Social welfare under restricted risk classification

Indradeb Chatterjee^a, Pradip Tapadar^a, R Guy Thomas^a, Angus Macdonald^b

^aUniversity of Kent ^bHeriot-Watt University

August, 2022

I Chatterjee (University of Kent) Social welfare under restricted risk classification

Background

Adverse selection:

If insurers cannot charge risk-differentiated premiums, then:

- higher risks buy more insurance, lower risks buy less insurance,
- raising the **pooled** price of insurance,
- lowering the demand for insurance,

usually portrayed as a bad outcome, both for insurers and for society.

In practice:

Policymakers often see merit in restricting insurance risk classification

- EU ban on using gender in insurance underwriting.
- UK moratorium on the use of genetic test results in underwriting.

Question:

How can we reconcile theory with practice?

I Chatterjee (University of Kent) Se

Motivation: Two risk-groups $\mu_L = 0.01$ and $\mu_H = 0.04$

Scenario 2: Some adverse selection: Pooled premiums: $\pi_L = \pi_H = 0.028$

I Chatterjee (University of Kent)

Social welfare under restricted risk classification

August, 2022

Why do people buy insurance?

Assumptions

Consider an individual with

- an initial wealth W,
- exposed to the risk of loss L,
- with probability μ ,
- utility of wealth u(w), with u'(w) > 0, and
- an opportunity to insure at premium rate π .

Image: Ima

DQC

∋⊁ ∋

4

Utility of wealth and insurance purchasing decision

Demand for insurance

Normalization

As certainty equivalent is invariant to positive affine transformations, we assume u(W) = 1 and u(W - L) = 0 for all individuals.

Insurance purchasing decision:

Given a premium π , an individual will purchase insurance if:

$$\underbrace{u(W - \pi L)}_{} > \underbrace{(1 - \mu) \ u(W) + \mu \ u(W - L) = (1 - \mu)}_{}.$$

Utility with insurance

Utility without insurance

Source of randomness in demand:

Utility of insurance of an individual chosen at random, $u(W - \pi L)$, is a random variable, U_I . Given a premium π , insurance demand, $d(\pi)$, is:

$$d(\pi) = \mathbf{P}\left[U_I > 1 - \mu\right].$$

Demand for insurance

< D >

< /⊒ ► < Ξ ►

୬୯୯ 7/18

2

< ∃ >

Insurance risk classification

Risk-groups

Suppose a population can be divided into 2 risk-groups where:

- risk of losses: $\mu_1 < \mu_2$;
- population proportions: *p*₁, *p*₂;
- iso-elastic demand for a given premium, π :

$$d_i(\pi) = \tau_i \left(\frac{\mu_i}{\pi}\right)^{\lambda_i}, \quad i = 1, 2;$$

- demand elasticity: $\epsilon_i(\pi) = -\frac{\partial \log(d_i(\pi))}{\partial \log \pi} = \lambda_i$, for i = 1, 2;
- fair-premium demand: $\tau_i = d_i(\mu_i)$ for i = 1, 2;
- premiums offered: π_1, π_2 .

Note: The framework can be generalised for n > 2 risk-groups.

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶

Market equilibrium

For a randomly chosen individual, define:

- Q = I [Individual is insured];
- X = I [Individual incurs a loss];
- $\Pi =$ Premium offered to the individual.

Simplifying assumption

The potential loss amount L is same for all individuals.

Expected premium, claim and market equilibrium

Market equilibrium: Expected premium: Expected claim: $E[Q\Pi] = E[QX], \text{ where,}$ $E[Q\Pi] = p_1 d_1(\pi_1) \pi_1 + p_2 d_2(\pi_2) \pi_2,$ $E[QX] = p_1 d_1(\pi_1) \mu_1 + p_2 d_2(\pi_2) \mu_2.$

(1)

Risk-classification regimes

Risk-differentiated premiums: $\underline{\pi} = (\mu_1, \mu_2)$

- Equilibrium is achieved when $\pi_1 = \mu_1$ and $\pi_2 = \mu_2$.
- No losses for insurers.
- No (actuarial/economic) adverse selection.

Pooled premium: $\underline{\pi} = (\pi_0, \pi_0)$

If risk-classification is banned, insurers charge same premium π_0 to both risk-groups.

- Market equilibrium ⇒ No losses for insurers! ⇒ No (actuarial) adverse selection.
- Pooled premium is greater than average premium charged under full risk classification ⇒ (Economic) adverse selection.
- Aggregate demand (cover) is lower than under full risk classification ⇒ (Economic) adverse selection.

シへで 10/18

Social welfare

Definition (Social welfare)

For any premium regime $\underline{\pi}$, social welfare is the expected utility for an individual selected at random from the population:

$$S(\underline{\pi}) = \mathbb{E}\left[\underbrace{\mathcal{Q} U_{I}}_{\text{Insured population}} + \underbrace{(1-Q)\left[(1-X)U_{W} + XU_{W-L}\right]}_{\text{Uninsured population}}\right]$$

Without loss of generalisation , we can normalise utility function, so that: $U_W = 1$ and $U_{W-L} = 0$. Hence:

$$S(\underline{\pi}) = \mathbf{E} \left[Q U_I + (1 - Q) (1 - X) \right]$$

э

Iso-elastic demand with same demand elasticity

• $\lambda < 1 \Leftrightarrow S(\pi_0) > S(\underline{\mu}) \Rightarrow$ Risk pooling is *better* than full risk classification.

- $\lambda > 1 \Leftrightarrow S(\pi_0) < S(\mu) \Rightarrow$ Risk pooling is *worse* than full risk classification.
- Empirical evidence suggests $\lambda < 1$ in many insurance markets.

Э

nar

∋⊁ ∋

Iso-elastic demand with different demand elasticities

Iso-elastic demand with different demand elasticities

I Chatterjee (University of Kent)

Social welfare under restricted risk classification

Iso-elastic demand with different demand elasticities

I Chatterjee (University of Kent)

Social welfare under restricted risk classification

Generalisations

The results can be generalised:

- For any number of risk-groups $n \ge 2$.
- For full take-up of insurance by the high risk-group.
- For general insurance demand function using arc elasticity of demand.

Sac

Adverse selection need not always be adverse.

Restricting risk classification increases social welfare if:

• $\lambda \leq 1$, when demand elasticity is the same for all risk-groups.

• $\lambda_1 \leq 1$ and $\lambda_1 \leq \lambda_2 \leq 1$, when demand elasticities are different.

Empirical evidence suggests $\lambda < 1$ in many insurance markets.

CHATTERJEE, I., MACDONALD, A.S., TAPADAR, P.& THOMAS, R.G. (2021). When is utilitarian welfare higher under insurance risk pooling?. *Insurance: Mathematics and Economics*, **101(B)**, 289–301.

https://blogs.kent.ac.uk/loss-coverage/

Sac