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Parametric Inference

¢ Parameter: ®
* Experiment £
¢ Observable: X

e Statistical model: X | O ~ p«(x | 0)
(conditional density)

+ perhaps further structure...

Bayesianism

¢ All uncertainty can be expressed by means
of PROBABILITY

* So introduce (prior) density p(0) for ®

» Joint density  p(x, 0) =p(x | 0) p(6)

» Posterior p(O]x) < p(®) p(x]06)

» Predictive p(x) = [p(x]|06)p(6) dO

SUBJECTIVE BAYESIANISM

* Prior distribution p(8) represents individual’s beliefs
about ©
—depends on meaning of ®
—independent of experiment £ and form of model

p«(x16)

* Joint distribution p(x, 6) obeys all the laws of
probability
— proper: all densities must integrate to 1

— different ways of calculating the same thing must give
the same answer (!)

Likelihood Principle

&,: Toss a penny 7 times (binomial experiment)
» Xx,: get 4 heads

&,: Toss same penny until 4% head (negative binomial
experiment)

» X,: takes 7 tosses

In either case pg.(x; |8) 84 (1—-6)3 (likelihood)
— 50 get same posterior
— since same prior (same penny, same ®)

Sampling consistency

* Model X|®=6 ~ N(6, 1)

e Have E(X-©®|0)=0 all 6

* Problemife.g. EX-0®]|x)>0 all x
* This can not happen

— though posterior distribution of X — ©® will
differ from its N(0, 1) sampling distribution




OBJECTIVE (?)
BAYESIANISM

1) Eschew subjectivity, celebrate ignorance
2) Retain probability (perhaps “improper’)
3) Construct prior (or posterior) in a way that only

depends on the form of the model p(x | 6), not
on the meanings of X and ®

4) Attempt to mimic sampling properties
e.g. so that posterior of X — @ is N(0, 1)

My attitude

¢ Great idea!
¢ It would be nice if it could be done...

* But it can’t be done, while continuing to
observe all the laws of probability

—as soon as we assume it can, we lay
ourselves open to paradox and inconsistency

FORM WITHOUT SUBSTANCE?

e “Invariant” prior distributions
— e.g. Jeffreys, group-structural,...
* For binomial
py(0) < 612 (1 —9) 12
* For negative binomial
p; (@) < 671 (1—6)-172
So likelihood principle is violated

What prior for an unending sequence of coin
tosses??

Sampling consistency?

X ~N(@®,1)
Take (improper) uniform prior p(0) o 1
Posterior mimics “sampling property’’:
X -0 ~N(,1)

BUT THEN EX?-0%=
+1 in sampling distribution

—1 in posterior distribution

Bivariate Normal

X;~ N(M,X), (i=1,...,n) where X3 = (Xu,Xa)
Standard estimators : M = (Ml, MZ)’
x- (X ,S of M= My > x = (70
X2 M 021 022
sampling distributions: X1 - My)?
Sampling distributions: "( 1 1) ~ F, 1 (1)
S
=g MYS X M) ~ Faaco @)
2n— 1) -

Can mimic either (1) or (2) in the posterior
— but not both at once
wrong d.f = “‘strong inconsistency”

A way out?

* Allow prior distribution to vary with the
“parameter of interest”

— e.g. “reference” priors

* But then we get different answers to the
same question, e.g. E(®?| x)

—incoherent!




Marginalization Paradox

Parameter @, observable X
Statistical model p(x | ©), prior p(0)
— posterior p(0 | x)

Interested in Z, a function of ®
Calculate marginal posterior density p({ | x) of Z

Find this depends on x only through the value z
of some statistic Z:

p(CIx) = a, 2)

ZzZMN

i 3 p(C|x)
&) = & = Ny

Semantics or Syntax?
You program a computer to read x and calculate a(C, z)
‘What should you do with its output?

1. Use it directly as your own posterior for 2
or

2. Treat experiment + computer as a compound
experiment, outputting reduced information
(equivalent to) Z

» Apply probability calculations to this
reduced model to obtain posterior for Z

L2
@E_iw Zm
S

Semantics or Syntax?

a(C, 2) A P(C(|CX))
% = al, z

p(€]2z) x
z X p©pz| Q)

5
7

Semantics or Syntax?

« If the prior is proper, you will get the same
answer by either method

* But this can FAIL for improper priors,
including many recommended for
“objective” use

» “MARGINALIZATION PARADOX”
(MP)

Example: Scaled Means

Xij~ N(M;,2?) (i=1,25=1,...,n)

Standard estimators X1, X2, 8 of Mi, M, %
Interestedin Z; = M; /¥ (i=1,2)

A = =3 Jeffreys

“Relatively invariant” priors have form
A
ppa; 2, 0) x & {

A = —1 “recommended”

Posterior density of Z1 only dependson Z1 = X1 /S
» MP unless A = —2

Posterior density of (Z1,22) only dependson (Z1, Z2)
» MP unless A= =3




Model selection What is left?

* Proper Bayes = consistency * Need “default” priors for when we are in a
. . S hurry
— though sensitive to prior specification . . .
 Important to investigate their good and bad
properties

* Improper Bayes not well-defined * They will have some bad properties

_ o * It is time to abandon the search for a fully
* Various “objective” get-outs suggested self-consistent theory of objective Bayesian

— but these sacrifice consistency! inference
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