Framing human inference by coherence based probability logic

Pfeifer, N., & Kleiter, G. D. *University of Salzburg (Austria)*

• Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$

- Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$
- To start no full algebra needed

- Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$
- To start no full algebra needed
- Conditional events and probabilities are primitive

- Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$
- To start no full algebra needed
- Conditional events and probabilities are primitive
- Single events no problem

- Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$
- To start no full algebra needed
- Conditional events and probabilities are primitive
- Single events no problem
- imprecision

- Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$
- To start no full algebra needed
- Conditional events and probabilities are primitive
- Single events no problem
- imprecision
- close to Bayesian statistics

- Degrees of belief & subjective probabilities versus measure theory, limits of relative frequencies as $n \to \infty$
- To start no full algebra needed
- Conditional events and probabilities are primitive
- Single events no problem
- imprecision
- close to Bayesian statistics
- prob. semantics for non-classical logic systems

How is conditional probability introduced?

$$P(E|H)$$
 is basic

$$P(E|H)$$
 is defined

$$E \wedge H, H$$

$$E \wedge H, H$$
 $P(H), P(E \wedge H)$

1 conditional event

2 unconditional events

$$P(E|H), \quad H \neq \emptyset$$

$$P(E|H) = \frac{P(E \wedge H)}{P(H)}, \quad P(H) \neq 0$$

1 probability

2 probabilities

Axioms (Popper, Rényi, ..., Coletti & Scozzafava)

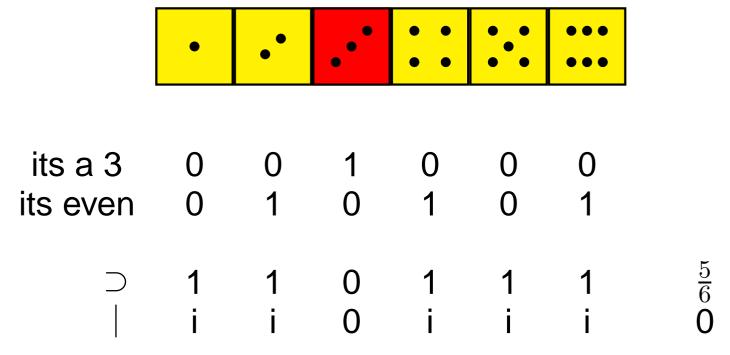
Let $\mathcal{C} = \mathcal{G} \times \mathcal{B}^0$ be a set of conditional events $\{E|H\}$ such that \mathcal{G} is a Boolean algebra and $\mathcal{B} \subseteq \mathcal{G}$ is closed with respect to (finite) logical sums, with $\mathcal{B}^0 = \mathcal{B} \setminus \{\emptyset\}$. A function $P: \mathcal{C} \mapsto [0,1]$ is a conditional probability iff the following three axioms are satisfied

- A1 P(H|H) = 1, for every $H \in \mathcal{B}^0$,
- A2 $P(\cdot|H)$ is a (finitely additive) probability on \mathcal{G} for any given $H \in \mathcal{B}^0$,
- A3 $P(E \land A|H) = P(E|H)P(A|E \land H)$ for any $A, E \in \mathcal{G}, H, E \land H \in \mathcal{B}^0$.

Conditional: \supset **versus**

- "If H, then E" is interpreted as E|H and not as $H\supset E$
- so that it is "weighted" by P(E|H) and not as $P(H \supset E)$, $= 1 P(H \land \neg E)$
- Does it make a difference?
 - Suppes: no, as P approaches 1
 - P(E|H) does not lead to the paradoxes of material implication

Example



Historical notes

- Ramsey (1926) "... 'The degree of belief in p given q'. This does not mean the degree of belief in 'If p then q [material implication]', or that 'p entails q' ... It roughly expresses the odds which he would now bet on p, the bet only be valid if q is true. Such conditional bets were often made in the eighteenth century."
- de Finetti (1937 and before)
- **Jeffreys**, 1931 first use of vertical stroke P(E|H) for conditional events
- Markov and Czuber (1902) used $P_H(E)$
- Carnap (1936) dispositional predicates

Indicators

$$T(E|H) = egin{cases} 1 & ext{if} & E \wedge H & ext{win} \ 0 & ext{if} &
ext{$\neg E \wedge H$} & ext{loose} \ p(E|H) & ext{if} &
ext{$\neg H$} & ext{money back} \ = & 1 \cdot I_{E \wedge H} + 0 \cdot I_{
ext{$\neg E \wedge H$}} + p(E|H) \cdot I_{
ext{$\neg H$}} \ X & = & \sum_{k=1}^3 x_k I_{E^k} \ \end{cases}$$

Generalization (Coletti & Scozzafava): The third term may be considered as a function.

- allows the "derivation" of the axioms of conditional probabilities
- leads to possibility function

Coherence

• Coherence A precise probability assessment (L,A^p) on a set of conditional events \mathcal{E} is coherent iff for every $\{\psi_1|\phi_1,\ldots,\psi_n|\phi_n\}\subseteq\mathcal{E}$ with $n\geq 1$ and for all real numbers s_1,\ldots,s_n

$$\max \sum_{i=1}^{n} s_i \cdot I(\phi_i) \cdot (I(\psi_i) - A(\psi_i|\phi_i)) \ge 0.$$
(1)

- Total coherence for interval probabilities ... iff all points are coherent (strong coherence, Walley (1991), Gilio)
- g-coherence An interval-probability assessment is g-coherent iff there exists at least one ... (weak coherence, Gilio in many papers, Walley (1991))

	Probability assessment	
	points	intervals
Unconditional	coherence	total-coherence (linear)
events	(linear)	g-coherence (linear)
Conditional	coherence	total coherence (non-linear)
events	(non-linear)	g-coherence (cubes)

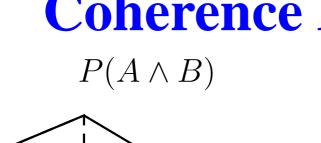
Fundamental Theorem (de Finetti, 1937)

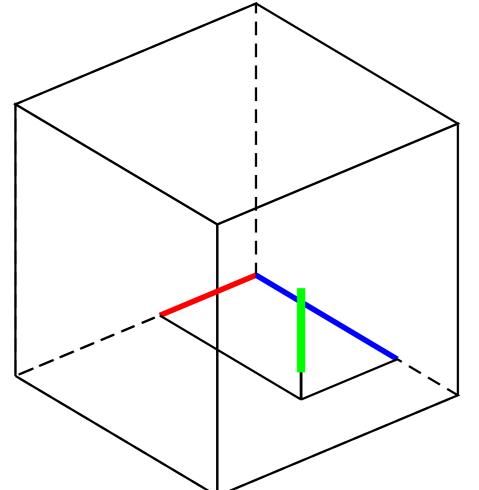
Given the probabilities $P(E_1), \ldots, P(E_m)$ of a finite number of events, the probability of a further event E_{m+1} ,

$$P(E_{m+1})$$
 is $\left\{ egin{array}{ll} ext{precise} & ext{if} & E_{m+1} ext{ is linearly dependent on } \{E_1,\ldots,E_m\}, \\ \in [0,1] & ext{if} & E_{m+1} ext{ is logically independent on } \{E_1,\ldots,E_m\}, \\ \in [p',p''] & ext{if} & E_{m+1} ext{ is logically dependent on } \{E_1,\ldots,E_m\}, \end{array}
ight.$

where p' and p'' are lower and upper probabilities.

Coherence I





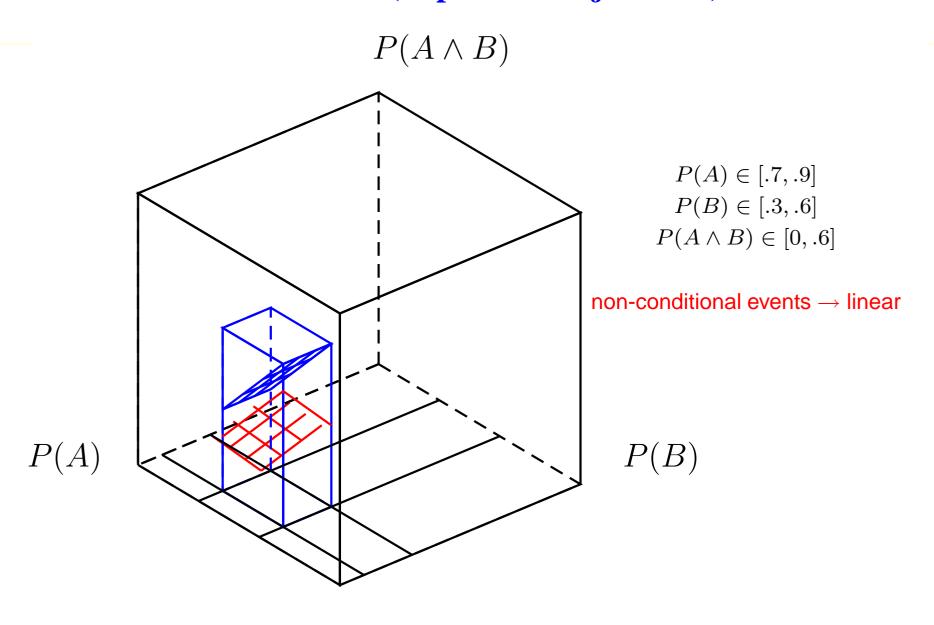
P(A)

$$P(A) = .4$$

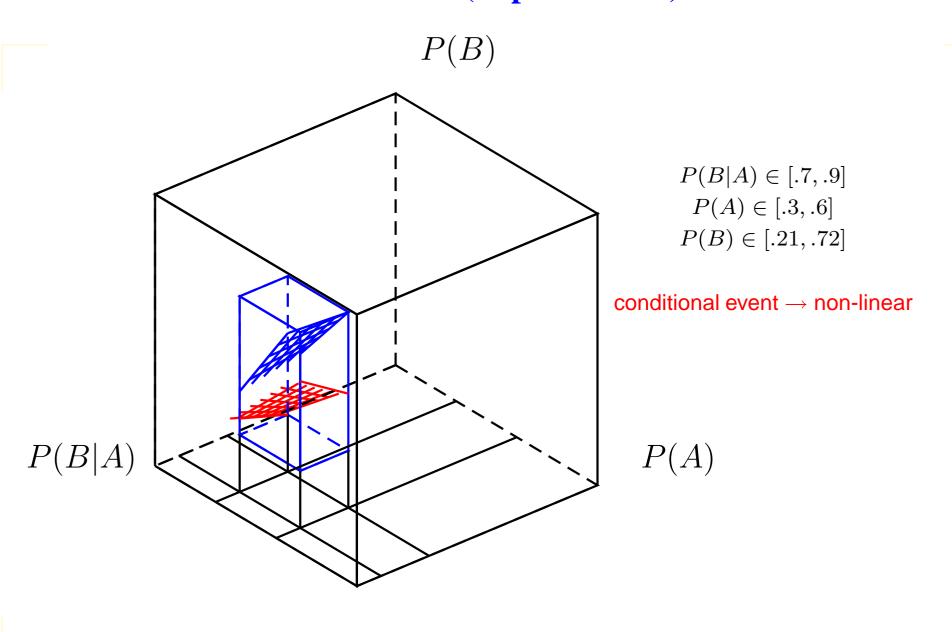
$$P(B) = .7$$

$$P(A \land B) \in [.1, .4]$$

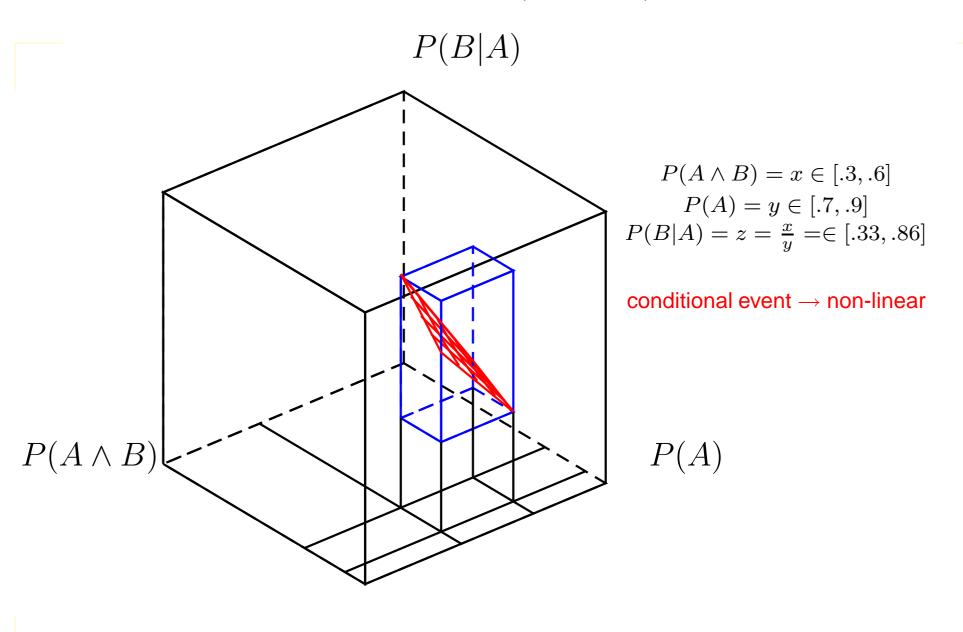
Coherence (imprecise conjunction)



Coherence (imprecise MP)

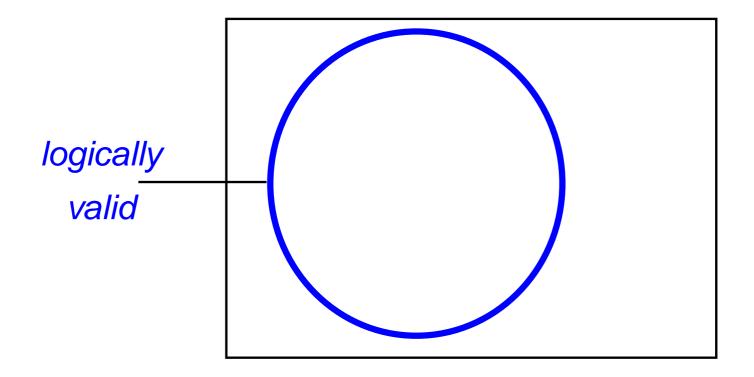


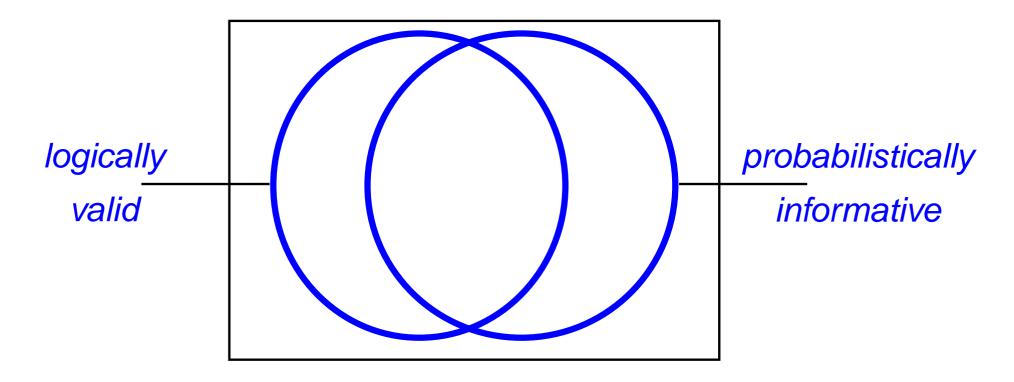
Coherence (function)

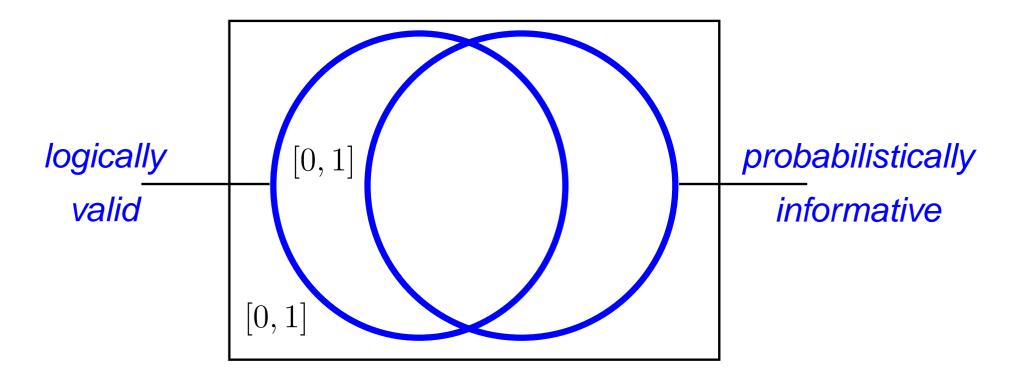


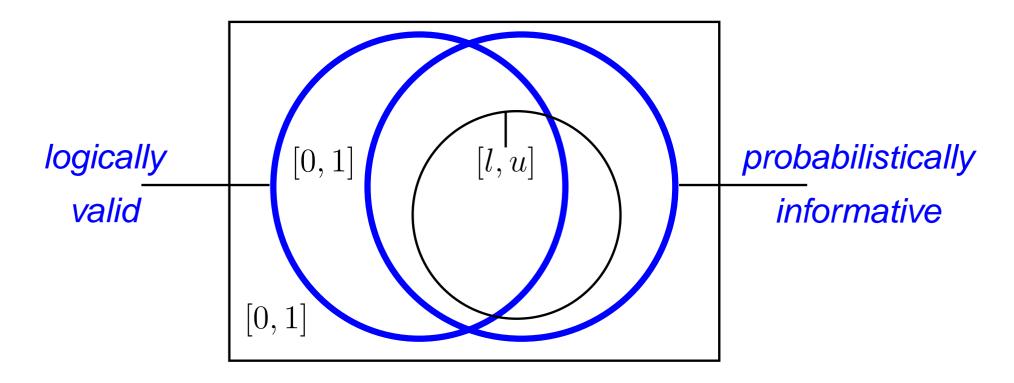
Logical independence/dependence

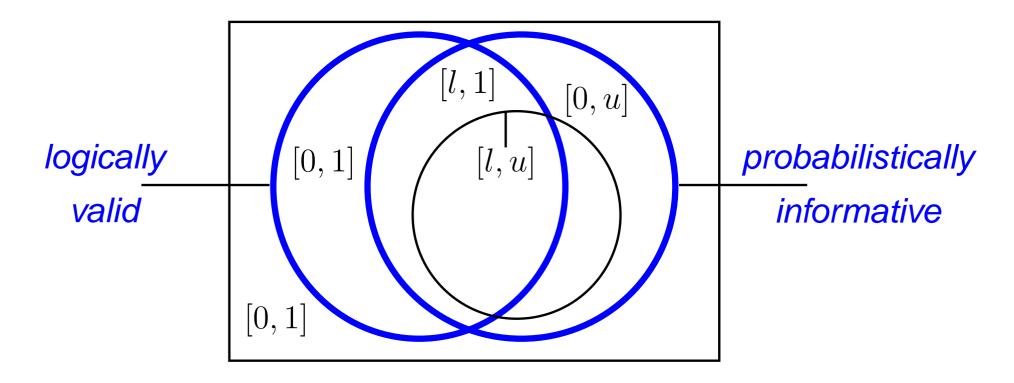
- Logical independence Let $\{E_1, \ldots, E_m\}$ be a set of m unconditional events. If all 2^m atoms are possible conjunctions, then the set of events is logically independent. Otherwise they are dependent.
- **▶** Linear dependence If the rank $r(\mathbf{V}_m + 1) = k$ and the rank $r(\mathbf{V}_{m+2}) = k + 1$, then the premises and the conclusion are linearly independent. If $r(\mathbf{V}_m + 1) = r(\mathbf{V}_{m+2})$, then the conclusion is linearly dependent on the premises.

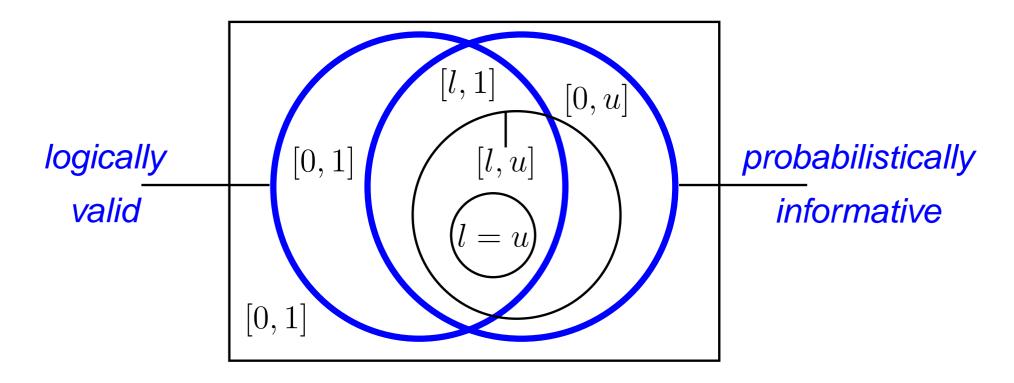












Combining logic and probability in psychology

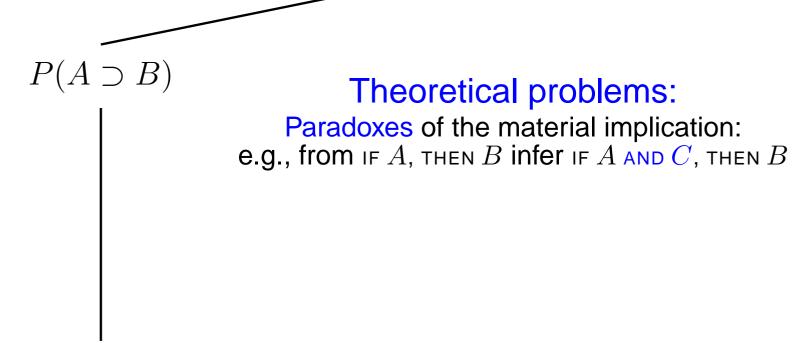
Postulated interpretation of the "IF A, THEN B"

$$P(A \supset B)$$

Postulated interpretation of the "IF A, THEN B"

$$P(A \supset B)$$

Postulated interpretation of the "IF A, THEN B"



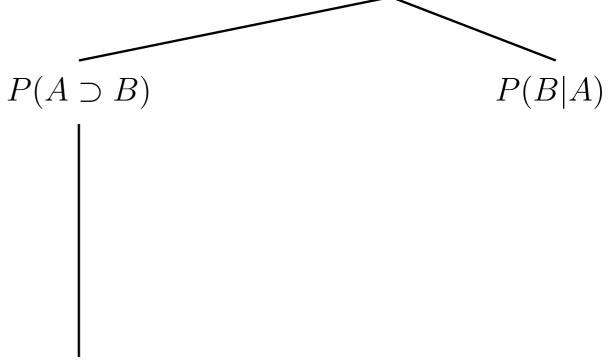
Postulated interpretation of the "IF A, THEN B"

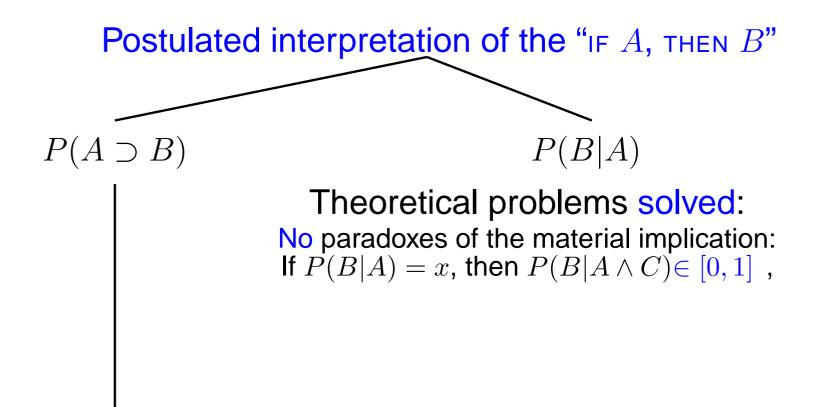
 $P(A \supset B)$ Theoretical problems:

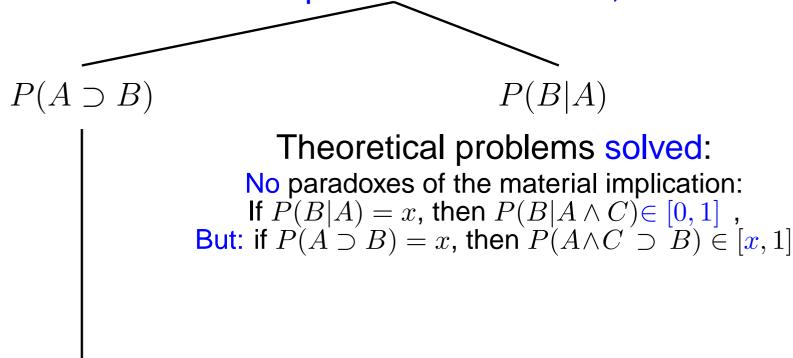
Paradoxes of the material implication: e.g., from IF A, THEN B infer IF A AND C, THEN B

The material implication is not a genuine conditional $(A\supset B) \Leftrightarrow (\neg A\vee B)$

Postulated interpretation of the "IF A, THEN B"





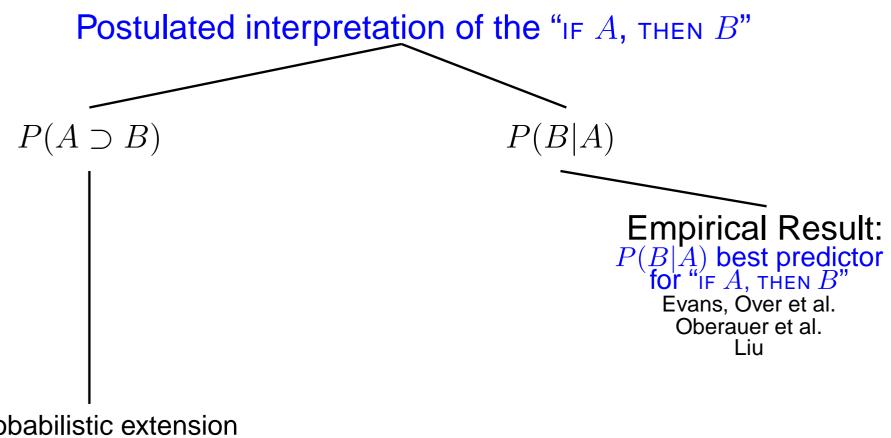


Theoretical problems solved:

No paradoxes of the material implication: If P(B|A)=x, then $P(B|A \land C) \in [0,1]$, But: if $P(A \supset B)=x$, then $P(A \land C \supset B) \in [x,1]$

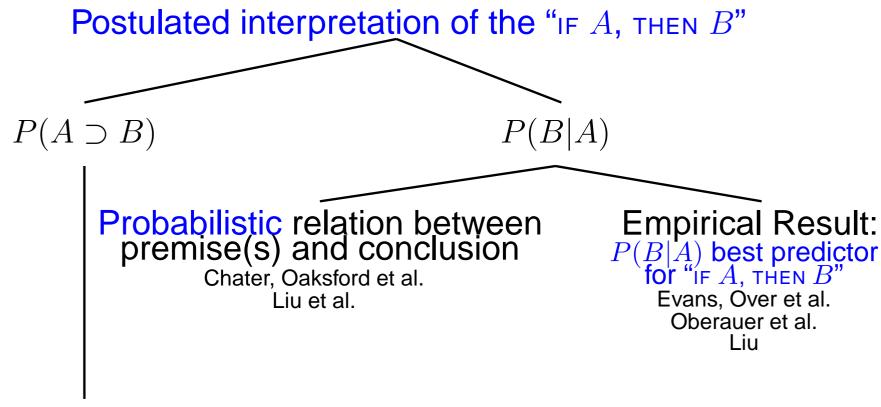
The conditional event B|A is a genuine conditional

Probabilistic approaches to human deductive reasoning



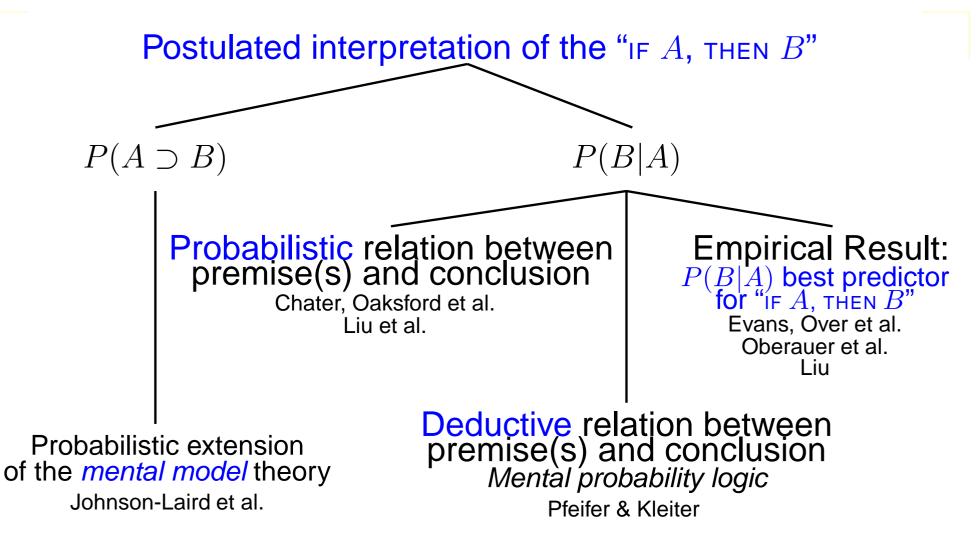
Probabilistic extension of the *mental model* theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning



Probabilistic extension of the *mental model* theory Johnson-Laird et al.

Probabilistic approaches to human deductive reasoning



- investigates IF A, THEN B as nonmontonic conditionals in a probability logic framework
 - A, normally B iff P(B|A) = high

- investigates IF A, THEN B as nonmontonic conditionals in a probability logic framework
 - A, normally B iff P(B|A) = high
- competence theory

- investigates IF A, THEN B as nonmontonic conditionals in a probability logic framework
 - A, normally B iff P(B|A) = high
- competence theory
- premises are evaluated by point values, intervals or second order probability distributions

- investigates IF A, THEN B as nonmontonic conditionals in a probability logic framework
 - A, normally B iff P(B|A) = high
- competence theory
- premises are evaluated by point values, intervals or second order probability distributions
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises

- investigates IF A, THEN B as nonmontonic conditionals in a probability logic framework
 - A, normally B iff P(B|A) = high
- competence theory
- premises are evaluated by point values, intervals or second order probability distributions
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises
- coherence

Example: MODUS PONENS

• In logic from A and $A \supset B$ infer B

Example: MODUS PONENS

- In logic
 - from A and $A \supset B$ infer B
- In probability logic

from
$$P(A) = x$$
 and $P(B|A) = y$

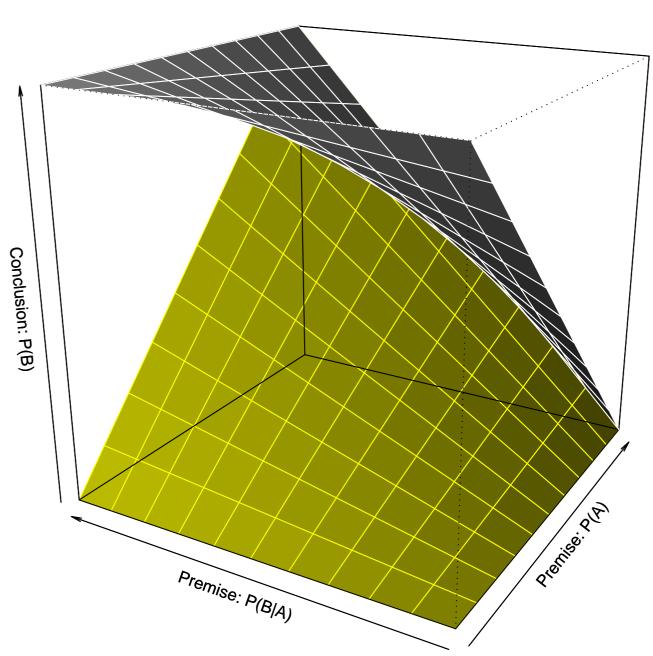
infer
$$P(B) \in [xy, xy + (1-x)]$$

Example: MODUS PONENS

- In logic
 - from A and $A \supset B$ infer B
- In probability logic

from
$$P(A) = x$$
 and $P(B|A) = y$ infer $P(B) \in [\underbrace{xy},\underbrace{xy + (1-x)}_{at\ least}]$

Probabilistic Modus Ponens



Example task: MODUS PONENS

Claudia works at the blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Example task: MODUS PONENS

Claudia works at the blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 100% certain:

If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.

Claudia is 100% certain:

The donated blood belongs to blood group 0.

Example task: MODUS PONENS

Claudia works at the blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 100% certain:

If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.

Claudia is 100% certain:

The donated blood belongs to blood group 0.

How certain should Claudia be that a recent donated blood is Rhesus-positive?

Response Modality

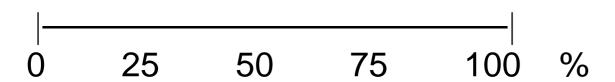
The solution is either a point percentage or a percentage between two boundaries (from at least ... to at most ...):

Response Modality

The solution is either a point percentage or a percentage between two boundaries (from at least ... to at most ...):

Claudia is at least% and at most% certain, that the donated blood is Rhesus-positive.

Within the bounds of:



Premise		coherent		response		cohe	coherent		response	
1	2	LB.	UB.	LB.	UB.	LB.	UB.	LB.	UB.	
		MODUS PONENS			NEGA	NEGATED MODUS PONENS				
1 .7 .7	1 .9 .5	.63 .35	.73 .85	.62 .43	1 .69 .55	.00 .27 .15	.00 .37 .65	.00 .35 .41	.00 .42 .54	
		DENYING THE ANTECEDENT			NEGATED DENYING THE ANTECEDENT					
1 .7 .7	1 .2 .5	.00 .20 .15	1 .44 .65	.37 .19 .25	.85 .42 .59	.00 .56 .35	.80 .85	.01 .52 .33	.53 .76 .65	

Premise		coherent		response		cohe	coherent		response	
1	2	LB.	UB.	LB.	UB.	LB.	UB.	LB.	UB.	
		MODUS PONENS			NEG/	NEGATED MODUS PONENS				
.7 .7	1 .9 .5	.63 .35	.73 .85	.62 .43	1 .69 .55	.00 .27 .15	.00 .37 .65	.00 .35 .41	.00 .42 .54	
		DENYING THE ANTECEDENT			NEGATED DENYING THE ANTECEDENT					
1 .7 .7	1 .2 .5	.00 .20 .15	1 .44 .65	.37 .19 .25	.85 .42 .59	.00 .56 .35	.80 .85	.01 .52 .33	.53 .76 .65	

[&]quot;certain" MODUS PONENS tasks: all participants inferred correctly "1" or "0"

Premise		coherent		response		cohe	coherent		response	
1	2	LB.	UB.	LB.	UB.	LB.	UB.	LB.	UB.	
		MODUS PONENS			NEG	NEGATED MODUS PONENS				
1 .7 .7	1 .9 .5	.63 .35	.73 .85	.62 .43	1 .69 .55	.00 .27 .15	.00 .37 .65	.00 .35 .41	.00 .42 .54	
		DENYING THE ANTECEDENT			NEGATED DENYING THE ANTECEDENT					
.7 .7	1 .2 .5	.00 .20 .15	.44 .65	.37 .19 .25	. <mark>85</mark> .42 .59	.00 .56 .35	.80 .85	.01 .52 .33	. <mark>53</mark> .76 .65	

[&]quot;certain" denying the antecedent tasks: most participants inferred intervals close to $\left[0,1\right]$

Premise		coherent		response		cohe	coherent		response	
1	2	LB.	UB.	LB.	UB.	LB.	UB.	LB.	UB.	
		MODUS PONENS			NEGA	NEGATED MODUS PONENS				
1 .7 .7	1 .9 .5	.63 .35	.73 .85	.62 .43	1 .69 .55	.00 .27 .15	.00 .37 .65	.00 .35 .41	.00 .42 .54	
		DENYING THE ANTECEDENT			NEGATED DENYING THE ANTECEDENT					
1 .7 .7	1 .2 .5	.00 .20 .15	1 .44 .65	.37 .19 .25	.85 .42 .59	.00 .56 .35	.80 .85	.01 .52 .33	.53 .76 .65	

overall good agreement between the normative bounds and the mean responses

Conjugacy

All participants inferred a probability (interval) of a conclusion $P(\mathfrak{C}) \in [z', z'']$ and the probability of the associated negated conclusion, $P(\neg \mathfrak{C})$.

Conjugacy

All participants inferred a probability (interval) of a conclusion $P(\mathfrak{C}) \in [z', z'']$ and the probability of the associated negated conclusion, $P(\neg \mathfrak{C})$.

(Premise 1, Premise 2)	(1,1)	(.7, .9)	(.7,.5)	(.7,.2)
MODUS PONENS	100%	53%	50%	
DENYING THE ANTECEDENT	67%		30%	0%

... percentages of participants satisfying both

$$z'_{\mathfrak{C}} + z''_{\neg \mathfrak{C}} = 1 \text{ and } z'_{\neg \mathfrak{C}} + z''_{\mathfrak{C}} = 1$$

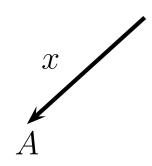
- Framing human inference by coherence based probability logic
 - investigating nonmonotonic conditionals in agrument forms
 - interpreting the if—then as high conditional probability
 - coherence based
 - competence theory ("Mental probability logic")
 - MODUS PONENS, conjugacy, forward & affirmative

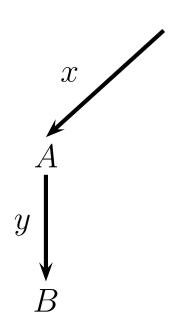
- Framing human inference by coherence based probability logic
 - investigating nonmonotonic conditionals in agrument forms
 - interpreting the if—then as high conditional probability
 - coherence based
 - competence theory ("Mental probability logic")
 - MODUS PONENS, conjugacy, forward & affirmative
- SYSTEM P, CONTRAPOSITION, TRANSITIVITY, MONTONICITY

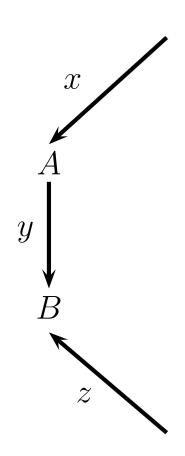
- Framing human inference by coherence based probability logic
 - investigating nonmonotonic conditionals in agrument forms
 - interpreting the if—then as high conditional probability
 - coherence based
 - competence theory ("Mental probability logic")
 - MODUS PONENS, conjugacy, forward & affirmative
- SYSTEM P, CONTRAPOSITION, TRANSITIVITY, MONTONICITY
- Intermediate quantifiers

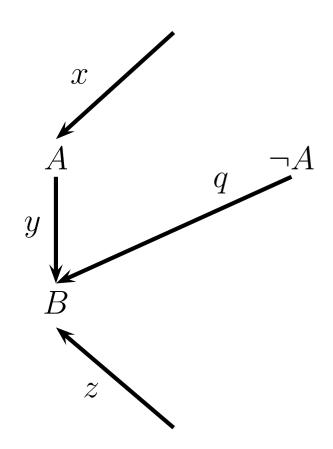
- Framing human inference by coherence based probability logic
 - investigating nonmonotonic conditionals in agrument forms
 - interpreting the if—then as high conditional probability
 - coherence based
 - competence theory ("Mental probability logic")
 - MODUS PONENS, conjugacy, forward & affirmative
- SYSTEM P, CONTRAPOSITION, TRANSITIVITY, MONTONICITY
- Intermediate quantifiers

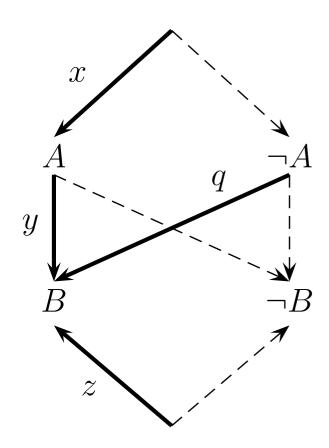
Towards a process model of human conditional inference

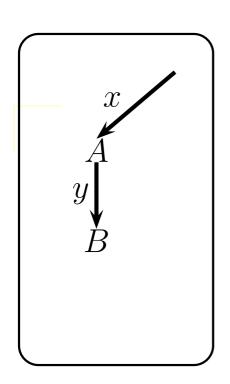






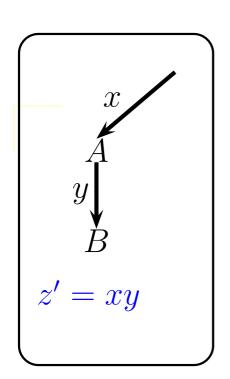






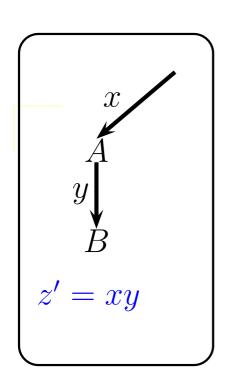
MODUS PONENS

$$P(B) = ?$$



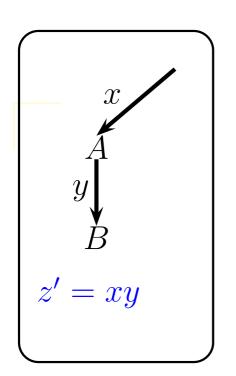
MODUS PONENS

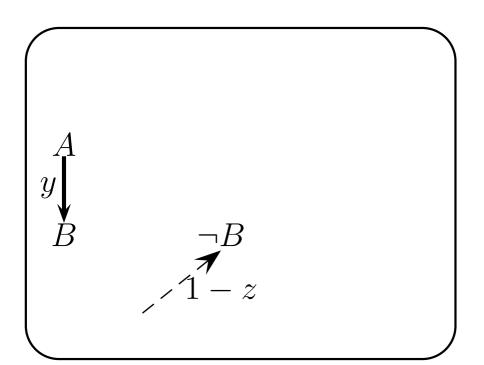
$$P(B) = ?$$



MODUS PONENS

$$P(B) = ?$$
 forward affirmative

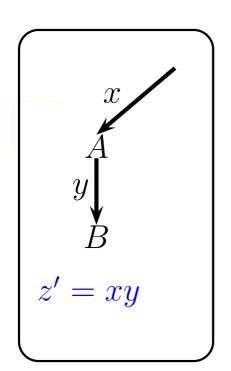




$$P(B) = ?$$
 forward affirmative

MODUS TOLLENS

$$P(\neg A) = ?$$



$$(1-x)' = \max\{1 - \frac{z}{y}, \frac{z-y}{1-y}\}$$

$$A$$

$$y$$

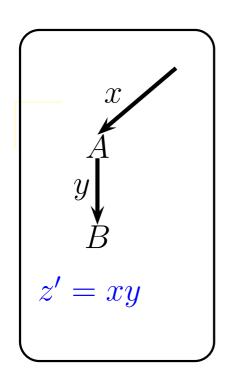
$$B$$

$$1-z$$

$$P(B) = ?$$
 forward affirmative

MODUS TOLLENS

$$P(\neg A) = ?$$



$$(1-x)' = \max\{1 - \frac{z}{y}, \frac{z-y}{1-y}\}$$

$$A$$

$$y$$

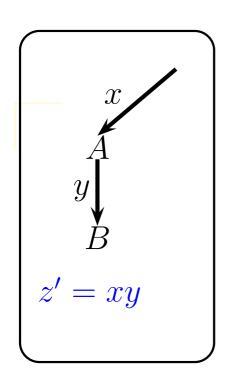
$$B$$

$$1-z$$

$$P(B) = ?$$
 forward affirmative

MODUS TOLLENS

$$P(\neg A) = ?$$
 backward negated



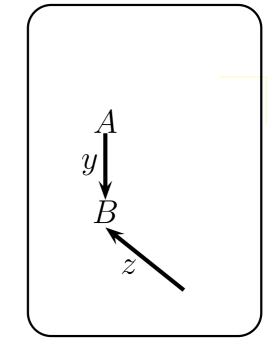
$$(1-x)' = \max\{1 - \frac{z}{y}, \frac{z-y}{1-y}\}$$

$$A$$

$$y$$

$$B$$

$$1-z$$



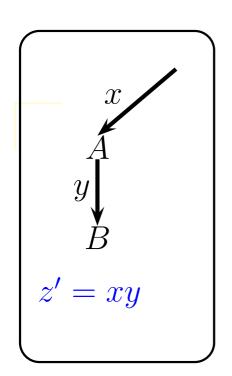
$$P(B) = ?$$
 forward affirmative

MODUS TOLLENS

$$P(\neg A) = ?$$
 backward negated

AFFIRMING THE CONSEQUENT

$$P(A) = ?$$



$$(1-x)' = \max\{1 - \frac{z}{y}, \frac{z-y}{1-y}\}$$

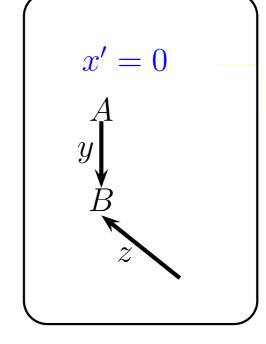
$$A$$

$$y$$

$$B$$

$$-B$$

$$-1-z$$



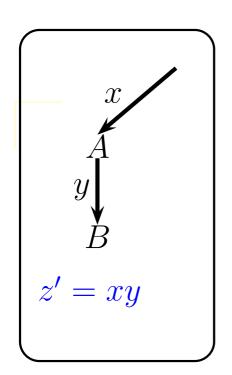
$$P(B) = ?$$
 forward affirmative

MODUS TOLLENS

$$P(\neg A) = ?$$
 backward negated

AFFIRMING THE CONSEQUENT

$$P(A) = ?$$



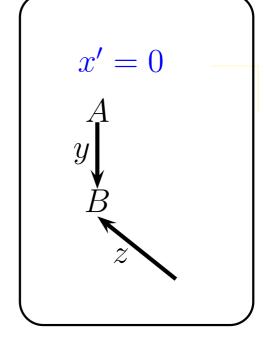
$$(1-x)' = \max\{1 - \frac{z}{y}, \frac{z-y}{1-y}\}$$

$$A$$

$$y$$

$$B$$

$$1-z$$



$$P(B) = ?$$
 forward affirmative

MODUS TOLLENS

$$P(\neg A) = ?$$
 backward negated

AFFIRMING THE CONSEQUENT

$$P(A) = ?$$
 backward affirmative

	MP	
P_1 :	$A\supset B$	
P_2 :	A	
C:	\overline{B}	

	MP	NMP
P_1 :	$A\supset B$	$A\supset B$
P_2 :	A	A
C:	\overline{B}	$\neg B$

	MP	NMP	DA	NDA
P_1 :	$A\supset B$	$A\supset B$	$A\supset B$	$A\supset B$
P_2 :	A	A	$\neg A$	$\neg A$
C:	\overline{B}	$\neg B$	$\neg B$	\overline{B}

	MP	NMP	DA	NDA
P_1 :	$A\supset B$	$A\supset B$	$A\supset B$	$A\supset B$
P_2 :	A	A	$\neg A$	$\neg A$
C:	\overline{B}	$\neg B$	$\neg B$	B
L-valid:	yes	no	no	no

	MP	NMP	DA	NDA
P_1 :	$A\supset B$	$A\supset B$	$A\supset B$	$A\supset B$
P_2 :	A	A	$\neg A$	$\neg A$
C:	B	$\neg B$	$\neg B$	B
L-valid:	yes	no	no	no
$V(\mathfrak{C})$	t	f	?	?

 $V(\mathfrak{C})$ denotes the truth value of the conclusion \mathfrak{C} under the assumption that the valuation-function V assigns t to each premise.

	Probabilistic versions of the						
	MP	NMP	DA	NDA			
P_1 :	P(B A) = x	P(B A) = x	P(B A) = x	P(B A) = x			
P_2 :	P(A) = y	P(A) = y	$P(\neg A) = y$	$P(\neg A) = y$			
\mathfrak{C} :	P(B) = z	$P(\neg B) = z$	$P(\neg B) = z$	P(B) = z			

The "IF A, THEN B" is interpreted as a conditional probability, P(B|A).

	Probabilistic versions of the					
	MP	NMP	DA	NDA		
P_1 :	P(B A) = x	P(B A) = x	P(B A) = x	P(B A) = x		
P_2 :	P(A) = y	P(A) = y	$P(\neg A) = y$	$P(\neg A) = y$		
C:	P(B) = z	$P(\neg B) = z$	$P(\neg B) = z$	P(B) = z		
z'	xy		(1-x)(1-y)			
z''	1-(y-xy)		1 - x(1 - y)			

$$z = f(x, y)$$
 and $z \in [z', z'']$

	Probabilistic versions of the						
	MP	NMP	DA	NDA			
P_1 :	P(B A) = x	P(B A) = x	P(B A) = x	P(B A) = x			
P_2 :	P(A) = y	P(A) = y	$P(\neg A) = y$	$P(\neg A) = y$			
C:	P(B) = z	$P(\neg B) = z$	$P(\neg B) = z$	P(B) = z			
z'	xy	y - xy	(1-x)(1-y)	x(1-y)			
z''	1-(y-xy)	1-xy	1-x(1-y)	1 - (1 - x)(1 - y)			

... by conjugacy: $P(\neg \mathfrak{C}) = 1 - P(\mathfrak{C})$

Probabilistic versions of the

	MP	NMP	DA	NDA
P_1 :	P(B A) = x	P(B A) = x	P(B A) = x	P(B A) = x
<i>P</i> ₂ :	P(A) = y	P(A) = y	$P(\neg A) = y$	$P(\neg A) = y$
C:	P(B) = z	$P(\neg B) = z$	$P(\neg B) = z$	P(B) = z

Chater, Oaksford, et. al: Subjects' endorsement rate depends only on the conditional probability of the conclusion given the categorical premise, $P(\mathfrak{C}|P_2)$

- the conditional premise is ignored
- the relation between the premise(s) and the conclusion is uncertain

		<i>c</i> 41
Urababilistic	Varcione	Of the
Probabilistic	ACI 210112	

	MP	NMP	DA	NDA
P_1 :	P(B A) = x	P(B A) = x	P(B A) = x	P(B A) = x
P_2 :	P(A) = y	P(A) = y	$P(\neg A) = y$	$P(\neg A) = y$
C:	P(B) = z	$P(\neg B) = z$	$P(\neg B) = z$	P(B) = z

Mental probability logic: most subjects infer coherent probabilities from the premises

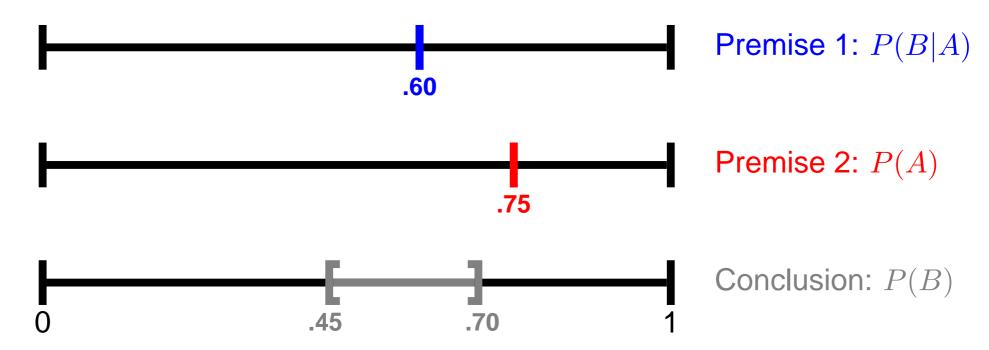
- the conditional premise is not ignored
- the relation between the premise(s) and the conclusion is deductive

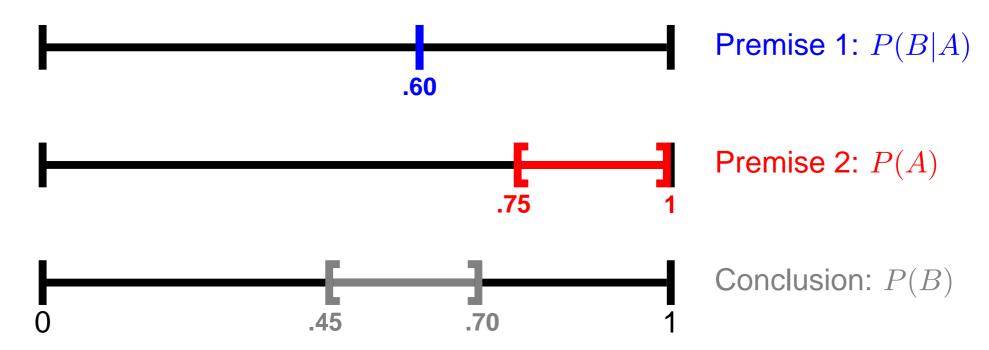
Results—Certain Premises (Pfeifer & Kleiter, 2003*, 2005a**, 2006)

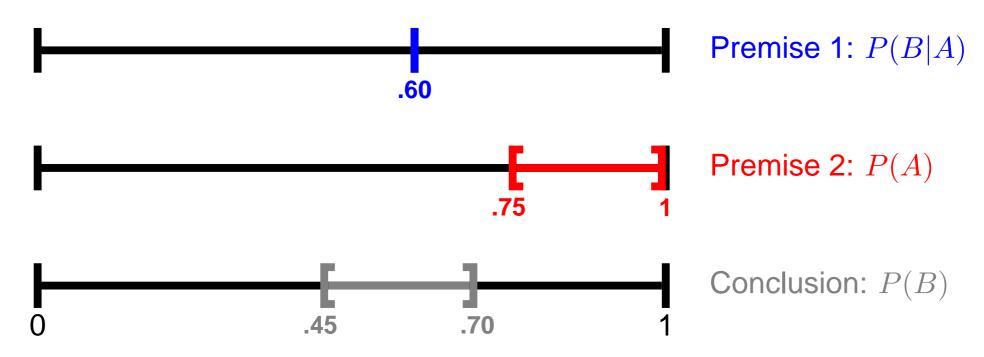
Condition	lower	bound	upper	bound	
(Task B7)	M	SD	M	SD	n_i
CUT1	95.05	22.14	100	0.00	20
CUT2	93.75	25.00	93.75	25.00	16
RW	95.00	22.36	100	0.00	20
OR	99.63	1.83	99.97	0.18	30
CM^*	100	0.00	100	0.00	19
AND**	75.30	43.35	90.25	29.66	40
M^*	41.25	46.63	92.10	19.31	20
TRANS1	95.00	22.36	100	0.00	20
TRANS2	95.00	22.36	100	0.00	20
TRANS3	77.95	37.98	94.74	15.77	19

Inference from imprecise premises – "Silent bounds"

A probability bound b of a premise is silent iff b is irrelevant for the probability propagation from the premise(s) to the conclusion.







$$P(B|A) \in [x', x''], P(A) \in [y', y''] : P(B) \in [x'y', 1 - y' + x''y']$$



Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.

Claudia knows that donated blood belongs with more than 75% certainty to the blood group 0.

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.

Claudia knows that donated blood belongs with more than 75% certainty to the blood group 0.

How certain should Claudia be that a recent donated blood is Rhesus-positive?

Claudia works at blood donation services. She investigates to which blood group the donated blood belongs and whether the donated blood is Rhesus-positive.

Claudia is 60% certain: If the donated blood belongs to the blood group 0, then the donated blood is Rhesus-positive.

Claudia knows that donated blood belongs with exactly 75% certainty to the blood group 0.

How certain should Claudia be that a recent donated blood is Rhesus-positive?

Results: Mean Responses (Bauerecker, 2006)

Task	Premise		Coherent		Response	
	1	2	LB	UB	LB	UB
\overline{MP}	.60	.75-1*	.45	.70	.45	.72
	.60	.75	.45	.70	.47	.60
\overline{NMP}	.60	.75-1*	.30	.55	.17	.46
	.60	.75	.30	.55	.23	.42

Participants inferred higher intervals in the MP tasks: participants are sensitive to the complement

Results: Mean Responses (Bauerecker, 2006)

Task	Premise		Coherent		Response	
	1			UB	-	UB
\overline{MP}	.60	.75-1*	.45	.70	.45	.72
	.60	.75	.45	.70	.47	.60
\overline{NMP}	.60	.75-1*	.30	.55	.17	.46
	.60	.75	.30	.55	.23	.42

- Participants inferred higher intervals in the MP tasks: participants are sensitive to the complement
- Participants inferred wider intervals in the tasks with the silent bound, 1*: they are sensitive to silent bounds (i.e., they neglect the irrelevance of 1*)

Results: Mean Responses (Bauerecker, 2006)

Task	Premise					
	1	2	LB	UB	LB	UB
\overline{MP}	.60	.75-1*	.45	.70	.45	.72
	.60	.75	.45	.70	.47	.60
\overline{NMP}	.60	.75-1*	.30	.55	.17	.46
	.60	.75	.30	.55	.23	.42

- Participants inferred higher intervals in the MP tasks: participants are sensitive to the complement
- ▶ Participants inferred wider intervals in the tasks with the silent bound, 1*: they are sensitive to silent bounds (i.e., they neglect the irrelevance of 1*)
- More than half of the participants inferred coherent intervals