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In a classical logic we are typically faced with the following kind of question:
do some given premisses ϕ1, . . . , ϕn entail a given conclusion ψ? This question
can be written

ϕ1, . . . , ϕn |≈ ψ?

Here ϕ1, . . . , ϕn, ψ are premisses of some formal language, such as a propo-
sitional language or a predicate language. |≈ is an entailment relation: the
entailment holds if all models of the premisses also satisfy the conclusion, where
the logic provides some suitable notion of ‘model’ and ‘satisfy’. Proof theory
is normally invoked to answer a question of this form: one tries to prove the
conclusion from the premisses in a finite sequence of steps, where at each step
one invokes an axiom or applies a rule of inference.

Probabilistic logics come in various guises but we shall look at logics where
probabilities attach to sentences. Thus ∀x(Ux → V x)0.8 says that the prob-
ability that all Us are V s is 0.8. Probabilistic logics have great potential in
any application in which logical or structural constraints operate, but where
they only operate in a certain proportion of cases or where the constraints are
uncertain—e.g., in inferring meaning in natural language, predicting protein
folding in biology or modelling scientific theory change.

In a probabilistic logic, the fundamental question takes a different form to
that of classical logic. While we might have premisses of the form ϕX1

1 , . . . , ϕXn
n

where X1, . . . , Xn are probabilities or sets of probabilities, it is rare that we are
presented with a conclusion of the form ψY and asked whether the conclusion
follows from the premisses. More typically, there is a conclusion proposition ψ
of interest and we want to know what probability or set of probabilities Y to
attach to ψ. Thus the fundamental question of probabilistic logic can be written

ϕX1
1 , . . . , ϕXn

n |≈ ψ?

Since this question differs from that of classical logic, one might anticipate
that the means to solve the question differ too. In fact, determining Y is es-
sentially a question about probability, so methods of probabilistic inference are
more appropriate than the standard notion of proof. In (2008: Probabilistic log-
ics and probabilistic networks, available here) Rolf Haenni, Jan-Willem Romeijn,
Gregory Wheeler and I explore the use of probabilistic networks to answer this
question.

A Bayesian network—the simplest kind of probabilistic network—consists
of a directed acyclic graph on a finite set of variables, together with the proba-
bility distribution of each variable conditional on its parents in the graph. For
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example, given propositional variables A,B and C, the following constitutes a
Bayesian network:

����
A -����

B -����
C

P (A) = 0.7 P (B|A) = 0.2 P (C|B) = 0.9
P (B|¬A) = 0.1 P (C|¬B) = 0.4

By assuming what is called the Markov Condition, which says that each
variable is probabilistically independent of its non-descendants in the graph
conditional on its parents, a Bayesian network suffices to determine the joint
probability distribution over the set of variables. In our example the Markov
condition says that C is independent of A conditional on B. Probabilities over
the whole set of variables are multiples of corresponding conditional probabili-
ties: P (A ∧ ¬B ∧ C) = P (C|¬B)P (¬B|A)P (A).

A credal network is just like a Bayesian network except that the conditional
probabilities are only identified to within closed intervals. Thus the above graph
together with the following constraints determines a credal network:

P (A) ∈ [0.7, 0.8] P (B|A) = 0.2
P (B|¬A) ∈ [0.1, 1]

P (C|B) ∈ [0.9, 1]
P (C|¬B) ∈ [0.4, 0.45]

While a Bayesian network represents a single probability function, a credal
network represents a convex set of probability functions. A wide variety of algo-
rithms have been developed for constructing probabilistic networks and for cal-
culating probabilities from them. The use of probabilistic networks can greatly
reduce the computational burden of probabilistic inference: broadly speaking,
the sparser the graph, the quicker it is to draw inferences.

In the context of probabilistic logic it turns out that for a range of natural
semantics the X1, . . . , Xn are normally probabilities or intervals of probabilities,
and consequently the premisses determine a convex set of probability functions.
A probabilistic network can be used to represent that set of functions and to
infer an appropriate set Y of probabilities to attach to the conclusion sentence.
While the probabilistic network itself depends on the chosen semantics, the
machinery for calculating Y does not—see our (2008: §8.2).

A surprisingly broad range of approaches to probabilistic inference can be
invoked to provide semantics for probabilistic logics. Under the standard proba-
bilistic semantics a probability function P satisfies ϕX iff P (ϕ) ∈ X; premisses
entail a conclusion iff all probability functions that satisfy the premisses also
satisfy the conclusion. According to probabilistic argumentation, Y is the prob-
ability of worlds for which the premisses force the conclusion sentence ψ to be
true. With evidential probability, the ϕi include statistical statements, ψ is in-
ferred by certain rules for manipulating reference classes, and Y quantifies the
level of risk associated with this inference. Classical statistics can also be used
to provide a semantics since probabilistic argumentation or evidential probabil-
ity can capture fiducial probability. According to Bayesian statistical inference
the premisses contain information about prior probabilities and likelihoods, and

2



the entailment holds if the conclusion follows by Bayes’ theorem. With ob-
jective Bayesian epistemology, the entailment holds if any agent with evidence
characterised by the premisses should believe ψ to degree within Y .

In sum, probabilistic logics admit a range of natural semantics and proba-
bilistic networks can be used to answer the queries that such a logic faces. The
interested reader is urged to consult our (2008) for more details.
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