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Abstract

Edwin Jaynes’ principle of maximum entropy holds that one should use the
probability distribution with maximum entropy, from all those that fit the ev-
idence, to draw inferences, because that is the distribution that is maximally
non-committal with respect to propositions that are underdetermined by the
evidence. The principle was widely applied in the years following its introduc-
tion in 1957, and in 1978 Jaynes took stock, writing the paper ‘Where do we
stand on maximum entropy?’ to present his view of the state of the art. Jaynes’
principle needs to be generalised to a principle of maximal entropy if it is to be
applied to first-order inductive logic, where there may be no unique maximum
entropy function. The development of this objective Bayesian inductive logic
has also been very fertile and it is the task of this chapter to take stock. The
chapter provides an introduction to the logic and its motivation, explaining
how it overcomes some problems with Carnap’s approach to inductive logic
and with the subjective Bayesian approach. It also describes a range of recent
results that shed light on features of the logic, its robustness and its decidability,
as well as methods for performing inference in the logic.
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§1
Introduction

In his pioneering work on information theory, Claude Shannon (1948, §6) argued
that the amount of information carried by a discrete probability distribution should
be measured by its entropy,

H(P)=− ∑
ω∈Ω

P(ω) logP(ω),

where Ω is a finite set of basic outcomes. In 1957, Edwin Jaynes put forward his
‘principle of maximum entropy’:

[I]n making inferences on the basis of partial information we must use
that probability distribution which has maximum entropy subject to
whatever is known. This is the only unbiased assignment we can make;
to use any other would amount to arbitrary assumption of informa-
tion which by hypothesis we do not have. . . . The maximum-entropy
distribution may be asserted for the positive reason that it is uniquely
determined as the one which is maximally noncommittal with regard
to missing information. (Jaynes, 1957, p. 623.)

Jaynes’ principle of maximum entropy, or ‘maxent’ for short, was quickly taken
up in areas such as physics, engineering and statistics and theoretical developments
were rapid. So much so that at a conference on the Maximum Entropy Formalism,
held at MIT in 1978, Jaynes decided that the time was right to take stock and present
the state of the art in a paper entitled ‘Where do we stand on maximum entropy?’
(Jaynes, 1979). In that paper, Jaynes presented the historical background to maxent
and its key features, speculated about its future and discussed its application to
irreversible statistical mechanics. Maxent has continued to be fruitfully applied to
the sciences, and 2023 saw the 42nd International Conference on Bayesian and
Maximum Entropy methods in Science and Engineering.

Jaynes argued that maxent can underpin a version of objective Bayesianism,
which he viewed as providing an inductive ‘logic of science’ (Jaynes, 2003).1 In
this chapter, we will see that maxent and objective Bayesianism can indeed yield a
viable inductive logic. This logic is called objective Bayesian inductive logic, or OBIL
for short. The application of maxent to inductive logic has been an active area of
collaborative research since the main ideas were set out in Williamson (2008) and
Barnett and Paris (2008), and the time is now ripe to take stock and present the
state of the art.

§2 presents an introduction to objective Bayesianism (§2.1) and its connection to
inductive logic (§2.2). §3 highlights a number of special cases that are particularly
well understood. In §4, we turn to the question of how to motivate OBIL, showing
that it can be justified on the grounds that if one were to use an inductive logic
to decide how to bet, OBIL would be needed to avoid incurring avoidable losses.
Next, we compare OBIL to some alternative approaches to inductive logic: Carnap’s
programme (§5) and two subjective Bayesian approaches (§6). We then consider the
question of how to perform inference in the logic, in §7. We see that there is a large
class of entailment relationships in OBIL that are decidable (§7.1), and inference

1See Rosenkrantz (1977) for an early philosophical account of the role of maxent in an objective
Bayesian approach to inductive inference.
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can be performed by using augmented truth tables (§7.2) or probabilistic graphical
models (§7.3), for example. We give a flavour of the logical properties of OBIL
in §8 and discuss the question of language relativity in §9. In §10 we explore the
connection between OBIL and a closely related approach, namely the ‘entropy-limit’
approach of Barnett and Paris (2008). Conclusions are drawn in §11.

This chapter will present key results without proof, so that the reader can quickly
ascertain where we currently stand. While OBIL is now a mature theory, we shall
see along the way that there remain many open questions, making it a potentially
fruitful formalism for further research.

§2
Objective Bayesianism and inductive logic

§2.1. Objective Bayesianism

According to objective Bayesianism, the strengths of one’s beliefs need to satisfy
three kinds of norm to qualify as rational (Williamson, 2010):2

Structural. Degrees of belief should satisfy the laws of probability. For example, the
degree to which one believes that the next card to be drawn from a stack of
standard playing cards will be black should be the sum of the degree to which
one believes that it will be a spade and the degree to which one believes it
will be a club, given that spades and clubs are the black suits.

Evidential. Degrees of belief should satisfy constraints imposed by evidence. In
particular, they should be calibrated to empirical probabilities, insofar as one
has evidence of these empirical probabilities. For example, if one establishes
that the stack of playing cards is a complete deck, one should believe to
degree 0.25 that the next card drawn is a club.

Equivocation. Degrees of belief should otherwise equivocate as far as possible be-
tween outcomes. For example, if one knows only that an experiment has
four possible (mutually exclusive) outcomes and that outcome 1 has empir-
ical probability 0.1, then one should believe that the next outcome will be
outcome 2 to degree 0.3.3

Maxent provides a natural way to explicate the Equivocation norm. Entropy
can be interpreted as the measure of the extent to which a probability function
equivocates between the basic possibilities. Hence, the Equivocation norm can be
implemented by selecting the probability function that has maximum entropy, from
all those that satisfy constraints imposed by the Evidential norm.

From a technical point of view, this works rather straightforwardly when the
space Ω of basic possibilities is finite. From a philosophical point of view, however,
it is open to the charge that the choice of Ω may be rather arbitrary and yet may

2Note that this view of objective Bayesianism is very different to the version developed by Jaynes
(2003). In particular, Jaynes rejected the idea of empirical probabilities, to which this version of objective
Bayesianism appeals.

3By the Evidential norm, one should believe that it will be outcome 1 to degree 0.1. By the Structural
norm, one should believe that it will be one of the remaining outcomes to degree 0.9. By Equivocation,
one should assign each of these remaining outcomes the same probability, 0.3, in the absence of any
other relevant evidence.
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affect the inferences that are drawn, undermining the purported objectivity of ob-
jective Bayesianism. To address this philosophical objection, the approach taken by
Williamson (2010, p. 156) is to take Ω to be the set of basic possibilities expressible
in one’s language:4 that inferences depend upon the underlying language in this
way is relatively unproblematic, because languages evolve to represent and reason
about the world efficiently, and thus can be thought of as providing implicit evi-
dence about the world. The difficulty here is that languages tend to be very rich. If
one’s language could be modelled by a finite propositional language, then it would
induce a finite set Ω of all states ±a1∧·· ·∧±an of the atomic propositions a1, . . . ,an
of the language, and again it would be straightforward to maximise entropy (see,
e.g., Paris, 1994). But more typically, one needs at least the richness of a first-order
predicate language to express many of the propositions that feature in our infer-
ences. A first-order predicate language does not induce a finite set of states, and
it is no longer obvious how to maximise entropy. Hence there is a danger that this
appeal to language mitigates a philosophical problem at the expense of introducing
a technical problem.

Objective Bayesian inductive logic allows us to address this technical problem,
however, as we shall now see.

§2.2. Objective Bayesian Inductive Logic

OBIL considers inductive entailment relationships of the form:

ϕ
X1
1 , . . . ,ϕXk

k |≈◦ψY

Here, ϕ1, . . . ,ϕk,ψ are sentences of a first-order predicate language L , and X1, . . .,
Xk,Y are sets of probabilities. The entailment relationship can be read: if P(ϕ1) ∈
X1, . . ., and P(ϕk) ∈ Xk then P(ψ) ∈ Y , for any rational belief function P . The
premisses on the left-hand side of the entailment relation are interpreted as all the
constraints on rational degrees of belief imposed by the Evidential norm, while
the conclusion on the right-hand side follows just when each maximally equivocal
probability function P, from all those that satisfy the premisses, also satisfies the
conclusion. The key task is to say what constitutes ‘maximally equivocal’.

First, we need to specify the framework more precisely. Here L is a pure
first-order predicate language: it has relation symbols U1, . . . ,Ul , constant sym-
bols t1, t2, . . . and variable symbols x1, x2, . . ., but no function symbols or equality.
Sentences θ,ϕi,ψ etc. are formed in the usual way using quantifiers ∀,∃, and
connectives ¬,∧,∨,→,↔. Atomic sentences a1,a2, . . . are ordered so that those in-
volving constants t1, . . . , tn occur in the ordering before those involving tn+1.5 We
will consider the sublanguages Ln that have all the syntactic apparatus of L but
involve only the constants t1, . . . , tn. The n-states ω ∈ Ωn of L are the states of
Ln, i.e., the sentences of the form ±a1∧·· ·∧±arn , where a1, . . . ,arn are the atomic
sentences of Ln.

We will take X1, . . . , Xk,Y to be intervals. This is because constraints imposed
by the Evidential norm are convex: if the empirical probability of ϕ is known
to be either x or y, where y > x, but it is not known which, then the Evidential
norm deems any value in the interval [x, y] to be an admissible degree of belief

4This line of response is motivated by the suggestion of Keynes (1921) that one should only equivo-
cate between indivisible possibilities.

5See §9 for results that indicate that OBIL is invariant under the precise ordering.
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(Williamson, 2010, §3.3). We will abbreviate the trivial interval [x, x] by x. We
will also abbreviate a premiss or conclusion statement of the form ϕ[1,1] by the
categorical (i.e., unqualified) sentence ϕ.

A probability function P is a function defined on the sentences of L such that:

P1 : If τ is a deductive tautology, i.e., |= τ, then P(τ)= 1.

P2: If θ and ϕ are mutually exclusive, i.e., |= ¬(θ∧ϕ), then P(θ∨ϕ)= P(θ)+P(ϕ).

P3 : P (∃xθ(x))= supm P
(∨m

i=1θ(ti)
)
.

Axiom P3, which is sometimes called Gaifman’s condition, presupposes that each
member of the domain of discourse is named by some constant symbol ti . A prob-
ability function is uniquely determined by its values on the n-states (Williamson,
2017, Chapter 2). The set of all probability functions on L is denoted by P. We
will be particularly interested in the set of probability functions that satisfy the
evidential constraints:

E
df= [ϕX1

1 , . . . ,ϕXk
k ] df= {P ∈P : P(ϕ1) ∈ X1, . . . ,P(ϕk) ∈ Xk}.

Now we are in a position to see what constitutes ‘maximally equivocal’. We
define the n-entropy:

Hn(P) df=− ∑
ω∈Ωn

P(ω) logP(ω).

We then say that P has greater entropy than Q iff the n-entropy of P eventu-
ally dominates that of Q, i.e., iff there is an N ∈ N such that for all n ≥ N,
Hn(P) > Hn(Q). The greater-entropy relation yields a partial ordering of prob-
ability functions, which may contain maximal elements (undominated functions)
but need not necessarily contain maximum elements (functions that dominate all
others). We thus define the maximally equivocal functions in E to be those with
maximal entropy:

maxentE df= {P ∈ E : there is no Q ∈ E that has greater entropy than P}.

This yields what we might call the ‘principle of maximal entropy’—an extension of
the principle of maximum entropy to the setting of an infinite predicate language:

Maximal Entropy Principle. In making inferences on the basis of partial information
we must use the probability distributions which have maximal entropy, among
all those that satisfy the evidential constraints.

We can then use the maximal entropy principle to provide semantics for OBIL:

ϕ
X1
1 , . . . ,ϕXk

k |≈◦ψY iff P(ψ) ∈Y for all P ∈maxentE,

as long as maxentE ̸= ;. There are two cases in which maxentE = ;, and we
need some conventions to cover these cases.6 The first is where the premisses
are unsatisfiable, E = ;. In that case, it is desirable to avoid ‘explosion’, i.e., the
phenomenon that any conclusion follows, because it is never rational to believe
everything. We thus consider maxentP instead of maxentE when E = ;. P has a

6These cases will not be pursued further in this chapter, but see Williamson (2010, 2017) for further
discussion and alternative conventions.
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unique maximiser, namely the equivocator function P= defined by P=(ω) = 1/|Ωn| =
1/2rn for all ω ∈Ωn and n≥1. Hence an entailment relationship with inconsistent
premisses holds iff P=(ψ) ∈ Y . P=(ψ) is called the measure of ψ.7 The second case
occurs where E ̸= ; but for any probability function in E there is another function
with greater entropy. In this case, we shall consider E instead of maxentE, so the
entailment relationship holds whenever P(ψ) ∈Y for all P ∈ E.

If there are no premisses, the equivocator function is used for inference. If |≈◦ψ
then ψ is said to be an inductive tautology. Equivalently, P=(ψ) = 1, i.e., ψ has
measure 1. If |≈◦ ¬ψ (i.e., ψ has measure 0) then ψ is an inductive contradiction.
If |̸≈◦ ¬ψ (i.e., ψ has positive measure) then ψ is inductively consistent. Similarly, if
|̸≈◦¬(ψ∧θ) (i.e., P=(ψ∧θ)> 0) then ψ is inductively consistent with θ. If |≈◦ψ↔ θ then
ψ and θ are inductively equivalent.

§3
Important cases

This section will survey some important special cases in which there is a unique
maximal entropy function and where this function can be determined rather straight-
forwardly. As we shall see in subsequent sections, these are the cases that have been
explored in most depth.

§3.1. E has finitely generated consequences

Recall that, given premisses ϕ
X1
1 , . . . ,ϕXk

k , E df= [ϕX1
1 , . . . ,ϕXk

k ] df= {P ∈ P : P(ϕ1) ∈
X1, . . . ,P(ϕk) ∈ Xk}. One special case occurs when the consequences of these
premisses can be characterised as the consequences of some set of quantifier-free
premisses:

Definition 1 (Finitely generated ). E is finitely generated if there exist quantifier-free

sentences θ1, . . . ,θ j and intervals Z1, . . . , Z j such that E= [θZ1
1 , . . . ,θ

Z j
j ]. E has finitely

generated consequences if there exist quantifier-free sentences θ1, . . . ,θ j and intervals

Z1, . . . , Z j such that maxentE=maxent[θZ1
1 , . . . ,θ

Z j
j ]. In this latter case, θZ1

1 , . . . ,θ
Z j
j

are called generating statements for (the consequences of) E.

Clearly if E is finitely generated then it has finitely generated consequences, and
if the premisses are themselves all quantifier-free then E is finitely generated. But
even when the premisses are not quantifier-free, E often turns out to have finitely
generated consequences. To see when this is so, we require a definition from Landes
et al. (2024, §4):

Definition 2 (Support). Suppose ai1 , . . . ,aim include all the atomic propositions that

appear in sentence ϕ of L , and let Ξϕ
df= {±ai1 ∧ . . .∧ ±aim } be the set of states

of these atomic propositions. If ϕ contains no atomic propositions, we take Ξϕ
df=

7The equivocator function is an analogue of Lebesgue measure, via a bijective mapping between
probability functions on L and probability measures on a σ-field of subsets of the unit interval
(Williamson, 2017, §2.6). The restriction of P= to the sentences of any finite sublanguage Ln corre-
sponds to the uniform distribution on the finite set of n-states Ωn . There is no uniform distribution on
L itself, because there are infinitely many n-states of L , since n = 1,2, . . ..
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{a1,¬a1}. The support ϕ̌ of ϕ is the disjunction of states in Ξϕ that are inductively
consistent with ϕ,

ϕ̌
df=∨

{ξ ∈Ξϕ : P=(ξ∧ϕ)> 0}.

For example, if ϕ=∃x(Ut1 ∧V t1x) then ϕ̌=Ut1.

Definition 3 (Support-satisfiable). Let Ě
df= [ϕ̌X1

1 , . . . , ϕ̌Xk
k ]. We say that the premisses

ϕ
X1
1 , . . . ,ϕXk

k have satisfiable support, or that E is support-satisfiable, if Ě ̸= ;. An
entailment relationship is support-satisfiable if E is support-satisfiable.

E= [∃xV t1x, (Ut2 ∨∀xRx)0.9 ,Ut1 → V t1t3, (Ut1 ∨ (∃xV xt3 →Ut2))[0.95,1]], for
example, is support-satisfiable, as we will see in §7. Support-satisfiability is vio-
lated in cases where the premisses force an inductive tautology to have probability
greater than 0 or force an inductive contradiction to have probability less than 1
(Landes et al., 2024, §10.2). E = [∀xUx0.7], for instance, is not support-satisfiable,
because the constraint ∀xUx0.7 forces positive probability on the measure-zero sen-
tence ∀xUx. Note that if E is non-empty and finitely generated then it is support-
satisfiable. Landes et al. (2024, §5) show that:

Theorem 4. If E is support-satisfiable then it has finitely generated consequences, with
generating statements ϕ̌X1

1 , . . . , ϕ̌Xk
k .

We also have (see Landes et al., 2024):

Theorem 5. If E is closed and has finitely generated consequences then it contains a
unique maximal entropy function P†, i.e., maxentE= {P†}.

Moreover, P† can be characterised as follows (Landes et al., 2024, §3.3). For

any n, let P†
n be the n-entropy maximiser, P†

n
df= argmaxP∈EHn(P), if it exists.

(Since E is convex and n-entropy is strictly concave, there can be no more than
one n-entropy maximiser.) Now, if E is closed then P†

n does indeed exist for each
n. Consider any n large enough that all the quantifier-free generating statements
for E are expressible in Ln. Then the entropy maximiser P† is the probability
function that agrees with P†

n on Ln but equivocates elsewhere: P† is defined by
P†(ωm)= P†

n(ωn)P=(ζ) for each m≥n and m-state ωm =ωn ∧ζ where ωn ∈Ωn.

§3.2. E is closed in entropy

It turns out that we can relax both conditions of Theorem 5 by considering the
convergence of the n-entropy maximisers.

Definition 6 (Limit in Entropy). P ∈P is a limit in entropy of E if |Hn(P†
n)−Hn(P)| −→

0 as n −→∞. E is closed in entropy if it contains some limit in entropy.

Landes et al. (2021, §5) provide several tests that can help to determine whether
E is closed in entropy. For example, E = [∀xUx0.7] is closed in entropy but E =
[Ut1∨∃x∀yV xy] is not. The concept of closure in entropy is useful because (Landes
et al., 2023, Theorem 16):

Theorem 7. If E is closed in entropy then maxentE= {P†} where P† is the unique limit
in entropy of E.
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Thus P† can be determined from the behaviour of P†
n as n increases.

Let us consider an example (Landes et al., 2023, Example 17):

∀xUx0.7 |≈◦Ut0.85
1

Here, E contains the following limit in entropy:

P(ω)=
{

0.7+ 0.3
2n : ω=Ut1 ∧ . . .∧Utn
0.3
2n : ω |= ¬(Ut1 ∧ . . .∧Utn) .

Hence, maxentE= {P} and P(Ut1)= 0.7+(0.3/2)= 0.85. Thus the above entailment
relationship does indeed hold.

Note that Theorem 7 generalises Theorem 5: if E is closed and has finitely
generated consequences then it is closed in entropy. We thus have a sequence of
increasingly general situations in which there is guaranteed to be a unique maximal
entropy function:

E is closed, non-empty and finitely generated;

⇒ E is closed and support-satisfiable;

⇒ E is closed and has finitely generated consequences;

⇒ E is closed in entropy.

Important open questions remain. For example, is there a case in which maxentE
is non-empty but no limit in entropy exists?

§4
Motivation

The norms of objective Bayesianism can be justified by appeal to the following
considerations: the strengths of one’s beliefs guide one’s actions; in turn, one’s
actions can expose one to potential loss; one should not adopt beliefs that expose
one to avoidable losses.

The Structural norm is the claim that rational degrees of belief are probabilities.
This can be justified on the grounds that one should not adopt beliefs that expose
one to guaranteed loss, however events turn out. In the finite case this is the well
known Dutch Book argument of Ramsey (1926) and de Finetti (1937). This Dutch
Book argument can be extended to the situation in which degrees of belief are
defined over sentences of a first-order predicate language. Suppose that the loss
incurred by believing sentence θ to degree x is:

L(θ, x)= (x− Iθ)Sθ,

where Sθ ∈R is an unknown stake (positive or negative) and the indicator function
Iθ takes the value 1 if θ is true and 0 if θ is false. A Dutch book on set Θ of sentences
is a combination of stakes Sθ ∈R for each θ ∈Θ that guarantees some fixed loss, i.e.,

that ensures a positive finite loss L(Θ) df= ∑
θ∈ΘL(θ, x) ∈ (0,∞) whichever sentences

θ ∈Θ turn out to be true. Then (Williamson, 2017, Theorem 9.1):

Theorem 8 (Dutch Book Theorem). Degrees of belief on sentences of L avoid the possibil-
ity of a Dutch book if and only if they satisfy the axioms of probability.

8



The Evidential and Equivocation norms are explicated by means of the maximal
entropy principle, and this principle can be justified on the grounds that one should
not adopt beliefs that expose one to positive expected loss, with respect to a default
loss function. A default loss function represents that losses one might reasonably
anticipate, in the absence of any information about any particular decision scenario
and hence the true losses to which one will be exposed. Let Lπ(θ,P) signify the
loss incurred by adopting belief function P when θ ∈π turns out to be true, where π
is a partition of sentences. For partitions π1,π2,π, write π= π1 ×π2 when for each
θ1 ∈ π1,θ2 ∈ π2 there is some θ ∈ π such that θ ≡ θ1 ∧θ2. A probability function P
renders π1 and π2 independent, written π1⊥⊥Pπ2, when P(θ1∧θ2)= P(θ1)P(θ2) for
each θ1 ∈π1,θ2 ∈π2. Consider the following constraints on a default loss function:

L1 : No loss is incurred when one fully believes the sentence that turns out to be
true: Lπ(θ,P)= 0 if P(θ)= 1.

L2: Loss Lπ(θ,P) strictly increases as P(θ) decreases from 1 to 0.

L3 : Loss Lπ(θ,P) depends only on P(θ), not on P(ϕ) for other partition members
ϕ.

L4: Losses are additive over independent partitions: if π=π1×π2 where π1⊥⊥Pπ2,
then for each θ ∈ π, Lπ(θ,P) = Lπ1 (θ1,P)+Lπ2 (θ2,P), where θ1 ∈ π1,θ2 ∈ π2
are such that θ ≡ θ1 ∧θ2.

L5 : Loss Lπ(θ,P) should not depend on the partition π in which θ occurs: there
is some function L such that Lπ(θ,P)= L(θ,P) for all partitions π in which θ
occurs.

These desiderata are enough to ensure that the default loss function is logarithmic
(Williamson, 2017, Theorem 9.2):

Theorem 9. L1–L5 imply that L(θ,P)=−k logP(θ), for some constant k > 0.

Let P∗ be the empirical probability function. Then we can consider the ex-
pected loss to which one is exposed by beliefs on Ln, for n≥1, when one adopts
P ∈P as one’s belief function:

Sn(P∗,P) = ∑
ω∈Ωn

P∗(ω)L(ω,P)

= −k
∑

ω∈Ωn

P∗(ω) logP(ω).

Now suppose that evidence establishes that the empirical probability function P∗
lies in a non-empty, closed convex set E of probability functions. On L as a whole,
P ∈ P has lower worst-case expected loss than Q ∈ P if there is some N such that
for all n≥N,

sup
P∗∈E

Sn(P∗,P)< sup
P∗∈E

Sn(P∗,Q).

Generalising a result of Topsøe (1979), it turns out that (Williamson, 2017, Theorem
9.3):

Theorem 10 (Minimax). If E is finitely generated then there is a unique probability
function that has minimal worst-case expected loss and this is the function P† ∈ E that
has maximal entropy.

9



This result thus provides a justification for the maximal entropy principle, at
least in an important special case. The main open question here concerns how far
one can relax the assumption that E is finitely generated.

It is worth noting that while this result can be viewed as providing a pragmatic
justification of the maximal entropy principle, it can be recast as an epistemic justi-
fication by reinterpreting the function Ln as a measure of the epistemic inaccuracy
of P, instead of as a default loss function (Williamson, 2018). Note too that the line
of motivation presented in this section appeals to two arguments: a Dutch Book
theorem to justify the claim that a rational belief function is a probability function
and the Minimax theorem to justify the maximal entropy principle. Landes and
Williamson (2013, 2015) explore the possibility of a unified argument that seeks to
justify all the norms of OBIL at once.

§5
Relation to Carnap’s programme

In this section, we briefly consider how OBIL compares to Rudolf Carnap’s well
known system of inductive logic (Carnap, 1952).

Carnap also considered inductive logic defined on a first-order predicate lan-
guage, but in the special case in which the premisses are all categorical, i.e., no
uncertainty attaches to the premiss sentences. Carnap’s approach can be thought
of as providing semantics for entailment relationships of the form:

ϕ1, . . . ,ϕk|≈λψY ,

where λ ∈ [0,∞] is a parameter that selects one out of a continuum of entail-
ment relations. Carnap was particularly interested in inference from a sample
±Ut1, . . . ,±Utk of past observations. For Carnap, an entailment relationship of
the form

±Ut1, . . . ,±Utk|≈λUtY
k+1

holds just when

cλ(Utk+1|±Ut1, . . . ,±Utk) df= #U +λ/2
k+λ ∈Y ,

where #U is the number of positive instances of U in the sample.8

There are a number of key differences between OBIL and Carnap’s approach.
Firstly, OBIL is more general, as it is not restricted to categorical premisses. Be-
cause Carnap’s approach appeals to conditional probabilities, the premisses that
are conditioned on must be categorical. Second, Carnap’s approach yields a con-
tinuum of inductive logics, and, unfortunately, he gave little concrete guidance as
to which logic to choose from this continuum. Thus, inductive logic is somewhat
underdetermined in Carnap’s framework.

The third and perhaps the most fundamental difference is that Carnap’s ap-
proach tries to embed learning from experience within the logic, while OBIL takes
this to be a separate, statistical question. The extent to which Carnap’s logics
exhibit learning from experience varies with the parameter λ. If λ = 0, then the
probability of the next outcome being positive is set to the observed frequency

8Here, cλ is one of a continuum of probability functions that is defined by the above assignment of
conditional probabilities.
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#U /k of positive outcomes in the sample. As λ increases, the influence of the sam-
ple decreases until, when λ=∞, the probability of the next outcome being positive
remains at the value 1

2 regardless of the proportion of positive outcomes in the
sample.

OBIL, on the other hand, takes the question of the influence of the sample
to have been determined when formulating the premisses. Recall that objective
Bayesianism requires degrees of belief to be appropriately calibrated to empirical
probabilities. The way this is fleshed out by Williamson (2017, Chapter 7) is by ap-
peal to confidence intervals. Given a sample ±Ut1, . . . ,±Utk of outcomes, consider
the narrowest confidence interval [l,u] within which one is prepared to infer that
the empirical probability of a positive outcome lies. If there is no more pertinent
information about the next outcome, the Evidential norm would say that one should
believe to some degree in the interval [l,u] that the next outcome will be positive.
One thus adds Utk+1

[l,u] to the list of premisses. This is because the premisses
are supposed to represent all the relevant constraints imposed by the Evidential
norm on degrees of belief. Therefore, the objective Bayesian needs to consider as
premisses ±Ut1, . . . ,±Utk,Utk+1

[l,u],Utk+2
[l,u], . . .. The maximal entropy principle

would then yield, for example,

±Ut1, . . . ,±Utk,Utk+1
[.7,.8],Utk+2

[.7,.8], . . . |≈◦Utk+1
.7.

Thus, OBIL admits a clear demarcation between entailment in inductive logic and
the ‘knowledge representation’ process of formulating suitable premisses, which can
itself involve statistical inference. Theoretical work on OBIL often focusses on
entailment, though it presupposes adequate knowledge representation. This demar-
cation accords well with the analogous case of deductive logic, where considerable
work is required in formulating implicit as well as explicit premisses, but where the
logical theory tends to presuppose that this work has been done and focusses on
entailment. Here, constraints imposed by a sample, such as Utk+1

[.7,.8], can be
thought of as implicit premisses.

There are advantages to keeping these two aspects of induction distinct, rather
than conflating them as Carnap does. As Williamson (2017, Chapter 4) argues, prob-
lems can arise for Carnap’s approach because the probabilities are always treated
as ‘exchangeable’, i.e., invariant under permutations of the constants. Exchange-
ability is sometimes appropriate (e.g., when drawing inferences from a sample from
independent and identically distributed random variables), but not always. OBIL’s
separation of these statistical concerns from the logic allows for more flexibility
with respect to statistical methods: exchangeability can be invoked where appropri-
ate but need not always be adhered to.

§6
Relation to subjective Bayesianism

The subjective Bayesian approach to inductive inference has some points in com-
mon with Carnap’s approach. In particular, it invokes conditional probabilities and
thus requires categorical premisses. There are two key variants.

The precise subjectivist approach appeals to a prior probability function P0 and
holds that:

ϕ1, . . . ,ϕk|≈P0ψ
Y iff P0(ψ|ϕ1, . . . ,ϕk) ∈Y .
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Howson (2000) was a notable advocate of this sort of approach. It can be criticised
as being radically underdetermined: according to the subjectivist any probability
function is admissible as a prior probability function and there are no rational
grounds for choosing one prior over another. Rather, the task is to elicit an agent’s
subjective degrees of belief and represent these using the prior probability function.

In order to address the problem of underdetermination, one could, of course,
argue for stronger constraints on rational degrees of belief, but this arguably leads
us back to objective Bayesianism. Alternatively one could adopt an imprecise sub-
jectivist approach (Nilsson, 1986):

ϕ1, . . . ,ϕk|≈ψY iff P(ψ|ϕ1, . . . ,ϕk) ∈Y for all P ∈P.

This can be generalised to what sometimes known as the standard semantics for
inductive logic (Williamson, 2017, §3.5):

ϕ
X1
1 , . . . ,ϕXk

k |≈ψY iff P(ψ) ∈Y for all P ∈ E.

Unfortunately, however, the imprecise approach arguably trades one problem (un-
derdetermination) for another, namely weakness: it is often the case that the most
one can infer from given premisses is that the probability of conclusion sentence ψ
lies in the unit interval. OBIL usually motivates much stronger inferences.

A key point of difference between subjective and objective Bayesianism concerns
conditional probabilities. Conditional probabilities are absolutely central to subjec-
tive Bayesianism, because evidence is taken into account by conditionalising, i.e., by
ensuring that all probabilities are conditional on total evidence (see, e.g., Howson
and Urbach, 1989, §3.h). This stands in marked contrast to objective Bayesianism
as developed above, which takes evidence into account by means of calibration to
empirical probabilities and applying the maximal entropy principle.9

The question nevertheless remains as to the connection between the two ways of
handling evidence. Landes et al. (2023, Theorem 34) show that updating in OBIL
captures Bayesian conditionalisation as a special case:10

Theorem 11 (Bayesian conditionalisation). Given categorical premisses ϕ1, . . . ,ϕk, if
P=(ϕ1 ∧·· ·∧ϕk)> 0 then

maxentE= {P=(·|ϕ1, . . . ,ϕk)}= {P=(·|ϕ̌1, . . . , ϕ̌k)}.

Landes et al. (2023, Theorem 41) go on to show that a generalisation of Bayesian
conditionalisation, namely Jeffrey conditionalisation (Jeffrey, 2004, §3.2), also holds
in OBIL:

Theorem 12 (Jeffrey conditionalisation). Given c ∈ (0,1) and premiss ϕc, if P=(ϕ) ∈ (0,1)
then

maxentE= {c ·P=(·|ϕ)+ (1− c) ·P=(·|¬ϕ)}= {c ·P=(·|ϕ̌)+ (1− c) ·P=(·|¬ϕ̌)}.

§7
Inference

In this section, we turn to questions of inference in OBIL.
9Indeed, Williamson (2023) argues that coherent calibration to empirical probabilities requires aban-

doning conditionalisation in favour of maximising entropy.
10This extends a result of Seidenfeld (1986, §2.1) from the finite case to the case of a first-order

predicate language.
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§7.1. Decidability

As Landes et al. (2024, Corollary 1) observe, inference in inductive logic under the
standard semantics is undecidable. However, there is a surprisingly large decidable
class of entailment relationships in OBIL—decidable in the sense that there is an
effective procedure for deciding whether a given entailment relationship lies in the
class and, if so, whether the entailment is inductively valid. To obtain decidability
results, we need to suppose that all intervals X1, . . . , Xk,Y are expressible in the
sense that they have endpoints that are expressed as terminating decimal fractions
to some fixed number of decimal places. First, Landes et al. (2024, Theorem 1)
show:

Theorem 13 (Quantifier-free decidability). The class of all quantifier-free entailment
relationships is decidable in OBIL.

Then, in virtue of the fact that there is an effective procedure for determining
the support of any sentence, and this support is quantifier-free (Landes et al., 2024,
Theorem 5),

Theorem 14 (Support-satisfiable decidability). The class of all support-satisfiable entail-
ment relationships is decidable in OBIL.

§7.2. Truth tables

Given that such a large class of entailment relationships is decidable, the question
arises as to how one might determine whether a given support-satisfiable entailment
relationship is inductively valid. In this subsection we see that truth tables can be
used for inference, while in the next, that probabilistic graphical models can be
used for inference.

We will illustrate these methods by providing a running example—see Landes
et al. (2024) for more detail on the methods themselves. Consider the following
entailment relationship:

∃xV t1x, (Ut2 ∨∀xRx)0.9 , Ut1 →V t1t3, (Ut1 ∨ (∃xV xt3 →Ut2))[0.95,1]

|≈◦ V t1t3
[.5,1]

We can enumerate the atomic propositions as follows:

a1 : Ut1, a2 : Rt1, a3 : V t1t1,

a4 : Ut2, a5 : Rt2, a6 : V t1t2, a7 : V t2t1, a8 : V t2t2,

a9 : Ut3, a10 : Rt3, a11 : V t1t3, a12 : V t3t1, a13 : V t2t3, · · ·
The support of each premiss sentence is:

i ϕi ϕ̌i
1 ∃xV t1x a1 ∨¬a1
2 Ut2 ∨∀xRx a4
3 Ut1 →V t1t3 a1 → a11
4 Ut1 ∨ (∃xV xt3 →Ut2) a1 ∨a4
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Note in particular for ϕ1, i.e., ∃xV t1x, we have that ϕ̌1 is a1 ∨¬a1 because
ϕ1 mentions no atomic propositions and P=(a1 ∧∃xV t1x) = P=(¬a1 ∧∃xV t1x) =
1/2 > 0. Intuitively, since ∃xV t1x is an inductive tautology, it is treated as if it
were a deductive tautology when determining ϕ̌1. In determining ϕ̌2, the disjunct
∀xRx is an inductive contradiction and so ignored. Strictly speaking, ϕ̌3 is defined
as (a1 ∧ a11)∨ (¬a1 ∧ a11)∨ (¬a1 ∧¬a11) but we abbreviate this sentence by the
logically equivalent sentence a1 → a11. Similarly for ϕ̌4. Note that ∃xV xt3 is an
inductive tautology and hence treated as a deductive tautology when determining
ϕ̌4. The support of the conclusion is simply a11.

The support inference is thus:

a1 ∨¬a1, a.9
4 , a1 → a11, a1 ∨a4

[0.95,1] |≈◦ a[0.5,1]
11

The states of the atomic propositions that occur in the inference are Ξ= {±a1 ∧
±a4 ∧±a11}. These correspond to rows of the truth table for the support sentences:

P† a1 a4 a11 a1 ∨¬a1 a4 a1 → a11 a1 ∨a4 a11
0.3 T T T T T T T T
0 T T F T T F T F

0.05 T F T T F T T T
0 T F F T F F T F
0.3 F T T T T T T T
0.3 F T F T T T T F

0.025 F F T T F T F T
0.025 F F F T F T F F

The first column of the truth table shows the probability given to the state cor-
responding to each row of the truth table by the maximal entropy function P†. This
is found by maximising the entropy −∑

ξ∈ΞP(ξ) logP(ξ) subject to the constraints
imposed by the premisses. Standard numerical methods such as gradient ascent
can be used to straightforwardly obtain the values that maximise entropy (see, e.g.,
Boyd and Vandenberghe, 2004). The probability of each statement is the sum of
the probabilities at the rows of the truth table at which it is true. We see then that
P†(a11)= 0.3+0.05+0.3+0.025= 0.675 ∈ [0.5,1], so the entailment relationship is
indeed inductively valid in OBIL.

§7.3. Objective Bayesian Nets

The truth-table method is simple and powerful, but does not scale well to large
and complex entailment relationships, because the number of rows in a truth table
increases exponentially in the number of atomic sentences that feature in it. How-
ever, there is an alternative method for inference that is more tractable in many
cases. This is the graphical modelling approach of objective Bayesian networks. This
approach was originally applied to finite propositional inductive logic (Williamson,
2005b, 2008; Haenni et al., 2011), but has been extended to first-order OBIL (Lan-
des et al., 2024).

An objective Bayesian network (OBN) is a Bayesian network that represents the
maximal entropy probability function P†. It consists of a directed acyclic graph
whose vertices are the atomic sentences that feature in the support inference, to-
gether with the probability distribution of each atomic sentence conditional on each
of its parents in the graph. From the OBN one can calculate the probability of the
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conclusion sentence to determine whether the entailment relationship holds. The
distinctive feature of an OBN is that, unlike other kinds of Bayesian net, the con-
struction of the directed acyclic graph is computationally trivial: there is no need
for any computationally expensive probabilistic independence tests, for example.

Consider again the entailment relationship of the previous section. To construct
an OBN we first construct an undirected graph G by taking atomic sentences that
feature in the supports of the premisses as vertices and linking two atomic sentences
if they occur together in one of the premiss supports. Thus, we take a1,a4 and
a11 as vertices because they are the atomic sentences that feature in the premiss
supports. We include an edge between a1 and a11 because they both feature in ϕ̌3,
and an edge between a1 and a4 because they both feature in ϕ̌4:

a4 a1 a11

Maximal entropy probability functions render atomic propositions probabilisti-
cally independent in the absence of any evidence linking them. More precisely, one
can prove that separation in G implies conditional probabilistic independence of
the maximal entropy function P† (Williamson, 2002). In our example, P† renders
a4 and a11 probabilistically independent conditional on a1.

We next use a standard algorithm to transform G into a directed acyclic graph
H that preserves as many of the conditional independencies of G as possible. For
example, we can set H to be:

a4 a1 a11

D-separation in H implies that P† renders a4 and a11 probabilistically inde-
pendent conditional on a1.11

Finally, we determine the conditional probability distributions by finding the
values of the following parameters that maximise entropy:

P(a4), P(a1|a4), P(a1|¬a4), P(a11|a1), P(a11|¬a1).

A numerical optimisation yields:

P(a4)= 0.9, P(a1|a4)= 1/3, P(a1|¬a4)= 1/2, P(a11|a1)= 1, P(a11|¬a1)= 1/2.

Standard Bayesian network inference algorithms can then be used to determine
the probability of a conclusion sentence of interest. For example,

∃xV t1x, (Ut2 ∨∀xRx)0.9 , Ut1 →V t1t3, (Ut1 ∨ (∃xV xt3 →Ut2))[0.95,1]

|≈◦ (¬(Ut1 ∨Ut3)∧∃xV xx∧V t1t3)0.1625

11Subset Z D-separates subsets X from Y of nodes if each path between a node in X and a node in
Y contains either (i) some node ai in Z at which the arrows on the path meet head-to-tail (−→ ai −→)
or tail-to-tail (←− ai −→), or (ii) some node a j at which the arrows on the path meet head-to-head
(−→ a j ←−) and neither a j nor any of its descendants are in Z. The key result is that if Z D-separates
X from Y in H then the maximal entropy function renders X and Y probabilistically independent
conditional on Z (Williamson, 2005a, Theorem 5.3).
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To see this, note that the support of the conclusion sentence is ¬a1 ∧¬a7 ∧
a11 and that a7 is not mentioned by any of the premisses so P† renders
a7 probabilistically independent of a1 and a11 and P†(a7) = 1/2. Hence,
P†(¬a1 ∧¬a7 ∧ a11) = 1/2× P(a11|¬a1) (P(¬a1|a4)P(a4)+P(¬a1|¬a4)P(¬a4)) =
1/2×1/2(2/3×9/10+1/2×1/10)= 0.1625.

A key advantage of OBNs over the truth table method is a reduction in the
number of parameters required to specify the maximal entropy function P†. In this
example, the support problem involves three atomic propositions and the truth table
requires 8 parameters while the OBN requires only 5. Typically, this reduction in the
number of parameters becomes very marked as the number of atomic propositions
in the premisses increases.

§8
Logical properties

Here we briefly survey some of the logical properties of OBIL.
Some logical properties are common to all standard probabilistic logics (Landes,

2023; Landes et al., 2024). For example:

Preservation of Deductive Entailment. If ϕ |=ψ then ϕ |≈◦ψ.
Reflexivity. ϕX |≈◦ϕX .

Landes et al. (2023, Corollary 24) prove the following basic fact:

Theorem 15 (Zero-One Law). Every constant-free sentence is either an inductive contra-
diction or an inductive tautology.

Moreover, Landes et al. (2024) show the following:

Preservation of Inductive Tautologies (PIT). If |≈◦ ψ and ϕ
X1
1 , . . . ,ϕXk

k have satisfiable

support then ϕX1
1 , . . . ,ϕXk

k |≈◦ψ.
Note that PIT implies that inductive contradictions are also preserved by premisses
with satisfiable support. Hence, by the zero-one law,

Corollary 16 (Extended Zero-One Law). Every constant-free sentence is given either prob-
ability 1 or 0 by premisses with satisfiable support.

Landes (2023, §3) derives several logical properties, including:12

Modus Ponens. If ϕX |≈◦ψY and |≈◦ϕX then |≈◦ψY .

Modus Tollens. If ϕ |≈◦ψ and |≈◦¬ψ then |≈◦¬ϕ.
Implication. If ϕ |≈◦ψ then |≈◦ϕ→ψ.

Weak Cautious Monotonicity. If ϕX |≈◦ψY , ϕX |≈◦ θZ and |̸≈◦ ¬ϕ then ϕX ,ψY |≈◦ θZ , as
long as X ̸= {0}.

Cautious Cut. If ϕX |≈◦ψY and ϕX ,θZ |≈◦ψY then ϕX |≈◦ θZ .

12Note that in deriving these results, Landes assumed that any conclusion follows from unsatisfiable
premisses (‘explosion’).
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Very Cautious Or. If ϕ |≈◦ψ, θ |≈◦ψ, |̸≈◦¬ϕ and |̸≈◦¬θ then ϕ∨θ |≈◦ψ.
However, versions of some standard rules of nonmonotonic logic do not hold in

general in OBIL (Landes, 2023, §§4–5). For example,

Rational Monotonicity. If ϕX |≈ψY and ϕX |̸≈ ¬θ then ϕX ,θ |≈ψY .

Cautious Monotonicity. If ϕX |≈ψY and ϕX |≈ θZ then ϕX ,ψY |≈ θZ .

And. If ϕX |≈ψY and ϕX |≈ θY then ϕX |≈ (ψ∧θ)Y .

Transitivity. If ϕX |≈ψY and ψY |≈ θZ then ϕX |≈ θZ .

Interesting open questions remain. For example, is there a sound and complete
set of rules for OBIL?

§9
Language invariance

An inductive logic is language invariant if, whenever ϕ1, . . . ,ϕk,ψ are sentences that
can be formulated in both L 1 and L 2,

ϕ
X1
1 , . . . ,ϕXk

k |≈1ψY if and only if ϕX1
1 , . . . ,ϕXk

k |≈2ψY ,

where |≈1, |≈2 are the entailment relations defined on L 1,L 2 respectively. An
inductive logic may be language invariant on a specific class of entailment relation-
ships, even if it is not language invariant simpliciter.

What is known about language invariance is generally positive:

Theorem 17. OBIL is language invariant:

◦ for languages that differ only with respect to predicate symbols, on the class of
finitely generated entailment relationships. (Williamson, 2017, Theorem 5.9.)

◦ for languages whose constant symbols are permuted, as long as the permutation σ
is such that {t1, . . . , tn}= {tσ(1), . . . , tσ(n)} for sufficiently large n.

(Williamson, 2010, Proposition 5.10.)

◦ for languages whose constant symbols are permuted, as long as the permutation σ
preserves the set E= [ϕX1

1 , . . . ,ϕXk
k ]. (Landes et al., 2023, Proposition 49.)

A key question for further research concerns the extent to which these results
can be generalised.

§10
The entropy-limit conjecture

The maximal entropy principle is an extension of the maximum entropy principle
to the infinite predicate language L . It is not the only such extension, however:
Barnett and Paris (2008) put forward another approach to generalising the maxi-
mum entropy principle from a finite domain to an infinite predicate language L .
The question thus arises as to the relationship between the two approaches.

The core idea of Barnett and Paris (2008) is to consider a finite sublanguage
Ln in which the premisses are expressible, and to re-interpret the premisses as
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saying something about a finite domain of Ln, rather than as propositions about
the infinite domain of L . Thus ∀xθ(x) is re-expressed as θ(t1)∧ ·· · ∧θ(trn ) and
∃xθ(x) is re-expressed as θ(t1)∨ ·· ·∨θ(trn ). Then one can find the function P(n)

that maximises n-entropy subject to the constraints imposed by the re-expressed
premisses. One can consider the behaviour of P(n) as n increases by taking the

limit P(∞)(ψ) df= limn→∞ P(n)(ψ), where it exists. Finally, one can provide entropy-
limit semantics for inductive logic on L itself: ϕX1

1 , . . . ,ϕXk
k |≈∞ψY if and only if

P(∞)(ψ) ∈Y .
As it stands, this inductive logic is only partially defined, as the limit function

P(∞) does not always exist—for example, in certain cases where there are cate-
gorical Σ2 or Π2 premisses. However, Williamson (2017, p. 191) put forward the
following conjecture:

Entropy-limit conjecture. Entropy-limit entailment |≈∞ agrees with maximal-entropy
entailment |≈◦ wherever the limit P(∞) exists and is in E.

This conjecture has been explored in a number of cases and found to hold in
each:

Theorem 18. The entropy-limit conjecture has been verified to hold in the following
special cases:

◦ Inferences with categorical monadic premisses.
(Barnett and Paris, 2008; Rafiee Rad, 2009, Theorem 29; Rafiee Rad, 2021)

◦ Inferences with categorical Σ1 premisses. (Rafiee Rad, 2018)

◦ Inferences with categorical Π1 premisses. (Landes et al., 2021)

◦ Inferences from a premiss of the form ϕc, where the entropy-limit conjecture holds
for both ϕ and ¬ϕ. (Landes et al., 2021)

◦ Certain inferences in which P(∞) is a limit in entropy of the P(n).
(Landes et al., 2021)

If the entropy-limit conjecture were to hold generally, it would support the claim
that there is a canonical inductive logic and that OBIL captures that logic. Thus,
the status of the entropy-limit conjecture is one of the central open questions in this
field.

§11
Conclusions

As we have seen, the maximal entropy principle generalises Jaynes’ maximum en-
tropy principle and underpins an inductive logic defined on a first-order predicate
language. This logic, objective Bayesian inductive logic, suffers neither from the
underdetermination of the Carnapian and precise Bayesian approaches nor from
the weak inferences of an imprecise Bayesian approach. A large class of entailment
relationships (including all those that satisfy closure in entropy) induce a unique
maximal entropy function, and a large subclass of those entailment relationships
(the class of those whose premisses have satisfiable support) is known to be decid-
able. These entailment relationships can be verified by means of truth tables or
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objective Bayesian nets. OBIL has been found to be language independent in key
cases, and to agree with the alternative approach of Barnett and Paris (2008) in key
cases. Thus OBIL is now a mature and promising theory.

But there remain many open questions, not just concerning language inde-
pendence and the entropy-limit conjecture, but also, for example, the question of
whether OBIL can be characterised by logical rules, the extent to which limits in
entropy exist, and the behaviour of OBIL in cases where E is not closed in entropy.
Thus, there are many opportunities to advance the theory and develop our under-
standing of OBIL. Enough has been done to demonstrate the potential of OBIL, but
not so much as to rob us of exciting new results.
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