Towards a (Model) Theory for Probabilistic Logical Models

Manfred Jaeger

Aalborg University

Progic Questions

Progic questions:

Introduction

Should probability and logic be combined at all?

Progic questions:

Should probability and logic be combined at all?

Yes.

Progic questions:

Should probability and logic be combined at all?

Yes.

How can probabilistic networks be used to simplify probabilistic logics?

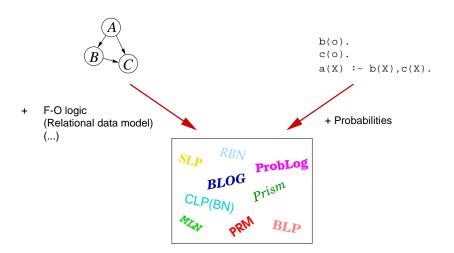
Progic questions:

Should probability and logic be combined at all?

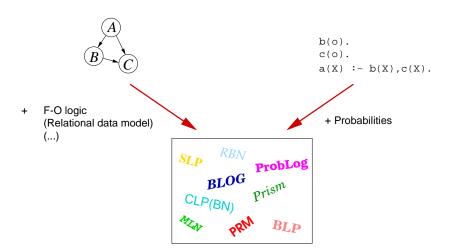
Yes.

How can probabilistic networks be used to simplify probabilistic logics?

- ► How do probabilistic networks relate to probabilistic logic?
- How do "first-order probabilistic networks" relate to first-order logic?
- what are "first-order probabilistic networks"?



"First-order relational probabilistic logic programming models"



"First-order relational probabilistic logic programming models"

→ PL-Models

Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

Non-Elementary Inference

Graphical Models:

Propositional probabilistic logic (Boole, Nilsson,...):

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, \ldots):

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

Graphical Models:

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

Semantics:

Set of probability distributions over possible worlds.

Graphical Models:

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:

Semantics:

Unique probability distribution over possible worlds.

The Propositional Case

Logic:

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

Semantics:

Set of probability distributions over possible worlds.

Inference:

Theorem proving

Graphical Models:

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:

Semantics:

Unique probability distribution over possible worlds.

Inference:

Model checking

[Halpern, Vardi: Model-checking vs. Theorem proving: a manifesto. 1991]

The Propositional Case

Logic:

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

Semantics:

Set of probability distributions over possible worlds

Inference:

Theorem proving

[Halporn Vardi: Model checking ve

Graphical Models:

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:

Semantics:

Unique probability distribution over possible worlds.

Inference:

Model checking

[Halpern, Vardi: Model-checking vs. Theorem proving: a manifesto. 1991]

Complexity: NP-complete

Complexity: NP-complete

First-order probabilistic logic (Halpern, Bacchus, ...):

Syntax:

$$P(\exists x f(x) = a) > 0.6$$

Semantics:

Set of probability distributions over possible worlds

Inference:

Theorem proving

Complexity:

 Π^1_∞ -complete

First-order probabilistic logic (Halpern, Bacchus, ...):

Syntax:

$$P(\exists x f(x) = a) > 0.6$$

Semantics:

Set of probability distributions over possible worlds

Inference:

Theorem proving

Complexity: Π^1_{∞} -complete

Graphical Models:

PL-models

Syntax:

Semantics: ?

Inference:

Model checking

Complexity: ?

Terminology

Logics vs. Models

"Model"...

in logic: a possible world

in probabilistic logic: a probability distribution over possible worlds

in statistics: a (parametric) class of probability distributions over possible worlds

Terminology

Logics vs. Models

```
"Model"...
```

in logic: a possible world

in probabilistic logic: a probability distribution over possible worlds

in statistics: a (parametric) class of probability distributions over possible worlds

Introduction

Logics vs. Models

Semantics of PL-Models

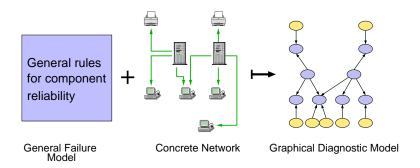
MLNs and RBNs

Expressivity

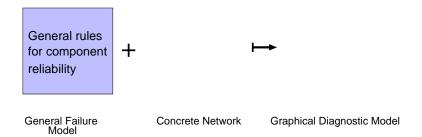
Complexity

Non-Elementary Inference

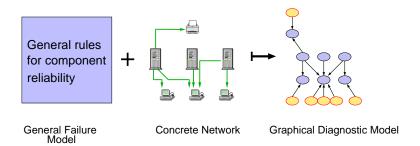
"... graphical decision-modeling languages are still quite limited ... while they can describe the relationships among particular event instances, they cannot capture *general* knowledge about probabilistic relationships across classes of events." [Breese, Goldman, Wellman 1994]

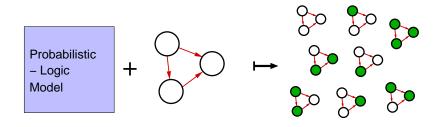


"... graphical decision-modeling languages are still quite limited ... while they can describe the relationships among particular event instances, they cannot capture *general* knowledge about probabilistic relationships across classes of events." [Breese, Goldman, Wellman 1994]



"... graphical decision-modeling languages are still quite limited ... while they can describe the relationships among particular event instances, they cannot capture *general* knowledge about probabilistic relationships across classes of events." [Breese, Goldman, Wellman 1994]



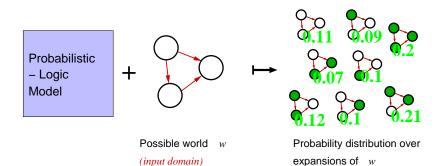


Possible world

(input domain)

Probability distribution over

expansions of w

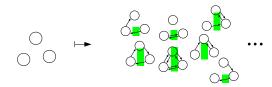


A PL-model is a mapping

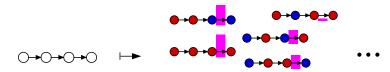
$$w \mapsto P$$

defined for an (infinite) class of input domains w.

Random Graphs



Markov Chains



Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

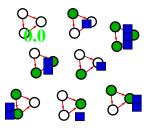
Non-Elementary Inference

Markov Logic Networks [Richardson,Domingos 2006] Software: http://alchemy.cs.washington.edu/

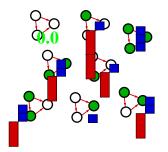
Markov Logic Networks [Richardson,Domingos 2006] Software: http://alchemy.cs.washington.edu/

Hard constraints: $\exists x \ green(x)$

Markov Logic Networks [Richardson,Domingos 2006] Software: http://alchemy.cs.washington.edu/



Hard constraints: $\exists x \ green(x)$ Weighted formulas: green(x) : 0.5 Markov Logic Networks [Richardson, Domingos 2006] Software: http://alchemy.cs.washington.edu/

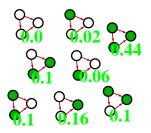


Hard constraints: Weighted formulas:

 $\exists x \ green(x)$ green(x): 0.5

 $green(x) \land edge(x, y) \land \neg green(y) : -1.0$

Markov Logic Networks [Richardson, Domingos 2006] Software: http://alchemy.cs.washington.edu/



Hard constraints: $\exists x \ green(x)$ Weighted formulas: green(x) : 0.5

 $green(x) \land edge(x, y) \land \neg green(y) : -1.0$

Syntax: RBNs

Relational Bayesian Networks [Jaeger 1997]

Software: http://www.cs.aau.dk/~jaeger/Primula/

logic definition:

$$\exists y (green(y) \land edge(y, x))$$

Relational Bayesian Networks [Jaeger 1997]

Software: http://www.cs.aau.dk/~jaeger/Primula/

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow: green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

Relational Bayesian Networks [Jaeger 1997] Software: http://www.cs.aau.dk/~jaeger/Primula/

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

probabilistic definition:

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

Relational Bayesian Networks [Jaeger 1997] Software: http://www.cs.aau.dk/~jaeger/Primula/

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

probabilistic definition:

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

Syntax: RBNs

Relational Bayesian Networks [Jaeger 1997]

Software: http://www.cs.aau.dk/~jaeger/Primula/

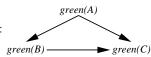
logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

probabilistic definition:

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

Dependency of ground atoms:



MLN	RBN
"Declarative" use of F-O formulas	"Definitional" use of F-O formulas
Undirected dependencies between ground atoms	Directed dependencies between ground atoms (acyclicity conditions!)
Best for descriptive/declarative modeling	Best for causal or (incrementally) generative modeling

Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

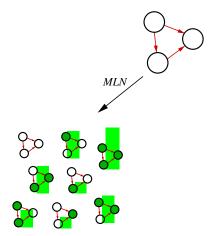
Non-Elementary Inference

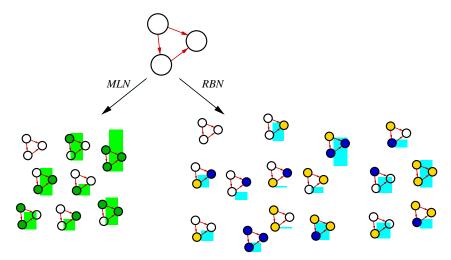
General idea:

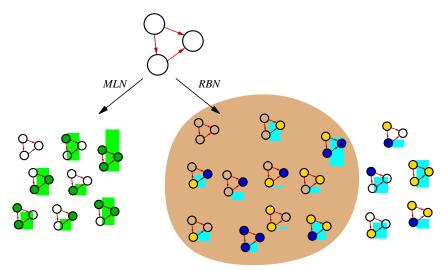
 \mathcal{XYZ} is at least as expressive as \mathscr{ABC} if every PL-model (i.e. mapping $w\mapsto P$) definable in \mathscr{ABC} is definable in \mathcal{XYZ} .

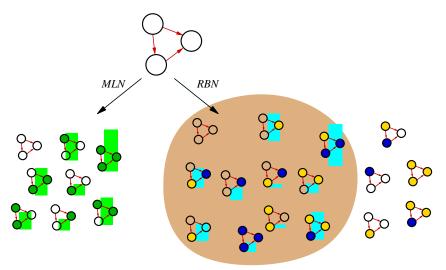
Issues

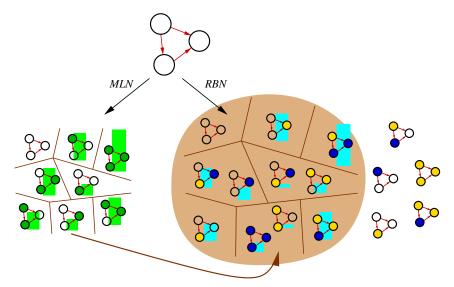
- ▶ Need to fit the semantics of XYZ, ABC into PL-model framework
 - Asking for identity of models is usually too much only feasible: A BC-models can be embedded in XYZ-models.

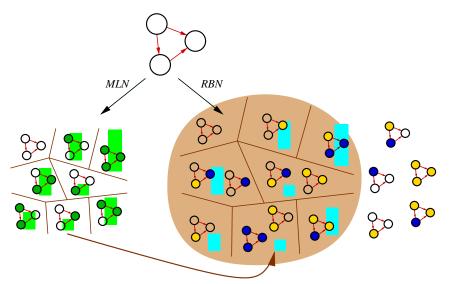












Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

Non-Elementary Inference

Given

- ▶ a model M
- ▶ an (input) domain (possible world) D
- truth assignments for ground atoms in expansions of D (evidence atoms):

$$r_1(\mathbf{d}_1) = \tau_1, \dots, r_n(\mathbf{d}_n) = \tau_n$$

truth assignments for ground atoms in expansions of D (query atoms):

$$r_{n+1}(\mathbf{d}_{n+1}) = \tau_{n+1}, \dots, r_{n+k}(\mathbf{d}_{n+k}) = \tau_n$$

compute

$$P(r_{n+1}(\mathbf{d}_{n+1}) = \tau_{n+1}, \dots, r_{n+k}(\mathbf{d}_{n+k}) \mid r_1(\mathbf{d}_1) = \tau_1, \dots, r_n(\mathbf{d}_n) = \tau_n)$$

for P defined by \mathcal{M} on expansions of D. (or decide whether $P(\ldots | \ldots) > 0$).

Example: given that responding(server003)=false, what is the probability that cable_intact(terminal152,server003)=false?

Complexity issues:

- complexity in terms of complexity of M
- complexity in terms of size of D

Complexity issues:

- ▶ complexity in terms of complexity of M
- complexity in terms of size of D

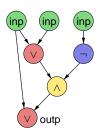
Results:

- Elementary inference (decision version) is NP-hard (in size of D) for any modeling language with [expressivity requirement]
- ... NP-complete for MLNs and RBNs

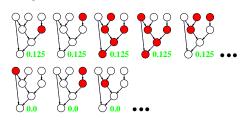
Expressivity Requirement

Boolean satisfiability encoding (cf. [Cooper 1990]):

Boolean function as input domain:



Uniform distribution over consistent value assignments:



Formula satisfiable $\leftrightarrow P(value(outp) = true) > 0$

MLNs and RBNs can encode Boolean satisfiability!

Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

Non-Elementary Inference

"Verifi cation"

Non-Elementary Inference

MLN defines a distribution over expansions of *D* iff the hard constraints are satisfiable in expansions of *D*

RBN defines a distribution over expansions of *D* iff the dependency relation induced by RBN is acyclic

"Verification" Problem:

Given

- ▶ a model M
- ▶ a class 𝒯 of input domains (e.g. axiomatized in some logic)

decide

whether \mathcal{M} defines for all $D \in \mathcal{D}$ a distribution over expansions of D.

Undecidability of Verifi cation

 \mathcal{D}_{\emptyset} : finite input domains without relations.

Result for MLNs

It is undecidable whether a MLN defines a distribution for each input $D \in \mathcal{D}_{\emptyset}$.

Proof: it is undecidable whether a first-order sentence ϕ is satisfiable over all finite cardinalities

Undecidability of Verifi cation

 \mathcal{D}_{\emptyset} : finite input domains without relations.

Result for MLNs

It is undecidable whether a MLN defines a distribution for each input $D \in \mathcal{D}_{\emptyset}$.

Proof: it is undecidable whether a first-order sentence ϕ is satisfiable over all finite cardinalities

Conjectures for RBNs

 \mathcal{D}_{UD} : finite input domains with only unary relations.

It is decidable whether a RBN defines a distribution for each input $D \in \mathcal{D}_{un}$.

acyclicity of dependencies can be expressed in monadic transitive closure logic

 \mathcal{D}_{bin} : finite input domains with one binary relation.

It is undecidable whether a RBN defines a distribution for each input $D \in \mathscr{D}_{bin}$.

"Global Inference" Problem:

Given

- ► a model M
- a first-order sentence φ

decide

whether $P(\phi) > 0$ for all input domains for which a distribution is defined by \mathcal{M}

"Global Inference" Problem:

Given

- ▶ a model M
- ightharpoonup a first-order sentence ϕ

decide

whether $P(\phi) > 0$ for all input domains for which a distribution is defined by \mathcal{M}

Results

The global inference problem is undecidable for MLNs and RBNs

Progic Question Again

How can probabilistic networks be used to simplify probabilistic logics?

They can direct our attention to tractable (model checking) problems!

Conclusion

Summary:

To better understand the plethora of probabilistic logical modeling languages:

- introduced semantic concept of PL-models
- obtained first expressivity result
- obtained some complexity results

Next:

- extend expressivity analysis to other languages (Bayesian Logic Programs, Prism,...)
- ► investigate *learnability* issues

Acknowledgements:

Kristian Kersting, Luc De Raedt, ..., discussion groups at SRL and Dagstuhl workshops