal, SP: spin-Peierls, AF: antiferromagnetic spin-
density wave, SC: superconducting]. The TMTTF family is insulating at ambient pressure
whereas the TMTSF family shows good metallic behaviour at room temperature.

.

magnetoresistance depends on the orientation of the field with respect to the crystal axis and

not direction of current flow. Magic-angle effects had been predicted beforehand by Lebed

[72, 73], but he predicted peaks in magnetoresistance at themagic angles rather than dips

which are seen. Furthermore, the temperature dependence ofthe magnetoresistance is very

curious. Without a magnetic field applied, the temperature dependence shows a conducting

like behaviour (dR/dT > 0). As the magnetic field is applied, this turns to insulating like

(dR/dT < 0), but at the magic angles, it returns to conducting like.

This led Chashechkina and Chaikin to propose [74] that such systems could be modelled

as Mott-insulating chains which become conducting when inter-chain hopping is taken into

account. A magnetic field acts to dephase this inter-chain coupling at all but the magic angles,

and therefore we should obtain the metal-insulator transition as a function of angle as is seen

in experiments.

To test this proposal, we choose a simple model of a one dimensional Mott Insulator [75]

and treat the inter-chain coupling within the Random Phase Approximation (RPA). Although

going beyond RPA as in the previous chapter would be nice, thedifficulty of calculating multi-

point correlation functions in the one dimensional Mott Insulator model relegate this as future

work.

We start by introducing the model in the absence of the field, then show how the equa-

tions are modified when an external magnetic field is present.We then go on to calculate

numerically the single particle density of states for certain choices of the parameters which

are of physical interest. In the presence of interchain hopping, but the absence of the mag-

netic field, there is a coherent mode in the system. We show howLandau levels form in this

coherent mode of the system, and see that the density of states depends strongly on the angle
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Figure 4.3: Magnetoresistance of(TMTSF)2PF6 at low temperature (T=1.2K) and high pres-
sure (p=9.2kbar) as a function of angle of magnetic field. Thec-axis is the least conducting
axis, the graphs are similar for the magnetoresistance of the other axis. The different curves
are for different magnetic fields, the strongest being the top curve at 7.8T. After [74].

of the applied magnetic field. However, we find that our simplemodel is not strong enough to

reproduce the experimental results, even qualitatively. We suggest some reasons for this, and

propose some additions to the model.

4.2 The Model and 1D Green’s Function

The model we consider is the quasi-one-dimensional Hubbardmodel, a prototypical lattice

model of correlated electrons:

H =
∑

l

H
(l)
1D +

∑

l,m,j,σ

tlm c
(l)†
j,σ c

(m)
j,σ + H.C.

H
(l)
1D = −t

∑

j,σ

c
(l)†
j,σ c

(l)
j+1,σ + h.c. + U

∑

j

n
(l)
j,↑n

(l)
j,↓ . (4.1)

Herel,m label chains,j labels the sites along a given chain, and we will assume we areat half

filling so Umklapp processes are important. As usual,H1D is the Hamiltonian of uncoupled

chains and the full Hamiltonian involves adding an inter-chain hopping term to this.

The 1D retarded Green’s function was calculated in the field-theory limit using the form

factor method (see section 2.2.2) by Essler and Tsvelik [75]. Here, we reproduce the main

points of their derivation.

The Hamiltonian 4.1 can be bosonised as in section 2.1, resulting in independent spin

and charge sectors. In this case, the spin-sector is a described by a free boson and the charge

sector by a sine-Gordon model (c.f. the opposite in the previous chapter):

Ls =
1

2

[

v−1
s (∂τΦs)

2 + vs(∂xΦs)
2
]

,
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Lc =
1

2
[v−1
c (∂τΦc)

2 + vc(∂xΦs)
2] + λ cos(βΦc) , (4.2)

wherevs = vF − Ua0/2π, vc = vF + Ua0/2π and β2 = 8π. If we consider further

density-density interactions (eg nearest neighbour repulsion) then we get the same form for

the bosonised Lagrangian, but withβ2 < 8π.

The spin-sector is trivial as it is a free massless boson. In the charge sector, the first

non-vanishing form-factor is between the vacuum and a scattering state of one spinon and one

antiholon. Techniques of integrability require this form factor to be a constant [75]. Combin-

ing this with Lorentz invariance gives the first term in the form-factor expansion of the charge

part of the single-particle Greens function to be (up to a numerical factor)

∫ ∞

−∞
dθ eθ/2 exp

[

−∆τ cosh θ − i∆
x

vc
sinh θ

]

=
exp[−∆

√

τ 2 + x2v−2
c ]

√
vcτ + ix

, (4.3)

where∆ is the single particle spectral gap which is half the gap seenin optical spectroscopy

experiments. The leading corrections to this involve states containing one holon and two

antiholons or vice versa and are thus of orderO(e−3∆r). Combining 4.3 with the free spin

sector gives

〈Ψ̄σ(x, τ)Ψ̄
†
σ(0, 0)〉 ≃ Z0

2π

exp[−m
√

τ 2 + x2v−2
c ]

√

(vsτ + ix)(vcτ + ix)
, (4.4)

where the constantZ0 = 0.9218 is chosen so that the field operators satisfy the standard

conformal normalisation.

This can then be Fourier-transformed to give the result for the retarded Green’s function

G(R)(ω, q) = −Z0

√

2

1 + α

ω + vcq
√

m2 + v2
cq

2 − ω2

×
[

(

m+
√

m2 + v2
c q

2 − ω2

)2

− 1 − α

1 + α
(ω + vcq)

2

]− 1

2

(4.5)

whereα = vs/vc andZ0 = 0.9218. For spin velocity equal to charge velocity, it simplifies to

G1D(q, ω) =
Z0

ω − q

(

1 − ∆√
∆2 + q2 − ω2

)

(4.6)

For the rest of this chapter we stick withvc = vs for simplicity, and because the difference in

charge and spin velocities is unlikely to significantly affect the properties we are interested in.

In the first approximation, we assume that the 1D Green’s function in a magnetic field

is not changed significantly from this.
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Figure 4.4: Dispersion of the coherent mode along the chain direction for several values of
x = −Z0t⊥(~k).

4.3 Inter-chain coupling and the magnetic field

4.3.1 RPA in the absence of a magnetic field

We use the usual RPA approximation (see section 3.3.2) to addour weak inter-chain hopping

G−1(ω; q,~k) = G−1
1D(ω, q) + t⊥(~k). (4.7)

The square-root singularity in the one-dimensional Green’s function will give rise to a coherent

mode in the full Greens function for arbitrarily smallt⊥ at

G−1
1D(ω, q) + t⊥(~k) = 0. (4.8)

For t⊥/∆ > 3.61, this equation has a solution forω = 0 so the coherent mode will be soft and

the three-dimensional system will be a metal. This is shown in figure 4.4.

We also show in figure 4.5 the shape of the Fermi surface when the inter-chain hopping

puts the Mott insulator into its metallic state. We see that we obtain little pockets of Fermi

surface in this state. We should point out that there is another calculation for the same model

using Dynamical Mean Field Theory (DMFT) rather than the RPAapproximation [76]. This

gives very different results, where the Fermi-surface endsup very close to the non-interacting

system. There is no reason why one should expect these two approximations to give the

same results, RPA is exact in the infinite connectivity limit, DMFT is exact in the infinite

dimensional limit. It is not possible to say which result should be closer to that of a real

three-dimensional system without further calculation which at this time has not been done.



CHAPTER 4. MOTT INSULATORS 55

Figure 4.5: Fermi Surface from RPA calculation when the system is driven into a metallic
state by the interchain coupling. We see that we get little pockets of Fermi-surface.

4.3.2 Magnetic field parallel to chain direction

The magnetic field will modify the hopping term by the Peierlsfactor p → ~p − e ~A/c [77].

We will use units wheree = c = 1. This will give rise to an effective inter-chain hopping.

Thus for an appropriate range of baret⊥, adding a magnetic field could cause a metal-insulator

transition.

Choose the vector potential so thatAx = Hy, Ay = 0, Az = 0. This changestx →
txe

iHy. The RPA equation thus becomes

(

G−1
1D(ω, q) + txe

iHŷ + ty
)

G(ω; q, kx, ky) = 1, (4.9)

whereŷ = ∂/∂ky. This is equivalent to the Hofstadter problem of an electronon a two dimen-

sional lattice in a magnetic field. Thet⊥ in the denominator of the RPA equation is replaced

by its eigenvalues in the Hofstatdter problem [78]. Fortx ≈ ty, these eigenvalues have a very

intricate fractal like structure, however this rapidly disappears as the system becomes more

anisotropic. The eigenvalues of the Hofstadter problem areplotted in figs 4.6, 4.7 and 4.8.

The properties of the coupled Mott insulators then depend onthese eigenvalues. In

particular, there will be a strong dependence on the largesteigenvalue: if this is above the

single chain gap then the electron-like propagating mode inthe chain direction, given by

G−1
1D(ω, q) = EHofstadter will have low energy excitations. However as the strength ofthe

magnetic field changes, the largest eigenvalue also changes, and if this falls below the gap,

then the coherent electron-like mode will be gapped, which will drastically affect the transport

properties.

The possibility of seeing any of this fractal structure within coupled Mott insulators is

remote, as the eigenvalues will be smoothed out by dispersion in the chain direction, as well
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Figure 4.6: Eigenvalues against magnetic field,tx/ty = 1. There is an intricate fractal-like
pattern.

Figure 4.7: Eigenvalues against magnetic field,tx/ty = 0.5.

Figure 4.8: Eigenvalues against magnetic field,tx/ty = 0.2. Most of the fine structure has
gone.
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as by any anisotropy in two interchain hopping terms. This section is included mainly as a

model curiosity than as any experimental predictions.

4.3.3 Magnetic field perpendicular to chain direction

In the experiments, the magnetic field was perpendicular to the chain direction. In this case,

we pick the vector potentialAx = Hyz, Ay = −Hxz, Az = 0. In an external magnetic field,

momentum is no longer a good quantum number, so the Green’s function becomes a matrix,

G(ω, k⊥; q, q′).

The modified RPA equation is

G−1
1D(ω, q)G(ω, k⊥; q, q′)

− tye
ikyG(ω, k⊥; q −Hx, q

′)

− tye
−ikyG(ω, k⊥; q +Hx, q

′)

− txe
−ikxG(ω, k⊥; q −Hy, q

′)

− txe
ikxG(ω, k⊥; q +Hy, q

′)

= δ(q − q′). (4.10)

ForHx/Hy rational, this is a matrix equation and can be solved numerically. In order to

control the singularities in numerics, the 1D Green’s function is modified by

G−1
0 → G−1

0 + iη, (4.11)

where it is understood thatη → 0+. At a qualitative level, we can think ofη as a temperature

like broadening parameter.

4.4 Density of states

The easiest physical quantity to investigate is the single particle density of states (DoS)

ρ(ω) = −ℑ
∫

dk⊥dqG(ω, k⊥; q, q). (4.12)

In the absence of inter-chain coupling, the density of states is zero belowω = ∆. In

the presence of inter-chain coupling, a coherent mode formsin this region and the Mott gap is

filled in. In the presence of a magnetic field, this coherent mode splits into Landau levels, as

shown in figure 4.9.

The finite width of the Landau levels is due to the third dimension coupling. With a

cosine dispersion, their shape is given by

ρ(ω) =
∑

ωLL

1
√

t2z − (ω − ωLL)2
, (4.13)
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Figure 4.9: The variation of the density of states with the broadening parameterη.

where the sum is over the positions of the Landau levelsωLL. This is clearly demonstrated in

figure 4.10 where the third dimension hopping is less than theLandau level splitting.

We can now see how changing the angle of the magnetic field influences the relative

width of each Landau level - figure 4.11. The hopping parameters tx andty here are chosen to

give an anisotropy similar to the experimental value, and have a total magnitude that puts the

system just on the metallic side of the metal-insulator transition in the absence of the external

field.

The question of low temperature DC transport depends on the density of states at the

Fermi-levelω = 0. This is plotted in figure 4.12 as a function of angle of the applied field. We

see a very strong variation with the angle. We see that this variation becomes even stronger as

the broadening variableη → 0 in figure 4.13. We also see that for lower magnetic fields, the

shape becomes more interesting. Some lower magnetic fields are plotted in figure 4.14.

In figure 4.16 we can how the DoS varies withη at lower magnetic fields. Where the

density of states rises with decreasingη is a metal and where it decreases with decreasingη is

an insulator. So on this figure we can clearly see metal-insulator transitions as the angle of the

magnetic field is varied.

4.5 Interpretation and Extensions to the model

The results of this simplified model can be interpreted as follows:

• The one-dimensional chains are Mott insulators, with a single-particle gap, and no

electron-like excitations.

• Adding interchain hopping to these chains generates a coherent mode. Depending on

the strength of the interchain terms, this mode may be gapped, or it may become soft in
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Figure 4.10: Demonstrating the shape of the density of states in the limit of Landau-level
splitting greater than the third dimension coupling
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Figure 4.14: The variation of the density of states at the Fermi level with angle of magnetic
field.
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Figure 4.16: The variation of the density of states with magnetic field at different broadening
parameters

which case we have a metal-insulator transition.

• Adding a strong magnetic field perpendicular to the chain direction causes this mode

to split into Landau ’bands’ (because we are in a 3D system, not 2D). When looking

at simply the density of states and integrating over all momenta, the position of these

bands depend both on the strength and the angle of the magnetic field. This can cause a

metal-insulator transition as the angle varies.

• This metal-insulator transition however depends on the exact positions of the Landau

levels which in turn depends on the strength of the magnetic field and so will not repro-

duce magic angle effects where the position of the dips depend only on the angle and

not on the strength of the magnetic field.

It may be that looking at the single particle density of states is too simplistic a view

and if we start looking at conductivity then the magic angle effects will occur. However, it

is not obvious that one would be able to reproduce the experimental results with this model.

The idea that the magnetic field dephases the interchain hopping and therefore affects a metal

insulator transition is correct. However, the material hasvery strong anisotropy in theb and

c directions and within the RPA approximation, this means there is very little effect of the

third coupling as they are in some sense just summed together. Going beyond RPA takes

account of hopping off a chain and back onto the same chain. Sohere, the changes in phase in

hopping from the magnetic field become much more important sothis may reproduce magic

angle effects. However, the problems of calculating the multi-particle correlation functions

in the 1D case along with the extra difficulty of applying interchain perturbation theory in a
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magnetic field means that this is a difficult problem for future thought. The results of this

chapter however show that the idea is promising, although wedon’t yet have the best way to

tackle this problem.



Chapter 5

The quantum Ising model

The power of accurate observation is frequently called cynicism by those who

don’t have it. –George Bernard Shaw

The Ising model is a generic model for many quantum and classical systems. Besides

extensive applications to spin systems (here we refer the reader to [79, 80, 81]), the model

is also used to describe interacting electric dipoles (likein systems with orbital degrees of

freedom [82]) or arrays of interacting Josephson junctions(see, for example [83]). Reduced

dimensions are the most interesting because here the model exhibits strongest correlations.

In one dimension the quantum Ising model (see equation 5.1 below) is exactly solvable

by means of Jordan-Wigner transformation which converts the spin Hamiltonian into a Hamil-

tonian of non-interacting fermions. In general the spectrum has a gap which is closed when

the transverse magnetic field is equal to the exchange integral (g = 0). There is also an exact

solution when the magnetic field has az-component, although only when thex-component is

equal toJ [84]. This solution predicts a rich spectrum with as many as eight particles and a

hidden E8 symmetry. An interesting question is whether some of this fascinating physics may

survive in realistic systems which are almost never truly one-dimensional. In this chapter, we

will introduce a quasi-one-dimensional quantum Ising model, and show that in certain regions

of parameter space, one-dimensional effects are clearly visible [2].

We begin by reviewing the many fascinating properties of theone dimensional quantum

Ising model. We then introduce the quasi-one-dimensional model and show how the inter-

chain coupling as usual gives rise to a finite temperature ordered phase. We calculate the

phase diagram within the RPA approximation and then go on to look at correlation functions

in the ordered phase. We discover that deep in the ordered phase, the correlation functions are

very one-dimensional in character, allowing the possibility of seeing some of the physics of

the quantum Ising chain in real three dimensional materials. We show that Sodium Vanadate is

a good candidate material for description by our model, and finish off by a brief aside linking

our work to the three dimensional classical Ising model.

64
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5.1 The one dimensional quantum Ising model

5.1.1 The model atT = 0

A full review of all the work done on the one-dimensional quantum Ising model is the subject

of an entire book by itself, see for example [79, 80, 81]. Herewe give a concise, self contained

but by no means complete review of the model, concentrating in particular on the results that

will be useful later.

The quantum Ising model was first introduced by De Gennes [85]to model the order-

disorder transition in double-well ferroelectric materials, for example KH2PO4. Each proton

of the hydrogen bond can occupy one of two minima of a double well created by the oxygen

atoms. These two possibilities are are represented by a pseudo-spin at each site, withσz =

+1/2 corresponding to one of the minima andσz = −1/2 the other. The operatorσx is then

a tunnelling term between the two minima; including also electrostatic dipolar interaction

between neighbouring sites gives the effective low-energypseudo-spin Hamiltonian

H1D = −J
∑

n

{

σznσ
z
n+1 + (1 + g)σxn

}

. (5.1)

The model shows competition between the ordering termJ and the tunnelling termJ(1 + g).

This model has a hidden symmetry, involving dual fields. Define a dual lattice{n+1/2}
with fields defined by

µzn+1/2 =
n
∏

j=1

σxj ,

σzn =
n−1
∏

j=1

µxj+1/2, (5.2)

so that

µzn−1/2µ
z
n+1/2 = σxn,

σznσ
z
n+1 = µxn+1/2. (5.3)

In terms of the new variables, the Hamiltonian preserves itsform

H1D = −J(1 + g)
∑

n

(

µzn−1/2µ
z
n+1/2 +

1

1 + g
µxn+1/2

)

. (5.4)

We see that the self-duality point isg = 0 - as we will show later this corresponds to a quantum

phase transition. Theµ fields are sometimes known as the disorder operators.

The model can be solved by a Jordan-Wigner transformation. We write

σxn = 2a†nan − 1,
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Figure 5.1: Phase Diagram of model (5.1). AtT = 0 there is an ordered phase forg < 0
which has〈σz〉 6= 0. For T = 0 andg > 0, the system is a quantum paramagnet, and by
the duality 5.2, we have〈µz〉 6= 0 in this region. At finite temperature, long range order is
forbidden by the Mermin Wagner theorem. There are crossovers (given by the dashed lines)
where the single-particle energy gap∆ ∼ T between the low-temperature behaviour and a
universal quantum critical regime.

σzn = (−1)n−1 exp



iπ
n−1
∑

j=1

a†jaj



 (a†n + an), (5.5)

where the Fermi operatorsa satisfy the usual anti-commutation relations

{

an, a
†
m

}

= δnm, {an, am} = 0. (5.6)

The Hamiltonian becomes quadratic

H1D = J
∑

n

[

−(a†n − an)((a
†
n+1 + an+1) + (g + 1)(a†n − an)(a

†
n + an)

]

, (5.7)

which can be easily diagonalised to give the spectrum

ǫ(k) = 2J
√

g2 + 4(g + 1) sin2(k/2). (5.8)

We see that this is gapless atg = 0 where the model is critical. Forg < 0 the model is an a

’quantum ordered’ phase where〈σz〉 6= 0 at T = 0. For g > 0 it is a ’quantum disordered

phase’ where in fact〈µz〉 6= 0 atT = 0. The phase diagram is shown in figure 5.1.

Although we have mapped the model on to free fermions and thereby solved it exactly,

it is still not easy to extract spin-spin correlation functions because our transformation was

non-local in space. The correlation functions are most easily calculated in terms of a form

factor expansion - see section 2.2.2 and also [86].

The relevant minimal form factors were calculated in section 2.2.2:

F
(n)
min(θ1, . . . , θn) =

∏

i<j

tanh

(

θi − θj
2

)

, (5.9)
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wheren is odd for correlators ofσz and even for correlators ofµz (in the disordered phase).

To lowest order, the correlation function is

χ1D(ω, k) =
Z0(ma0/v)

1/4

ω2 − (vk)2 −m2
, (5.10)

whereZ0 = 1.8437 is fixed by the conformal normalisation 5.21 of the field operators. This

is valid for smallω. In real space, it corresponds to long distance asymptotics

χ1D(r) =
Z0(ma0/v)

1/4

π
K0(mr) +O(e−3r) (5.11)

The next term in the form factor expansion, the three particle contribution can be repre-

sented as

χ3(s
2)

χ1(s = 0)
=

1

3

∫ dx

4π

∫ dy

4π

f(2x)f(y + x)f(y − x)

(s/m)2 − [1 + 4 coshx(cosh x+ cosh y)]
,

f(x) = tanh2(x/2), (5.12)

wheres2 = ω2− (vk)2 and is plotted in Fig. 5.2. The imaginary part of this term (which is the

contribution to the structure factor) and of all higher terms in the series is zero belowω = 3m,

however all terms in the expansion contribute towards the real part atω = 0. Fortunately

the contribution from higher order terms1 are negligible at smalls (see e.g. [88]). We see

explicitly in this case thatχ3(s = 0)/χ1(s = 0) = 0.0002 so that 5.10 is indeed a very good

approximation for smalls.

5.1.2 The model at finite temperature - scaling behaviour

The correlation functions at finite but low temperature can be well approximated[79] by adding

the quantum dephasing time,τψ, into equation 5.10:

χ1D(ω, k) =
Z0(ma0/v)

1/4

(ω + i/τψ)2 − (vk)2 −m2
. (5.15)

1In fact, for this model it turns out one can sum all the terms inthe series and write the result exactly in terms
of the solution of a Painleve equation [86]:

〈σ(r)σ(0)〉 = sinh
χ(s)

2
exp

{

−1

4

∫

∞

s

duu

[

(

dχ

du

)2

− sinh2 χ

]}

(5.13)

wheres is the scaling variables = mr/2 andχ(s) is a solution of the radial sinh-Gordon equation

d2χ

ds2
+

1

s

dχ

ds
= 2 sinh(2χ) (5.14)

which under the transformationη = e−χ is equivalent to the Painleve III equation [87]. The abilityto write
correlation functions in terms of non-linear differentialequations seems to be specific to this model, and although
a very nice result, is not that useful in terms of extracting low energy behaviour.
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Figure 5.2: The three particle contribution to the dynamical susceptibility for a single chain
normalised to the one-particle contribution ats = 0.

The quantum dephasing time can be estimated in a semi-classical approximation. For an

excitation, the decay rate will be given by

1

vkτk
∼ e−ǫk/T . (5.16)

The dephasing time is given by summing over all of these

1/τψ =
2

π

∫ ∞

0
dk
dǫk
dk

e−ǫk/T

=
2

π

∫ ∞

m
dǫke

−ǫk/T

= (2T/π)e−m/T . (5.17)

See [79] for a more detailed calculation.

5.1.3 The critical model in a magnetic field

Adding an external field to the model 5.1 gives

H1D =
∑

n

{

−J‖ [σz(n)σz(n + 1) + (1 + g)σx(n)] + hσz(n)
}

, (5.18)

which turns out to be integrable atg = 0 [84]. The details are messy, but it can be shown

that the model has a hiddenE8 symmetry, and an infinite number of conserved charges. The

solution has eight different particles, whose masses and weights were calculated in [89] and

are listed in table 5.1.
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mi/m1 Zi

1.000 0.247159
1.618 0.0690172
1.989 0.0209579
2.405 0.0122653

mi/m1 Zi

2.956 0.0021898
3.218 0.0011328
3.891 0.0001623
4.783 0.0000055

Table 5.1: The masses and weights of the particles of the one-dimensional quantum Ising
model in a magnetic field (after [89]). The first three particles lie below the incoherent contin-
uum which begins atω = 2m1.

gc

h = 0

g

T

0

h = 0

QCP

ordered  phase

Figure 5.3: Expected Phase Diagram of model (5.20); the order parameterh ∼ 〈σz〉. Esti-
mates ofgc andTc(g = 0) are given by equation 5.27 and equation 5.26 respectively. In the
vicinity of g = 0, T = 0 the physics is well described by model 5.18.

5.2 The quasi-one-dimensional model

Now we go on to consider the quasi-one-dimensional (meaningas usual weakly coupled one-

dimensional chains) quantum Ising model described by the following Hamiltonian:

H =
∑

j

H
(j)
1D +

∑

i,j,n,m

Jnm(i− j)σzi (n)σzj (m), (5.19)

H
(j)
1D = −J‖

∑

n

{

σzj (n)σzj (n + 1) + (1 + g)σxj (n)
}

, (5.20)

wherei, j label the chains,n,m label the sites on the chain andσ are the Pauli spin operators.

For simplicity we discuss the case whereJnm(i − j) = J⊥(i − j) if n = m and0 otherwise,

although the extension to the more general case follows trivially.

We would expect a non-zero inter-chain coupling to extend the ordered region to finite

temperatures and to shift the critical coupling tog 6= 0 as shown schematically in figure 5.3.

The spectrum and dynamics of the model close to the transition line are very well un-

derstood [90]. The transition itself falls into the 3D Isingmodel universality class and the

Quantum Critical Point (QCP) falls into the 4D Ising model universality class. We concen-

trate our attention on the region of phase diagram well belowthe transition line where new

non-universal physics can be found. We will demonstrate that non-trivial physical effects are

possible in this region.
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Although model 5.20 is a lattice model, we will be working in the field theoretic limit

where we fix the normalisation of the magnetisation operatorby the standard conformal field

theory condition:

χ1D(τ, x) = 〈σ(τ, x)σ(0)〉 =
(a0/v)

1/4

|r|1/4 , |r| → 0, (5.21)

wherer2 = τ 2 + (x/v)2, τ is the Matsubara time,v = J‖a0 is the on-chain velocity anda0 is

the lattice spacing in the chain direction.

There are three energy scales in this problem: the on chain couplingJ‖, the spectral gap

for a single chainm = |g|J‖, and the inter-chain couplingJ⊥. In order to treat the model as

weakly coupled chains we must haveJ⊥ ≪ J‖ and in order to apply the continuous limit field

theoretic techniques to solve the uncoupled chains, we musthavem ≪ J‖. However,m and

J⊥ can both be of the same order of magnitude.

5.2.1 The Phase Diagram

To estimate the critical temperature, we use the RPA to calculate the three dimensional sus-

ceptibility

χ(ω, k;k⊥) = [χ−1
1D(ω, k) − J⊥(k⊥)]−1, (5.22)

and then look forω = 0 divergences in the correlation function which signify a developing

instability. In this expression,χ1D is the susceptibility of a single chain:

χ1D(ω, k) = −i
∑

n

∫ ∞

0
dteiωt−ikn〈[σz(t, n), σz(0, 0)]〉. (5.23)

We begin by considering the lineg = 0 where the uncoupled chains are critical. We

showed in section 2.3 that at finite temperature the spin-spin correlation function 5.21 becomes

χ1D(τ, x) =

[

(πTa0/v)
2

sinh(πT (x/v − iτ)) sinh(πT (x/v + iτ))

]1/8

. (5.24)

The Fourier transform (5.23) gives the dynamic susceptibility [91]

χ1D(ω = 0, k = 0) =
a0

v
(2πTa0/v)

−7/4 sin
π

8
B2(1/16, 7/8), (5.25)

whereB(x, y) = Γ(x)Γ(y)/Γ(x+y) is the Beta function2. From equation 5.22 we extract the

transition temperature:

Tc/J‖ = 2.12

[

z⊥J⊥
J‖

]4/7

. (5.26)

Now let us estimate the position of the Quantum Critical Point (QCP) on theg axis.

2Note that although the equation contains the rather ill-defined lattice spacing,a0, it is always in the combi-
nationv/a0 = J meaning that this equation relates the static susceptibility to the bare parameters independent
of any high energy cut-off as it must for a well defined theory.
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Again we use the RPA equation (5.22) substituting in the expression for the dynamical spin

susceptibility 5.10 of the off-critical Ising model. We cansee that the QCP whereTc → 0 is

given by the condition

gc ≈ 1.42(z⊥J⊥/J‖)
4/7. (5.27)

The RPA expression for the susceptibility at the QCP is

χ(ω, k;k⊥) ∼ 1

ω2 − (vk)2 − (v⊥k⊥)2
, (5.28)

wherev⊥ = (1/2)Z0g
1/4J‖

(

d2J⊥(k⊥ = 0)/dk2
⊥
)

. In the vicinity of QCP the low-energy

behaviour of the quantum Ising model is universal and falls in the universality class of the

(d+2)-dimensional classical Ising model, where d is the number of transverse dimensions.

Sinced = 2 corresponds to the upper critical dimension of that model, the fluctuations give

only logarithmic corrections to RPA in three dimensions.

Near the critical point, we can examine the shape of the phaseboundary. For low tem-

perature, the correlation functions at finite temperature can be well approximated by 5.15. The

RPA then gives the condition for a singularity atω = 0, k = 0 as

m2 + 1/τ 2
ψ = Z0J‖J⊥g

1/4, (5.29)

so the transition temperature in the vicinity of the critical point is approximately

Tc =
m

ln(1/y)− ln ln(1/y)
,

y =
π

2

(

Z0(J⊥/J‖)g
−7/4 − 1

)1/2
. (5.30)

For g < 0, uncoupled chains are completely ordered atT = 0, and atT > 0 andm not

too small there is order on a length scale

ξc = v(2mT/π)−1/2em/T . (5.31)

A crude estimate for the transition temperature can be is given by

J⊥
Tc

(

ξc(Tc)

v/m

)2

∼ 1, (5.32)

which gives

Tc ≈
2m

ln(m/J⊥)
. (5.33)

5.2.2 Dispersion in the ordered phase

In the ordered state expression 5.23 has to be modified. Namely, one has to replaceχ1D by the

dynamical susceptibility calculated in the presence of an effective magnetic field generated by

the neighbouring chains [92]. In other words, in calculating χ1D one has to use the following
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Hamiltonian:

H1D =
∑

n

{

−J‖ [σz(n)σz(n + 1) + (1 + g)σx(n)] + hσz(n)
}

, (5.34)

with the self-consistency relation

h = J⊥(q = 0)〈σz〉. (5.35)

Now we go on to calculate the dispersion and spectrum within the ordered phase, where

we have to considerh 6= 0. Model 5.34 is exactly solvable only atg = 0 [84]. As we

have mentioned, the spectrum consists of eight particles which are listed in table 5.1. The

contributions to the dynamical susceptibility for smallω decline quickly with the growth of

the particle mass and the decrease in spectral weight of the mode. Therefore the magnetic

susceptibility atT = 0 can be well approximated by keeping only the first three polesbelow

the incoherent continuum

χ1D(s) =

(

4m2
1

15πJ‖h

)2 3
∑

i=1

Zi
s2 −m2

i

, (5.36)

with s defined as before. In this model, the mass scale is given by[93]

m1(h)/J‖ = α1(h/J‖)
8/15,

α1 = 4.40490858, (5.37)

and the single-particle expectation value is

〈σz(0)〉 = α2(h/J‖)
1/15,

α2 = 1.07496. (5.38)

The self-consistency relations 5.35 therefore give

h/J‖ =
[

α2J⊥(0)/J|
]15/14

,

m/J‖ = α1

[

α2J⊥(0)/J‖
]4/7

. (5.39)

In the RPA 5.22, the dispersion is given by the condition

1

J̃⊥
=

∑

i

Zi
s2 −m2

i

,

J̃⊥ =

(

4m2
1

15πh

)2

J⊥ = α3m
2
1

J⊥(k⊥)

J⊥(0)
, (5.40)

where the final relation is obtained from the self-consistent relations withα3 = (4/15π)2α2
1/α2 =
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0.130. To second order inJ⊥ this is solved to give

s2/m2
1 = m2

i /m
2
1 + ZiJ̃⊥



1 +
∑

j 6=i

Zjm
2
1J̃⊥

m2
i −m2

j



 . (5.41)

In numerical values this gives for the first three modes

(s/m)2 ≈



















1.0 + 0.032J⊥(k⊥)/J⊥(0),

2.618 + 0.009J⊥(k⊥)/J⊥(0),

3.956 + 0.003J⊥(k⊥)/J⊥(0).

(5.42)

The relative weights of each mode are not significantly changed from those for the pure one-

dimensional case.

It is remarkable how weak the dispersion in the perpendicular direction is, the ordered

phase remains very one-dimensional in character even whenJ⊥/J‖ is not very small.

We can obtain some results slightly away from the integrablelines. In the neighbour-

hood of the QCP whereh is small, the dynamic susceptibility is given by 5.10 with the mass

replaced by [94]

m→ m[1 + (h/J‖)
2 +O(h4)]. (5.43)

For smallh, we must also have

〈σ〉 = χ(ω = 0, k = 0)h, (5.44)

which combined with the mean-field condition (5.34) gives

h

J‖
=

√

√

√

√

√

1

g
[

J‖/(Z0J⊥(0))
]4/7

− 1, (5.45)

m/J‖ =
(

Z0J⊥(0)/J‖
)4/7

. (5.46)

Here, the dispersion in the perpendicular direction is muchstronger than in 5.42. It is given by

5.28 at the QCP; in the vicinity ofgc the gap is given in the ordered phase bym ∼ (gc − g)2,

to be contrasted withm ∼ (g − gc) at g > gc.

Our results indicate that some of the beautiful physics of quantum Ising model in mag-

netic field with a hidden E8 symmetry may be observed even in a realistic quasi-one-dimensional

model in its ordered phase far from the transition line (in the vicinity of point 0 on figure 5.3).

At this point it may be possible to observe at least three coherent peaks in the dynamical mag-

netic susceptibility whose relative strength is approximately 1 : 0.28 : 0.09 (see equations

5.36 and Table 5.1). At this point the spectrum is extremely one-dimensional in character. We

expect that when one moves along theg-axis of the phase diagram in figure 5.3 towards the

QCP, the excitation gaps will decrease and the transverse dispersion will grow. At the QCP

the spectrum is three-dimensional gapless and the spin-spin correlation function is given by
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Figure 5.4: A schematic diagram showing what happens to the coherent modes as a function
of g. To the left of the figure, we have three coherent modes with very one-dimensional
dispersions. As we move to the right, the transverse dispersion grows and the overall mass
scale decreases until all modes collapse at criticality.

equation 5.28 with logarithmic corrections. These corrections will convert the pole into a con-

tinuum; at criticality all excitation modes will collapse into it. This is illustrated schematically

in figure 5.4.

5.3 Application to α’ Sodium Vanadate

The layered oxide,α′-Sodium Vanadate (NaV2O5) was first studied back in the 1970’s [95],

but more recently there has been a lot of renewed interest in the material following the discov-

ery of a phase transition at34 Kelvin [96]. This phase transition shows a number of interesting

properties:

• Below Tc, there is a simultaneous onset of charge ordering and opening of a spin gap

[95].

• BelowTc, there is also a large increase in the unit cell, which doubles in two directions

and increases by a factor of 4 in the direction perpendicularto the layers [97].

• This was initially thought to be a spin-Peierls transition,but the strong suppression of

Tc with magnetic field characteristic of spin-Peierls materials was not seen in NaV2O5

[98].

• Also, the spin gap at low temperatures is of orderδ = 100K, [96, 99] which gives the

value2∆/Tc ≈ 6 which is very different from the canonical BCS-value of3.5 typical

of Spin-Peierls systems.

• X-ray studies [100, 101, 102] show that aboveTc, all Vanadium sites are equivalent,

Va4.5+, whereas belowTc they are not, although the ordering is still controversial [103].

These all go to indicate that it is not the opening of the spin-gap that drives the transition. This

is further corroborated by careful experiments [104, 105] which show there are actually two
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Figure 5.5: Structure of Sodium Vanadate (after [109]). TheVanadium ions for two-leg lad-
ders in the ab plane, with lines of Sodium atoms between the layers.

Figure 5.6: The pseudo-spin/charge ordering mapping (after [108]). The spin refers to the spin
of the electrons, the pseudo-spin as to whether it sits on theupper or lower leg of the ladder.

second-order transitions, the first one atTc1 ≈ 34K leads to charge ordering and the second

about0.3K lower opens the spin gap. Thus one wants a model in which charge ordering is the

driving force and the opening of the spin gap a secondary effect.

Sodium Vanadate is made up of quarter filled ladders, see figure 5.5, with the coulomb

repulsion between the legs of the ladders such that the low energy states all have one electron

per rung. A number of authors [106, 107] proposed a spin-pseudospin model, where the

spin refers to the real spin of the electrons, and the two eigenstates of the pseudospin refer

to whether a particular electron is on the upper or lower leg of the ladder - see figure 5.6.

The operatorσx is then a hopping term between the legs, andσzσz is the interaction between

neighbouring electrons, which depends on whether they are both on the same leg or not. Once

we have mapped the ladders to spins, the lattice becomes a quasi-one dimensional frustrated

lattice - figure 5.7. The pseudo-spin Hamiltonian then simply becomes our Hamiltonian 5.20.

To try and quantitatively calculate anything of physical interest for this system, we would

have to take into account not only the spin fluctuations, but also the change in lattice param-

eters accompanying the transitions. This is beyond the scope of the present work as there

are many competing effects in this material. However, we cansuggest that the low energy

isospin excitations which should be experimentally observable with optical absorption [108]

will be very one dimensional in character, and may show a number of distinct modes as given

in section 5.2.2.
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Figure 5.7: Showing the pseudo-spin lattice after the mapping (after [108]). When each rung
of the ladders becomes a single site in our effective model, the underlying lattice is triangular.

5.4 Link to the 3D Ising Model

The one-dimensional quantum Ising model is equivalent (in the scaling limit) to the two di-

mensional classical Ising model [110] with the relationg = (T − Tc0)/Tc0. Hence coupled

chains in the quantum case corresponds to coupled planes in the classical case. Within RPA,

the scaling exponents can be obtained easily from equation 5.28. They areγ = 1, ν = 1/2

which are the mean-field values as expected in this approximation. In this approximation, we

see that the critical temperature for the isotropic 3D Isingmodel (which is outside the range

of applicability of RPA) can be read off equation 5.27

Tc − Tc0
Tc0

= 1.42z
4/7
⊥ (5.47)

whereTc0 is the transition temperature for the 2D Ising model given bysinh(2Jinplane/Tc) = 1,

andz⊥ = 2 because we are coupling planes together. This givesJ/Tc = 0.228 which is not

far from the true numerical resultJ/Tc = 0.222. So as in previous work, we see that RPA

actually gives a pretty good estimate of the transition temperature.

Another interesting thing is to look at the crossover from the 2D to the 3D Ising model,

to which end we consider a 3D Ising model with interaction strengthJ in thexy plane andaJ

in thez direction. The RPA then gives

Tc − Tc0
Tc0

= 1.42(2a)4/7, (5.48)

where all temperatures are measured in units ofJ . For smalla, this should be fairly accurate

although there is currently a complete lack of Monte Carlo data for the anisotropic Ising model

to compare it to.
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Final remarks

Like Olympic medals and trophies, all it signifies is that thereceiver has done

something of no use to anybody a little better than everybodyelse.

–Joseph Heller (Catch 22)

In this thesis we were looking at selected models of stronglycorrelated electrons. The

models were all quasi-one-dimensional so we could use a particular recipe to solve them;

namely solving the one dimensional subsystem exactly by means of powerful non-perturbative

techniques and then adding in some higher-dimensional coupling perturbatively.

• We first considered a model of unconventional superconductivity, introduced as a possi-

ble model for High-Tc materials in a stripe phase, but more easily applied to structurally

one-dimensional compounds. Within the RPA approximation we calculated the transi-

tion temperature for generalKc. We calculated the ratioTc/∆c where∆c is the zero

temperature gap in the charge sector. We saw that this decreases below the BCS value

as the coupling strength is increased. We also looked at the properties of our model

in a magnetic field, noting in particular the extreme anisotropy of the phase diagram,

and the possibility of SC-CDW transitions as you vary strength or even angle of mag-

netic field. We then went on to calculate the first correctionsto Tc in the vicinity of

the critical point which is decreased because of the interplay between the two interac-

tions. We finally showed that in two dimensions where RPA breaks down completely,

we get a transition of the Kosterlitz-Thouless type which has the same energy scales as

the ordering transition in higher dimensions.

• We then went on to consider unusual magneto-resistance properties measured in Bech-

gaard salts, namely large dips in the magneto-resistance at’magic angles’, with a corre-

sponding insulator-metal transition in the temperature dependence at these points. Our

model consisted of one-dimensional Mott insulating chainswith enough interchain hop-

ping to drive the system to a metallic state. We concentratedon calculating the density

of states as a function of the strength and angle of the magnetic field. We showed that

although our model had some of the properties needed to explain the measured results,

it was oversimplified and although promising in some respects, did not reproduce the

77
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magic angle effects seen in experiments. We suggested several extensions to the model

which may be necessary to explain this phenomena.

• We finished by considered a model of coupled quantum Ising chains. We saw that

within the RPA approximation, we could calculate the phase diagram of the model and

the dispersion in the ordered phase. The most interesting thing is how one dimensional

the excitations are in the three dimensional ordered phase.

Throughout this work, we have tried to motivate much of our theory from real materials.

As real materials are always far more complicated than our simplified models, the application

of the models to the materials has been mostly only at the qualitative level. However we see

the solution of these models as a starting point to make more detailed calculations on individ-

ual materials. Executing these more specific calculations,as well as attempting to refine our

general solutions by going beyond RPA are obvious future directions for research. The overall

message from this thesis is that the world of many electrons still has many unexplored pos-

sibilities. And starting from somewhere different than simply turning the e-e interactions off

can give a lot of insight into the strange and wonderful worldof strongly correlated systems.
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