Causal inference in graphical models with latent variables. From theory to practice.

Sam Maes, Stijn Meganck, Philippe Leray sammaes@vub.ac.be

Laboratoire d'Informatique, Traitement de l'Information, Systèmes.

Causality and Probability in the Sciences

15th June 2006

Outline

- Introduction
- 2 Causal Inference
- 3 Learning
- Parametrisation

Outline

- Introduction
- 2 Causal Inference
- 3 Learning
- Parametrisation

Introduction

Subtasks of causal modeling with latent variables:

- Structure learning from data:
 - observational
 - experimental
- Learning parameters
- Probabilistic inference
- Causal inference

Problem

No integral approach for all these tasks in the presence of latent variables.

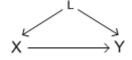
- Causal inference : semi-Markovian causal models
- Structure learning from observational data: ancestral graph models

Our solution:

- use ancestral graph models for learning
- transform the result into a semi-Markovian causal model

Assumptions

- data generated by an underlying faithful causal DAG
- some variables are latent to the user
- sufficient data and learning algorithms make no errors
- no latent common cause of 2 variables with an immediate causal connection
- no selection bias



Outline

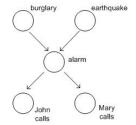
- 1 Introduction
- 2 Causal Inference
- 3 Learning
- Parametrisation

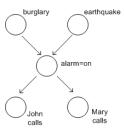
Probabilistic vs Causal Inference

underlying DAG

after observation

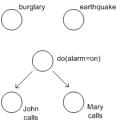
- instantiate the observed variables
- propagate





after manipulation

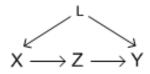
- replacer old causes
- instantiate
- propagate



With latent variables

Causal inference becomes more complicated:

- replace old causes
- instantiate
- propagate

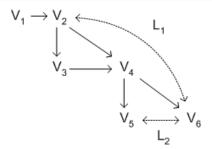


P(Y = y | do(X = x)): manipulate variable X and study the effect on Y.

Representation for causal inference

semi-Markoviens causal models (SMCM)

- directed edge represents an autonomous causal relation
- bi-directed edge represents a latent common cause
- importance: every models with arbitrary latent variables can be transformed into a SMCM
- ullet a joint probability distribution: e.g. $P(V_1,\ldots,V_6)$



Inference in SMCMs

causal inference algorithm exists (Tian & Pearl), but:

- no efficient parametrisation
- no probabilistic inference algorithm
- no structural learning algorithm

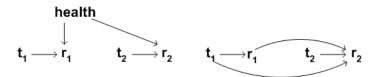
Outline

- 1 Introduction
- Causal Inference
- **3** Learning
- Parametrisation

Representation for learning

The class of DAGs is not complete under marginalisation.

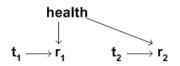
I.e., a DAG of the observable variables can not exactly represent all the independences between the variables.



Maximal ancestral graphs (MAG)

Maximal ancestral graphs without conditionning

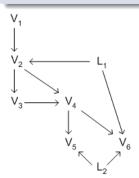
- directed edges have an ancestral meaning ≠ causal: there is a causal path in the underlying DAG
- bi-directed edges: latent common causes
- max. 1 edge between 2 variables: ancestral relations absorb latent common causes
- maximal: every absent edge represents an independence

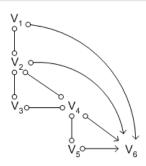


Markov equivalence class

complete partial ancestral graph (CPAG):

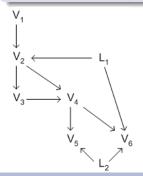
- Fast Causal Inference (FCI)
- Rules to orient edges
- 3 possible edge marks: o, -, >

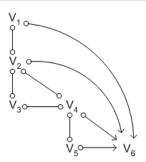




3 possible explanations for each edge:

- causal relation V_1, V_2
- latent variable V_2 , V_6
- ullet "inducing path" between V_1 et V_6
 - ullet V_1 can not be separated from V_6 by using observed variables
 - due to the maximality of the models FCI finds an edge





CPAG → **SMCM**

Perform experiments to differ between cases:

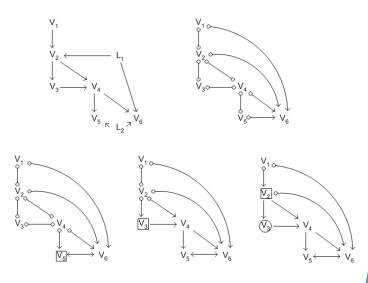
- Type 1: resolve $o \rightarrow$
- Type 2: resolve *o*—*o*
- Remove i-false edges

$\mathsf{CPAG} \to \mathsf{SMCM} \ (\mathsf{Type}\ 1)$

Type 1: resolve $Ao \rightarrow B$

- $exp(A) \not \rightarrow B: A \leftrightarrow B$
- $exp(A) \rightsquigarrow B$:
 - $\not\exists$ pot.dir. path $A \dashrightarrow B$ of length ≥ 2 : $A \longrightarrow B$
 - ∃ pot.dir. path A --→ B of length ≥ 2:
 block each pot.dir. path by conditioning on a set D
 - $exp(A)|D \rightsquigarrow B: A \rightarrow B$
 - $exp(A)|D \not \sim B: A \leftrightarrow B$

Type 1: examples



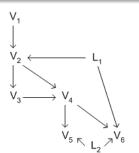
CPAG → **SMCM** (Type 2)

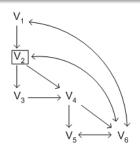
Type 2: resolve o-o

Easily transformed to Type 1

Remove i-false edges

- recognize the edges $A \leftrightarrow B$ and $A \rightarrow B$ that are possible created due to an inducing path
- block each inducing path between A, B with experiments E
- block each other path between A, B by condit. on a set D
- $exp(E)|D: A \times B:$ confounding edge is real $A \perp B:$ remove i-false edge





Outline

- Introduction
- Causal Inference
- 3 Learning
- Parametrisation

Parametrisation for discrete variables

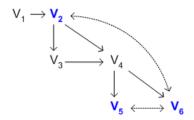
Represent the SMCM with a DAG

- this DAG is an I-map of SMCM
- i.e. all the indep. found in the DAG are also in the SMCM
- use this DAG for:
 - learning parameters
 - probabilistic inference
- for causal inference:
 - use the SMCM for the structure
 - use the DAG for the parameters

Some definitions

C-component

In a SMCM, the set of observable variables that are connected by a bi-directed path belong to the same **c-component** (from "confounded component").



Parametrisation: procedure

Given a SMCM and a topological order, the PR-representation is obtained as follows:

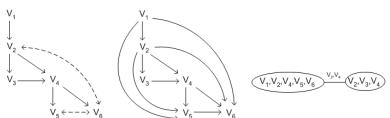
- The nodes are V, the observable variables of the SMCM.
- The directed edges of the SMCM remain.
- The bi-directed edges in the SMCM are replaced:
 - Add a directed edge from node V_i to node V_j iff:
 - \bullet V_i is a topological predecessor in the same c-component
 - a parent of a topological predecessor in the same c-component
 - ullet except if there was already an edge between nodes V_i and V_j .

Parametrisation: example

Add an edge $V_i \rightarrow V_i$ iff:

- \bullet V_i is a topological predecessor in the same c-component
- a parent of a topological predecessor in the same c-component

with topological order $V_2 < V_5 < V_6$:



Conclusion

From theory to practice.

Somewhat closer, still a lot of assumptions to relax:

- take into account:
 - possible errors in the learning algorithms
 - cost of experiments and impossible experiments
 - rules for marking edges after each experiment
- allow:
 - selection bias
 - confounding between variables with an immediate causal connection
- resolve practical issues such as finding pot. inducing paths and pot. directed paths

