Inductive-Deductive Systems: A mathematical logic and statistical learning perspective

Nicolas Baskiotis, Michèle Sebag et Olivier Teytaud

Université Paris-Sud — CNRS — INRIA

Progic 2007

- ► God (=expert, client, scientist, engineer...) says
 - Zermelo-Fraenkel holds
 - Does the theorem "blabla" hold ?
- ► What do you reply ?

- ► God (=expert, client, scientist, engineer...) says
 - Zermelo-Fraenkel holds
 - Does the theorem "blabla" hold ?
- ▶ It depends on blabla (and on your computational power):
 - ▶ If ZF proves "blabla", then you reply "yes".
 - ▶ If ZF proves "not blabla", then you reply "no".

- ► God (=expert, client, scientist, engineer...) says
 - Zermelo-Fraenkel holds
 - Does the theorem "blabla" hold ?
- ▶ It depends on blabla (and on your computational power):
 - ▶ If ZF proves "blabla", then you reply "yes".
 - ▶ If ZF proves "not blabla", then you reply "no".
 - ▶ Otherwise ?

Unfortunately, Godel's theorem ensures that God can find a question in the bad case.

- ► God (=expert, client, scientist, engineer...) says
 - Zermelo-Fraenkel holds
 - ▶ Does the theorem "blabla" hold ?
- It depends on blabla (and on your computational power):
 - ▶ If ZF proves "blabla", then you reply "yes".
 - ▶ If ZF proves "not blabla", then you reply "no".
 - ▶ Otherwise ? . . .
- God is not happy, but he is gentle. He tells you that "blabla" holds.
- ▶ God aks: is "blabla₂" true ?

Essentially undecidable systems (e.g. ZF!): God can find a "blabla₂" for which you have no answer!

- Ok, we can not win if God is an adversarial, by essential undecidability.
- ▶ What if God is a distribution of probability ? $\Rightarrow (blabla_n)_{n \in \mathbb{N}}$ independently identically distributed sequence
- ► At which rate can you reach a probability 1?

of statements.

We show that if you *induce+deduce* axioms, you will converge faster than if you *deduce*.

Inductive/deductive systems

Learning to Reason

[Khardon and Roth 97]

- Induction vs Deduction:
 - ▶ deduction: $\forall n, C(n)$ leads to $C(1), C(2), \ldots$
 - induction: C(1), C(3), C(7), $\neg C(4)$, $\neg C(6)$, leads to $C(2n+1) \land \neg C(2n)$
- Inductive/deductive system:
 - \triangleright e_1, \ldots, e_n available statements
 - \triangleright the algorithm reads e_1, \ldots, e_n and outputs a theory T
 - ▶ if T does not prove e_{n+1} , then T is not satisfactory.
 - ightharpoonup if T is not consistent, then T is not satisfactory.

7

Why a probabilistic analysis?

• Question: Does T prove e_{n+1} ?

- Worst case: incompleteness theorem (Gödel) there exists a statement e_{n+1} such that:
 - T does not prove e_{n+1}
 - and T does not prove $\neg e_{n+1}$
 - ⇒ for this criterion, all algorithms are equivalent: they always have a counter-example!

- Questions:
 - is a statistical analysis possible ? can one estimate proba(trouble) ?

Outline

Context

Theorems

Implications for Turing-computable approximations

Conclusion

- Analysis of the inductive power
- Z a domain of examples and $F \subset P(Z)$
 - ▶ $X \subset Z$ is « shattered » by F $\iff \forall X' \subset X \ \exists f \in F \text{ such that } X' = f \cap X$
 - ▶ VC-dim of F: maximal cardinal of a set shattered by F
- ullet If e_1,\ldots,e_n,\ldots are independent and identically distributed, generated in some unknown "target" theory, and if F:
 - ▶ has finite VC-dim \Rightarrow probability of "trouble" O(V/n)
 - ▶ does not shattered an infinite set \Rightarrow in some cases O(V(target)/n)
 - ▶ shatters an infinite set
 ⇒ arbitrarily slow convergence

Formalization, 1

- Modelization
 - lacktriangle consider ζ an essentially undecidable set of axioms
 - rightharpoonup consider a set of axioms $E_n = \{e_1, \dots, e_n\}$ (independent identically distributed according to M, consistent with ζ)
 - ▶ the algorithm reads E_n and outputs A_n such that A_n , $\zeta \vdash E_n = \{e_1, \ldots, e_n\}$
- We study:
 - ▶ uncompleteness: $L_n = M(\{e \mid A_n, \zeta \not\vdash e\})$
 - ightharpoonup compactness $DL(A_n)$: description length of A_n

Formalization, 2

- Three families of algorithms:
 - ightharpoonup deduction: $A_n = E_n$
 - ▶ deduction with pruning: $A_n \subset E_n$, minimal
 - ▶ induction+deduction: A_n as "small" as possible A_n not necessarily included in E_n
- Particular cases:
 - $ightharpoonup \zeta$ complete, then $L_n = 0$ $(A_n = \emptyset)$
 - $ightharpoonup \zeta$ ess. undecidable, worst case on e_n , then $orall n, L_n=1$ (Gödel's theorem)
- What happens if (i) ess. undecidable (ii) probability instead of worst case ?

Outline

Context

Theorems

Implications for Turing-computable approximations

Conclusion

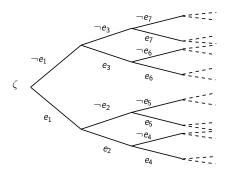
Fundamental theorem

- ullet Consider ζ an essentially undecidable set of axioms.
- Consider T' the set of consistent theories including ζ , $\Rightarrow T'$ shatters an infinite set \Rightarrow disaster.

- ullet Consider $\mathcal{T}\subset\mathcal{T}'$ the set of theories generated by an axiom set with finite description length,
- \Rightarrow T has an infinite VC-dimension \Rightarrow depends on the algorithm.

Sketch of the proof

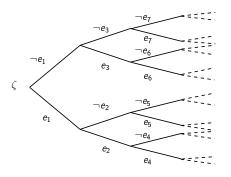
• Build an infinite sequence of statements $\{I_i\}$ shattered by T



- not the same statements on the left and on the right!
- \Rightarrow Modify the tree

Sketch of the proof

• $l_1 = e_1$, $r_1 = \neg e_1$, $l_2 = e_1 e_2 \lor \neg e_1 e_3$, $r_2 = e_1 \neg e_2 \lor \neg e_1 \neg e_3$, $l_3 = e_1 e_2 e_4 \lor \neg e_1 \neg e_2 e_5 \lor \neg e_1 e_3 e_6 \lor \neg e_1 \neg e_3 e_7$,...



- $\zeta, I_1, r_2, I_3 \vdash I_1, \vdash I_3, \not\vdash I_2$
- $\{I_1, \ldots, I_n\}$ is shattered by T

Outline

Context

Theorems

Implications for Turing computable approximations

Conclusion

Implications

- If induction+deduction and finite description length:
 - target asymptotically reached
 - ▶ fast convergence (O(log(n)/n))
 - description length of output bounded and converging to the MDL of the target
- Otherwise
 - arbitrarily slow convergence rate
 - description length might run to infinity

Implications for Turing computable machines

- Question : We have used an oracle (in 0') for solving MDL problems. Is this necessary ?
- Approximation of the "idealize" MDL principle (in 0') by finite-length deduction (in 0, i.e. computable)
 - \Rightarrow huge complexity of the algorithm, but
- \Rightarrow Same results as in 0'
 - \triangleright convergence of L_n as $O(\log(n)/n)$
 - target theory almost surely reached
 - description length converges to the optimal possible one

Proof in the paper

Conclusion

induction+deduction > deduction
induction+deduction > deduction+pruning
on the set of theories with finite description length

- Probabilistic framework for the analysis of ess. undecidable Inductive Logic Programming
- ► Induction + finite description length → convergence
- ► Turing-computable (but very expensive)
- Shorter axiom sets are better
- ► Making a difference between facts, which are definitely true, and induced facts, which are unstable.

Possible applications:

- ► Merging ontologies in ess. undecidable (i.e., natural!) settings
- ► A principled way for expert systems in ess. undecidable settings: approximate MDL + deduction
- ► Epistemology of mathematics: induction is precisely what mathematicians do.