
Conditional beliefs aren’t conditional probabili-
ties
The claim that conditional rational degrees of belief are con-
ditional probabilities is falsified by the following simple coun-
terexample.

Red Faces. Suppose that a fair six-sided die is to be rolled
(proposition X) and that each face
of the die is coloured red, blue or
green (E). Consider the outcome
that the number rolled will be three
or greater (A). It is reasonable to
believe A to degree 2

3 : given that
the die is fair, each number has
chance 1

6 of being rolled, and four
of the 6 numbers on the die are
greater than or equal to three. So,
if conditional degrees of belief are
conditional probabilities, it is rationally permissible to set:

P(A|XE) = 2/3.

Now consider an alternative outcome: that the colour rolled
(i.e., the colour of the uppermost face) is red (R). It is clearly
reasonable to believe R to degree 1

3 , on the grounds that red is
one out of the three possible colours and there is no evidence
that favours one of these colours over any of the others. Thus it
is permissible to set:

P(R|XE) = 1/3.

Now suppose in addition that the red faces are precisely those
that are numbered three or greater, i.e., A ↔ R. Given that the
die is fair, it is again clearly rationally permissible to believe A
to degree 2

3 :
P(A|XE(A↔ R)) = 2/3.

(Note that for these conditional probabilities to be well defined,
it must be rationally permissible to set P(XE(A↔ R)) > 0, i.e.,
to assign some positive credence to the claim that the die is fair,
faces 3-6 are red and faces 1-2 are blue or green.)

It turns out, however, that these assignments of degree of
belief are inconsistent: there is no probability function that sat-
isfies them all (Wallmann & Williamson 2020: EJPS 10(3);
Williamson 2023: IJB 19(2), 295–307). It is thus not possi-
ble to use conditional probabilities to validate the above judge-
ments about rational permissibility: i.e., conditional beliefs are
not always identifiable with conditional probabilities.

Consequences. Let belief function B represent a rationally
permissible assignment of conditional degrees of belief: BC(A)
is the degree to which proposition A is believed under condi-
tion C, for all A and C in a given domain of propositions. The
claim that conditional beliefs are conditional probabilities can
be formulated as follows:

CBCP. For any belief function B, there is some probability
function P such that BC(A) = P(A|C) for all A and C.

In the red faces counterexample we have an assignment of de-
grees of belief that is clearly rationally permissible, yet cannot
be captured by a conditional probability function. Hence CBCP
is false.

This has two important consequences.
Firstly, if CBCP is taken to be constitutive of Bayesianism,

as is standardly the case, then Bayesianism is untenable. The
red faces problem threatens the tools of Bayesianism as well as
its philosophical foundations. Bayes’ Theorem is only of use
if conditional probabilities are themselves of use, but this re-
quires some connection between conditional probabilities and
rational belief such as CBCP. Bayesian conditionalisation also
apparently rests on CBCP: why update by means of condi-
tional probabilities unless those conditional probabilities rep-
resent degrees of belief conditional on new evidence? Without
Bayes’ Theorem or Bayesian conditionalisation, Bayesianism
would seem very impoverished.

Second, the ‘new paradigm’ in the psychology of reasoning,
which seeks to understand our reasoning by appeal to condi-
tional probabilities, is untenable without CBCP or something
like it (Oaksford & Chater 2020: ARP 71(1), 305–330). For
instance, the new paradigm analyses our use of conditional
propositions in terms of conditional probabilities. This analysis
involves two steps: an appeal to conditional beliefs to analyse
cognition involving conditional propositions and then an appli-
cation of CBCP to connect to conditional probability. Without
CBCP, this analysis cannot succeed.

A Potential Resolution. The red faces problem shows that
conditional beliefs can’t always be construed as conditional
probabilities. On the other hand, the successes of Bayesian-
ism and of the new paradigm show that it can sometimes be
helpful to identify conditional beliefs with conditional proba-
bilities. What we need is a more fundamental theory to explain
the successes and failures of CBCP.

There is a non-standard approach to Bayesianism that might
help here (Williamson 2010: In defence of objective Bayesian-
ism, OUP). This version of Bayesianism identifies conditional
beliefs with probabilities, but not conditional probabilities:

CBP. For any belief function B and proposition C, there is
some probability function PC such that BC(A) = PC(A)
for all A.

How are these unconditional probabilities obtained? Firstly,
PC must satisfy constraints imposed by C—in particular, con-
straints imposed by calibration to chances: if one establishes
from C that the chance of A is x then PC(A) = x, as long as C
doesn’t imply anything that defeats this ascription (e.g., propo-
sition A itself). Second, PC should be maximally equivocal
with respect to propositions whose probability isn’t determined
by constraints imposed by C. This is typically explicated by
setting PC to be the function, from all those that satisfy con-
straints imposed by C, that has maximal entropy.

This version of Bayesianism is immune to the red faces prob-
lem: it will consistently set PXE(A) = 2/3 (by calibrating to the
chance information in X), PXE(R) = 1/3 (equivocating between
the three possible colours), and PXE(A↔R)(A) = 2/3 (by calibra-
tion to chance again).

The theory can also help to explain when it is safe to con-
ditionalise. If (i) learning D only imposes the constraint
P(D) = 1, (ii) PC(D) > 0, and (iii) PC(·|D) satisfies all the
constraints imposed by C, then it is safe to conditionalise on D,
i.e., PCD(·) = PC(·|D); see Result 1 of Seidenfeld (1986: En-
tropy and Uncertainty, PoS 53: 467–491) and Theorem 5.16 of
Williamson (2017: Lectures on inductive logic, OUP). In the
red faces problem, it is not safe to conditionalise on A ↔ R
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because PXE(·|A ↔ R) does not satisfy all the constraints im-
posed by XE. In particular, as the Appendix of Williamson
(2023) shows, PXE(A|A ↔ R) = 1/2 , 2/3, the value required
by calibration to the chance information in XE.

Thus, although this version of Bayesianism may seem un-
orthodox, it is explanatory. In any case, a significant departure
from Bayesian orthodoxy is required to avoid red faces.

JonWilliamson
University of Kent

The Reasoner Speculates

Benefits of cybernetic models in philosophy

A common research method among philosophers is the us-
age of thought experiments. Take for example John Searle’s
‘Chinese Room’ or Frank Jackson’s ‘Mary’s Room’ argument.
David Lewis goes further by using neuron diagrams to repre-
sent causality in his counterfactual theories of causation. His
method has since been further refined and developed. Interest-
ingly, the usage of logical circuits or finite automaton to repre-
sent causal relations has not yet been considered. As an advan-
tage, the latter can be visualised in cyberspace using spread-
sheets and tested in practice. Furthermore, it is not only in the
problem of causality that cybernetic models can fruitfully be
used to provide a philosophical explanation, they can also be
utilised to represent logical semantic problems. Let us consider
an example for this.

Many logic handbooks allude to the obvious connection
between propositional logic and logic circuits. Truth functions
in logic can be represented by logic circuits in which the high
or low voltage levels of the circuits correspond to the true
and false logic values, respectively. At the propositional logic
level, the logical connectives of propositions can be simulated
by logic circuits as follows: the true or false logical evaluation
of atomic propositions corresponds to the high or low level of
the circuit input and the truth value of compound propositions
corresponds to the circuit output state. A high circuit output
signifies that the compound sentence is evaluated as true,
whereas a low output indicates that the compound sentence is
false. It is well known that in the world of logic circuits, the
AND connective in logic corresponds to the AND gate, the
OR connective to the OR gate and the negation operation to
the inverter. The output of a circuit equivalent to contradiction
is always low and that of a circuit corresponding to tautology
is always high irrespective of the input state. The remaining
compound formulas correspond to logic circuits with a high
output level for some inputs and low output level for other
inputs. However, what logical circuit can model a circular
sentence?

Indeed, every formula in propositional calculus can be
modelled based on an equivalent logic circuit, specifically
referred to as a combinational logic circuit. However, not all
logic circuits are combinational logic circuits. The range of
logic circuits is wider than that of the combinational logic
circuits. It includes logic circuits whose input states do not
determine unambiguously their output states, i.e. the output
is not a function of the input. This is because the circuit has
feedback. Circuits that contain feedback are called sequential
logic circuits. Although every formula in propositional cal-

culus can be modelled based on an equivalent combinational
logic circuit, it remains unclear whether the converse theorem
is valid. Can every sequential logic circuit be equivalent to
a formula in propositional calculus? Does any formula at
the propositional logic level correspond to sequential logic
circuits?

Sequential logic circuits have memory owing to feedback
mechanisms. (The operation of these circuits is mathemati-
cally isomorphic to that of a finite automaton. Examples of
such circuits include flip-flops, registers, counters, clocks and
memories.) The output state of sequential logic circuits is not a
function of the input states but depends on previous input states.
In contrast, the truth value of formulas in propositional calculus
is a function of the evaluation of atomic formulas, without con-
sidering previous evaluations of these formulas. Therefore, the
answer is negative; logical formulas cannot be simply matched
with sequential logic circuits at the propositional logic level.
However, logical relations between sentences may exist beyond
propositional logic, corresponding to the operation of certain
sequential logic circuits. What type of logic relationships can
sequential circuits model? In the following text, I will provide
a simple example of this.

Jean Buridan’s paradox sentence As an influential medieval
French philosopher of his age, Jean (John) Buridan (c. 1295–
1358) presented a puzzle with the following essence:

Twelfth sophism: God exists and some conjunction
is false.

John Buridan (2001: Summulae de dialectica (translated by
Gyula Klima), Yale University Press, c.8, p.980 )

Or in other words:

God exists and none of the sentences in this pair is
true.

What do you think about the truth value of these two sentences?
Which of these two is true?

p := God exists.

q := Neither sentence p nor q is true.

‘p’ is true if God exists and false, otherwise. ‘q’ is true if
neither p nor q is true.

Sentence q asserts a ‘Not-OR’ relation because ‘neither p
nor q’ is equivalent to ‘not (p or q)’. One component of the ‘or’
relation is an existential proposition, while the other is the ‘or’
relation itself. It is a peculiar sentence because it has a truth
value, if it has any at all, which depends on itself. Therefore, it
certainly cannot be translated into the classical first-order logic
language.
Let us examine the logical possibilities. If p is true (i.e. God
exists), then q is false because one of its components is true
and the other is false. Consequently, the two together are false
(i.e. q is false). The situation is not that simple if p is false
(i.e. we deny God’s existence). Suppose that q is true. This is
possible only if both members are false. This is not, however,
the case because the first member is false and the second mem-
ber is true; hence, the result is false together and q cannot be
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