# Towards a (Model) Theory for Probabilistic Logical Models

Manfred Jaeger

Aalborg University

# **Progic Questions**

Progic questions:

Introduction

Should probability and logic be combined at all?

Progic questions:

Should probability and logic be combined at all?

Yes.

#### Progic questions:

Should probability and logic be combined at all?

Yes.

How can probabilistic networks be used to simplify probabilistic logics?

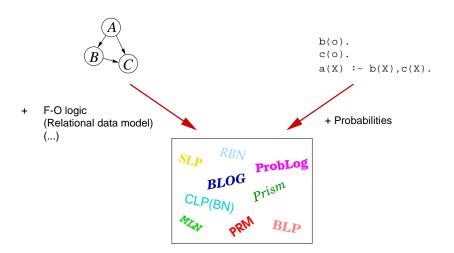
#### Progic questions:

Should probability and logic be combined at all?

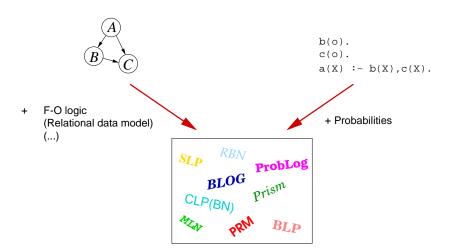
Yes.

How can probabilistic networks be used to simplify probabilistic logics?

- ► How do probabilistic networks relate to probabilistic logic?
- How do "first-order probabilistic networks" relate to first-order logic?
- what are "first-order probabilistic networks"?



"First-order relational probabilistic logic programming models"



"First-order relational probabilistic logic programming models"

→ PL-Models

Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

Non-Elementary Inference

# **Graphical Models:**

Propositional probabilistic logic (Boole, Nilsson,...):

Bayesian networks (Lauritzen, Spiegelhalter, Pearl,  $\ldots$ ):

Propositional probabilistic logic (Boole, Nilsson,...):

#### Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

## **Graphical Models:**

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

#### Semantics:

Set of probability distributions over possible worlds.

## **Graphical Models:**

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:



#### Semantics:

Unique probability distribution over possible worlds.

# The Propositional Case

#### Logic:

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

#### Semantics:

Set of probability distributions over possible worlds.

Inference:

Theorem proving

## **Graphical Models:**

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:



Semantics:

Unique probability distribution over possible worlds.

Inference:

Model checking

[Halpern, Vardi: Model-checking vs. Theorem proving: a manifesto. 1991]

# The Propositional Case

### Logic:

Propositional probabilistic logic (Boole, Nilsson,...):

Syntax:

$$P(A \mid B) = 0.4$$

$$P(C \mid \neg A \land B) \le 0.7$$

#### Semantics:

Set of probability distributions over possible worlds

Inference:

Theorem proving

[Halporn Vardi: Model checking ve

### **Graphical Models:**

Bayesian networks (Lauritzen, Spiegelhalter, Pearl, ...):

Syntax:



Semantics:

Unique probability distribution over possible worlds.

Inference:

Model checking

[Halpern, Vardi: Model-checking vs. Theorem proving: a manifesto. 1991]

Complexity: NP-complete

Complexity: NP-complete

First-order probabilistic logic (Halpern, Bacchus, ...):

Syntax:

$$P(\exists x f(x) = a) > 0.6$$

Semantics:

Set of probability distributions over possible worlds

Inference:

Theorem proving

Complexity:

 $\Pi^1_\infty$ -complete

First-order probabilistic logic (Halpern, Bacchus, ...):

Syntax:

$$P(\exists x f(x) = a) > 0.6$$

Semantics:

Set of probability distributions over possible worlds

Inference:

Theorem proving

Complexity:  $\Pi^1_{\infty}$ -complete

## **Graphical Models:**

PL-models

Syntax:



Semantics: ?

Inference:

Model checking

Complexity: ?

# **Terminology**

Logics vs. Models

"Model"...

in logic: a possible world

in probabilistic logic: a probability distribution over possible worlds

in statistics: a (parametric) class of probability distributions over possible worlds

# **Terminology**

Logics vs. Models

```
"Model"...
```

in logic: a possible world

in probabilistic logic: a probability distribution over possible worlds

in statistics: a (parametric) class of probability distributions over possible worlds

Introduction

Logics vs. Models

Semantics of PL-Models

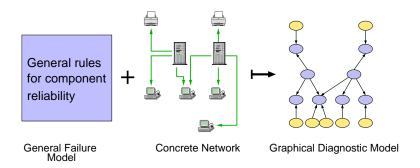
MLNs and RBNs

Expressivity

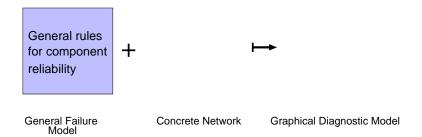
Complexity

Non-Elementary Inference

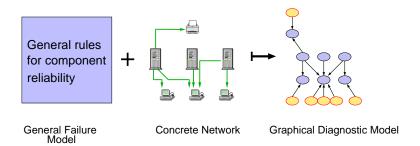
"... graphical decision-modeling languages are still quite limited ... while they can describe the relationships among particular event instances, they cannot capture *general* knowledge about probabilistic relationships across classes of events." [Breese, Goldman, Wellman 1994]

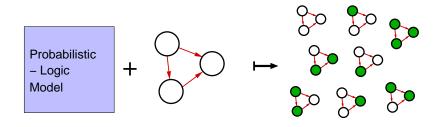


"... graphical decision-modeling languages are still quite limited ... while they can describe the relationships among particular event instances, they cannot capture *general* knowledge about probabilistic relationships across classes of events." [Breese, Goldman, Wellman 1994]



"... graphical decision-modeling languages are still quite limited ... while they can describe the relationships among particular event instances, they cannot capture *general* knowledge about probabilistic relationships across classes of events." [Breese, Goldman, Wellman 1994]



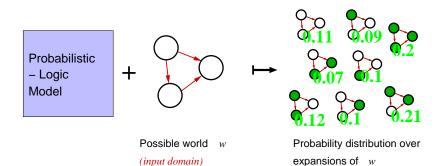


Possible world

(input domain)

Probability distribution over

expansions of w

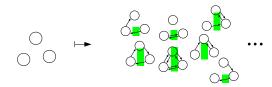


A PL-model is a mapping

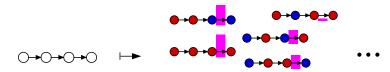
$$w \mapsto P$$

defined for an (infinite) class of input domains w.

### **Random Graphs**



#### **Markov Chains**



Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

Non-Elementary Inference

Markov Logic Networks [Richardson,Domingos 2006] Software: http://alchemy.cs.washington.edu/

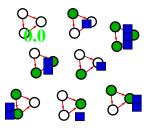


Markov Logic Networks [Richardson,Domingos 2006] Software: http://alchemy.cs.washington.edu/

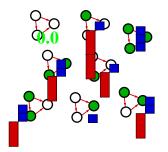


Hard constraints:  $\exists x \ green(x)$ 

Markov Logic Networks [Richardson,Domingos 2006] Software: http://alchemy.cs.washington.edu/



Hard constraints:  $\exists x \ green(x)$ Weighted formulas: green(x) : 0.5 Markov Logic Networks [Richardson, Domingos 2006] Software: http://alchemy.cs.washington.edu/

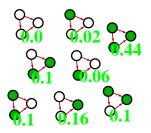


Hard constraints: Weighted formulas:

 $\exists x \ green(x)$  green(x): 0.5

 $green(x) \land edge(x, y) \land \neg green(y) : -1.0$ 

Markov Logic Networks [Richardson, Domingos 2006] Software: http://alchemy.cs.washington.edu/



Hard constraints:  $\exists x \ green(x)$ Weighted formulas: green(x) : 0.5

 $green(x) \land edge(x, y) \land \neg green(y) : -1.0$ 

# Syntax: RBNs

# Relational Bayesian Networks [Jaeger 1997]

Software: http://www.cs.aau.dk/~jaeger/Primula/



logic definition:

$$\exists y (green(y) \land edge(y, x))$$

## Relational Bayesian Networks [Jaeger 1997]

**Software**: http://www.cs.aau.dk/~jaeger/Primula/



logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$



logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$



logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow: green(x)$$

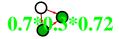
$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

# Relational Bayesian Networks [Jaeger 1997] Software: http://www.cs.aau.dk/~jaeger/Primula/



logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

probabilistic definition:

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

# Relational Bayesian Networks [Jaeger 1997] Software: http://www.cs.aau.dk/~jaeger/Primula/



logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

probabilistic definition:

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

## Syntax: RBNs

### Relational Bayesian Networks [Jaeger 1997]

**Software**: http://www.cs.aau.dk/~jaeger/Primula/



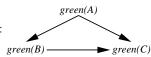
logic definition:

$$\exists y (green(y) \land edge(y, x)) \leftrightarrow : green(x)$$

probabilistic definition:

$$0.3 + 0.7 \cdot noisy-or[0.6].y(green(y) \land edge(y, x)) =: P(green(x))$$

Dependency of ground atoms:





| MLN                                          | RBN                                                                 |
|----------------------------------------------|---------------------------------------------------------------------|
| "Declarative" use of F-O formulas            | "Definitional" use of F-O formulas                                  |
| Undirected dependencies between ground atoms | Directed dependencies between ground atoms (acyclicity conditions!) |
| Best for descriptive/declarative modeling    | Best for causal or (incrementally) generative modeling              |

Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

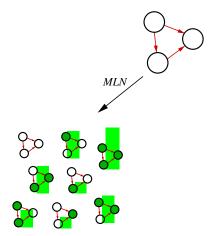
Non-Elementary Inference

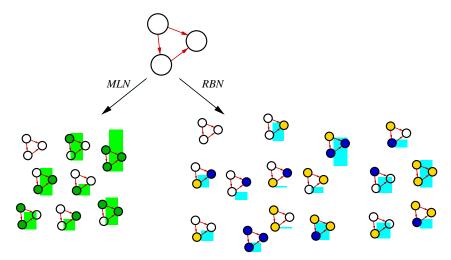
#### General idea:

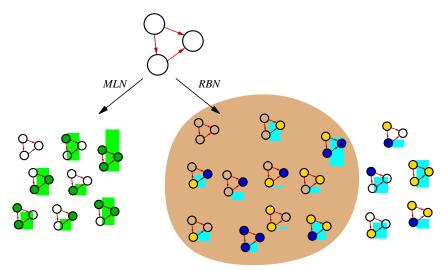
 $\mathcal{XYZ}$  is at least as expressive as  $\mathscr{ABC}$  if every PL-model (i.e. mapping  $w\mapsto P$ ) definable in  $\mathscr{ABC}$  is definable in  $\mathcal{XYZ}$ .

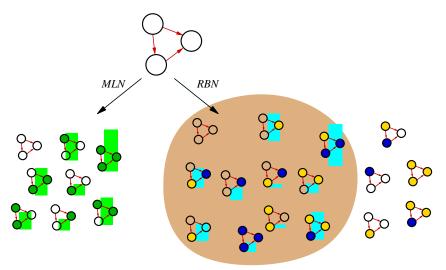
#### **Issues**

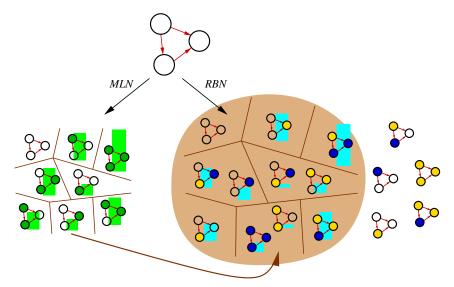
- ▶ Need to fit the semantics of XYZ, ABC into PL-model framework
  - Asking for identity of models is usually too much only feasible: A BC-models can be embedded in XYZ-models.

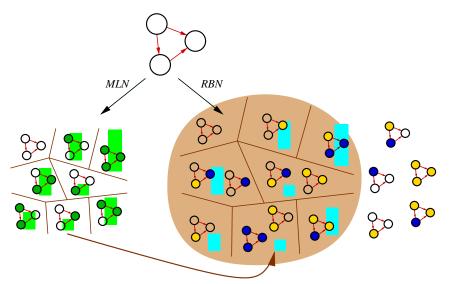












Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

### Complexity

Non-Elementary Inference

#### Given

- ▶ a model M
- ▶ an (input) domain (possible world) D
- truth assignments for ground atoms in expansions of D (evidence atoms):

$$r_1(\mathbf{d}_1) = \tau_1, \dots, r_n(\mathbf{d}_n) = \tau_n$$

truth assignments for ground atoms in expansions of D (query atoms):

$$r_{n+1}(\mathbf{d}_{n+1}) = \tau_{n+1}, \dots, r_{n+k}(\mathbf{d}_{n+k}) = \tau_n$$

### compute

$$P(r_{n+1}(\mathbf{d}_{n+1}) = \tau_{n+1}, \dots, r_{n+k}(\mathbf{d}_{n+k}) \mid r_1(\mathbf{d}_1) = \tau_1, \dots, r_n(\mathbf{d}_n) = \tau_n)$$

for P defined by  $\mathcal{M}$  on expansions of D. (or decide whether  $P(\ldots | \ldots) > 0$ ).

**Example:** given that responding(server003)=false, what is the probability that cable\_intact(terminal152,server003)=false?

### Complexity issues:

- complexity in terms of complexity of M
- complexity in terms of size of D

### Complexity issues:

- ▶ complexity in terms of complexity of M
- complexity in terms of size of D

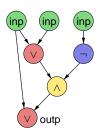
#### Results:

- Elementary inference (decision version) is NP-hard (in size of D) for any modeling language with [expressivity requirement]
- ... NP-complete for MLNs and RBNs

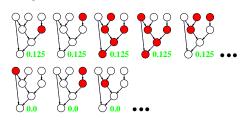
## **Expressivity Requirement**

Boolean satisfiability encoding (cf. [Cooper 1990]):

Boolean function as input domain:



Uniform distribution over consistent value assignments:



Formula satisfiable  $\leftrightarrow P(value(outp) = true) > 0$ 

MLNs and RBNs can encode Boolean satisfiability!



Introduction

Logics vs. Models

Semantics of PL-Models

MLNs and RBNs

Expressivity

Complexity

Non-Elementary Inference

### "Verifi cation"

Non-Elementary Inference

MLN defines a distribution over expansions of *D* iff the hard constraints are satisfiable in expansions of *D* 

RBN defines a distribution over expansions of *D* iff the dependency relation induced by RBN is acyclic

#### "Verification" Problem:

#### Given

- ▶ a model M
- ▶ a class 𝒯 of input domains (e.g. axiomatized in some logic)

#### decide

whether  $\mathcal{M}$  defines for all  $D \in \mathcal{D}$  a distribution over expansions of D.

## Undecidability of Verifi cation

 $\mathcal{D}_{\emptyset}$ : finite input domains without relations.

#### Result for MLNs

It is undecidable whether a MLN defines a distribution for each input  $D \in \mathcal{D}_{\emptyset}$ .

**Proof:** it is undecidable whether a first-order sentence  $\phi$  is satisfiable over all finite cardinalities

## Undecidability of Verifi cation

 $\mathcal{D}_{\emptyset}$ : finite input domains without relations.

#### Result for MLNs

It is undecidable whether a MLN defines a distribution for each input  $D \in \mathcal{D}_{\emptyset}$ .

**Proof:** it is undecidable whether a first-order sentence  $\phi$  is satisfiable over all finite cardinalities

### **Conjectures for RBNs**

 $\mathcal{D}_{UD}$ : finite input domains with only unary relations.

It is decidable whether a RBN defines a distribution for each input  $D \in \mathcal{D}_{un}$ .

acyclicity of dependencies can be expressed in monadic transitive closure logic

 $\mathcal{D}_{bin}$ : finite input domains with one binary relation.

It is undecidable whether a RBN defines a distribution for each input  $D \in \mathscr{D}_{bin}$ .

#### "Global Inference" Problem:

#### Given

- ► a model M
- a first-order sentence φ

### decide

whether  $P(\phi) > 0$  for all input domains for which a distribution is defined by  $\mathcal{M}$ 

#### "Global Inference" Problem:

#### Given

- ▶ a model M
- ightharpoonup a first-order sentence  $\phi$

### decide

whether  $P(\phi) > 0$  for all input domains for which a distribution is defined by  $\mathcal{M}$ 

### Results

The global inference problem is undecidable for MLNs and RBNs

## **Progic Question Again**

How can probabilistic networks be used to simplify probabilistic logics?

They can direct our attention to tractable (model checking) problems!

### Conclusion

### Summary:

To better understand the plethora of probabilistic logical modeling languages:

- introduced semantic concept of PL-models
- obtained first expressivity result
- obtained some complexity results

#### Next:

- extend expressivity analysis to other languages (Bayesian Logic Programs, Prism,...)
- ► investigate *learnability* issues

### **Acknowledgements:**

Kristian Kersting, Luc De Raedt, ..., discussion groups at SRL and Dagstuhl workshops