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Summary

One of the main aims of wildlife disease ecology is to identify how disease dynamics
vary in space and time and as a function of population density. However, monitoring
spatio-temporal and density-dependent disease dynamics in the wild is challenging
because the observation process is error-prone, which means that individuals, their
disease status and their spatial locations are unobservable, or only imperfectly ob-
served. In this paper, we develop a novel spatially explicit capture-recapture (SCR)
model motivated by an SCR data set on European badgers (Meles Meles), naturally
infected with bovine tuberculosis (Mycobacterium bovis). Our model accounts for
the observation process of individuals as a function of their latent activity centres,
and for their imperfectly observed disease status and its effect on demographic rates
and behaviour. This framework has the advantage of simultaneously modelling pop-
ulation demographics and disease dynamics within a spatial context. It can therefore
generate estimates of critical parameters such as population size; local and global
density by disease status and hence spatially-explicit disease prevalence; disease
transmission probabilities as functions of local or global population density; and de-
mographic rates as functions of disease status. Our findings suggest that infected
badgers have lower survival probability but larger home range areas than uninfected
badgers, and we found no clear evidence of density-dependence in disease transmis-
sion. We also present an extensive simulation study, considering different scenarios
of disease transmission within the population, and our findings highlight the im-
portance of accounting for spatial variation in disease transmission and individual
disease status when these affect demographic rates. Collectively these results show
our new model enables a better understanding of how wildlife disease dynamics are
linked to population demographics within a spatio-temporal context.
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1 INTRODUCTION

Understanding relationships between the dynamics of populations and their infectious pathogens is a key aim of wildlife disease
ecology. Infectious diseases can directly influence population density through impacts on demographic vital rates (Manlove,
Cassirer, Cross, Plowright, & Hudson 2016; McCallum et al. 2007; Vredenburg, Knapp, Tunstall, & Briggs 2010), but in
turn disease dynamics can vary in space and time and with population density. Quantifying how pathogen transmission varies
with population density is important because of its implication for the conservation and management of wildlife populations
(McCallum 2016; Silk et al. 2019). While the potential importance of host density for epidemiological dynamics has long been
known (Krkošek 2010; O’Neill, White, Gortázar, & Ruiz-Fons 2023), it is now recognized that aspects of spatial and social
behaviour (e.g. Silk & Fefferman 2021) can mean that pathogen transmission may covary with host population density across
a continuum from density-dependent (transmission increases with population density) to frequency-dependent (transmission is
independent of population density) (Hopkins, Fleming-Davies, Belden, & Wojdak 2020).

There are two main analytical challenges associated with quantifying the relationship between host density and disease trans-
mission in wildlife populations. First is the difficulty of estimating population size, and hence population density, in wild
populations, where not every individual is captured or observed over time. The second challenge is associated with the detection
of infection in wild hosts owing to limitations in the sensitivity and specificity of diagnostic tests (Choquet, Carrié, Chambert,
& Boulinier 2013; Drewe, Tomlinson, Walker, & Delahay 2010; Enøe, Georgiadis, & Johnson 2000).

Capture-recapture (CR) models have been one of the main tools developed to estimate the population size of wild animals.
Traditional CR models essentially represent “fish bowl” sampling, that is, a system that is unconnected to the spatial structure
of the population. These models do not account for the spatial nature of sampling nor the spatial distribution of individuals
(J. A. Royle, Fuller, & Sutherland 2018). Consequently, they do not allow for the study of many vital spatial population processes,
such as density, movement and dispersal of individuals. This weakness of CR models has been overcome by the development of
spatially-explicit capture-recapture (SCR) models (Borchers & Efford 2008; Efford 2004). SCR models consider the collection
of individuals in a population as a latent point process of where an individual moves (home range), which is centred on their
individual activity centre (AC), distributed within some region of interest.

In SCR data, individual ACs are unknown and thus are considered latent variables in corresponding models. SCR models
can be fitted in a classical framework, where the ACs are marginalised from the likelihood by integration (Borchers & Efford
2008), or in a Bayesian framework, where the ACs are explicitly estimated along with other unknown parameters and random
variables using Markov chain Monte Carlo (MCMC) methods (J. A. Royle & Young 2008). Once inferred, the ACs can be used
to estimate spatial population processes such as density, which is the number of ACs per unit area of the region of interest.
Additionally, conditional on the latent ACs, the probability of observing or encountering an individual is modelled as a function
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of the distance between the individual’s AC and the location of each trap. Consequently, SCR models take into consideration the
spatial nature of sampling as well as spatial distribution of individual ACs to allow for the study of spatial population processes,
which is arguably equally important to the study of demographic population rates, with the formal link between state model
and observational model allowing for better inference on the former and more robust accommodation of the latter (Sutherland,
Royle, & Linden 2019).

However, existing SCR models do not currently accommodate additional data on the disease status of captured individuals.
These data typically consist of diagnostic test results that are also prone to error and hence are only an imperfect observation of
an individual’s disease status. Additionally, as is always the case in CR data, these individual-level diagnostics are only available
for the particular time point when an animal is captured, and are missing for all other times and for individuals that have never
been caught.

In the present study, we develop a novel SCR model that accounts for the observation process of individuals, as well as their
imperfectly observed disease status. Our new modelling framework allows the simultaneous modelling of population demo-
graphics and disease dynamics within a spatiotemporal context. This makes it possible to simultaneously test hypotheses related
to spatial and density-related variation in disease transmission alongside examining variation in survival and individual capture
probabilities as a function of individual (latent) disease state.

We perform an extensive simulation study to assess model performance for a number of scenarios. Our results demonstrate the
quality of inference in our proposed model but also reveal the requirements in terms of data size and effect size to have sufficient
power to identify density-dependence in disease transmission. We highlight that when demographic rates are dependent upon
individual disease status, existing SCR models, which do not account for that dependence, yield substantially biased estimates
of population density.

We then fit our model to a motivating case study of European badgers (Meles meles), naturally infected with bovine tuber-
culosis (Mycobacterium bovis) at Woodchester Park in Gloucestershire, UK (R. J. Delahay et al. 2013; McDonald, Robertson,
& Silk 2018), revealing important aspects of the epidemiological dynamics. Our model reveals that infected individuals have
a lower survival probability and a larger home range. We also infer that despite a more recent reduction in population size, the
prevalence of infection remained constant suggesting no clear evidence of density-dependence in disease transmission in the
population during the recent study period.

The paper is structured as follows: in Section 2 we describe the case study that motivated the work in this paper, in Section 3
we introduce the new model and discuss our inference approach, while Sections 4 and 5 present simulation and case study results,
respectively. Section 6 discusses the results from our simulations and case study in the context of wildlife disease ecology, and
suggests directions for future work.
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2 DATA COLLECTION AND PROCESSING

The Woodchester Park study area is located on the Cotswold limestone escarpment in Gloucestershire, South-west England.
Over an area of approximately 7 km2 the resident badger population has been monitored in a consistent manner since 1981
(McDonald et al. 2018). The majority of the study area comprises mixed woodland, grassland, and arable farmland (R. Delahay,
Carter, Forrester, Mitchell, & Cheeseman 2006). Badger population density is relatively high (Rogers, Cheeseman, Mallinson,
& Clifton-Hadley 1997) and their social groups occupy more or less contiguous territories throughout the study area (R. Delahay
et al. 2006), each of which is typically associated with one main sett (underground burrow system).

The badger population is monitored by CR sampling, which enables the collection of demographic and epidemiological data.
The study area has been divided into three zones of approximately equal size, each of which is trapped four times per year
from May to January inclusive, with a suspension from February to April to avoid catching dependent cubs and their mothers
(Woodroffe et al. 2006). To determine which setts are active and how many traps to deploy, a sett activity survey is conducted in
each zone before each trapping event. At each active sett, more traps are deployed than are expected to be required (i.e. saturation
trapping).

Box traps constructed of steel mesh are dug into the substrate close to each active sett and baited with peanuts for four to
eight days to habituate badgers to their presence (Cheeseman, CL, et al. 1982). On the last day of baiting, the traps are set for
two consecutive nights and are checked on the following mornings. Once captured, newly caught badgers are aged, sexed and
permanently marked with a unique ID tattoo on the abdomen (Cheeseman et al. 1982), with their weight, body condition, body
length, reproductive status and tooth wear recorded at this and every subsequent capture event.

Once captured, three tests are currently used to test for M.bovis: interferon-gamma immunoassay (Ifn, Dalley et al. 2008),
used since 2006 to detect a cell-mediated immune response, Dual Path Platform test (DPP®, Chembio.inc), used since 2014 to
test for antibodies (Ashford et al. 2020) and elective microbiological culture of clinical samples (Cul, Gallagher & Horwill 1977)
used since 1976. Ifn and DPP® use blood samples whilst Cul is carried out on samples of sputum, faeces, urine, and swabs of
abscesses and wounds. Each test is imperfect, resulting in false positive and false negative errors, making it difficult to infer an
individual’s disease state from the tests alone (Drewe et al. 2010).

Following examination and collection of diagnostic samples, badgers caught during the first night of trapping are held
overnight and released the following morning to prevent them from being re-captured on the second trapping night. Badgers
caught during the second night are released the following day. Badgers are released where captured, following a period of
recovery and subject to welfare assessment.
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3 MODEL

SCR models assume that a population of 𝑖 = 1,… , 𝑁𝑡 individuals are monitored at 𝑡 = 1,… , 𝑇 sampling occasions and
𝑗 = 1,… , 𝐽 sampling locations, and each individual has an associated spatial location within a spatial domain (𝑆), representing
its AC 𝑠𝑖,𝑡, a two-dimensional spatial coordinate. The collection of ACs can be thought of as a statistical spatial point pattern that
describes how individuals are distributed within 𝑆. This statistical point process is often referred to as the state model. Here,
we define our model in a Bayesian framework using data augmentation (DA, J. A. Royle & Dorazio 2012) and let 𝑖 = 1,… ,𝑀

be “pseudo-individuals” that potentially could belong to 𝑁𝑡. In what follows, 𝑖 = 1,… ,𝑀 indexes individuals, 𝑡 = 1,… , 𝑇

sampling occasions and 𝑗 = 1… , 𝐽 sampling locations.
Our model has two key latent states: presence, 𝑧𝑖,𝑡, and disease status, 𝑑𝑖,𝑡, defined as

𝑧𝑖,𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 alive on sampling occasion t

0 unrecruited/dead on sampling occasion t.

𝑑𝑖,𝑡|𝑧𝑖,𝑡 = 1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 infected and alive on sampling occasion t

0 uninfected and alive on sampling occasion t.

We assume that individual ACs do not change over time by modelling

𝑠𝑖,𝑡 = 𝑠𝑖 ∼ Uniform(𝑆) ∀𝑖, 𝑡

Naturally, observation 𝑦𝑖,𝑗,𝑡 (equal to 1 if individual 𝑖 was caught on sampling occasion 𝑡 and sampling location 𝑗 and 0
otherwise) depends on the corresponding presence state and AC

𝑦𝑖,𝑗,𝑡|𝑧𝑖,𝑡 ∼ Bernoulli(𝑝(𝑥𝑗 , 𝑠𝑖)𝑧𝑖,𝑡)

where 𝑝(𝑥𝑗 , 𝑠𝑖), which corresponds to the probability that individual 𝑖 is caught on sampling location 𝑗, conditional on being
present, is modelled by the half-normal function (Efford 2004)

𝑝(𝑥𝑗 , 𝑠𝑖) = 𝑝0𝑑𝑖,𝑡 exp
(

− 1
2𝜎2𝑑𝑖,𝑡

∥ 𝑥𝑗 − 𝑠𝑖 ∥2
)

where 𝑥𝑗 is the two-dimensional spatial coordinate location of the 𝑗𝑡ℎ sampling location, 𝑝0𝑑𝑖,𝑡 is the baseline capture probability
and 𝜎𝑑𝑖,𝑡 represents the rate at which capture probability declines as Euclidean distance from the AC increases. We model both
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of these parameters dependent on the individual disease status at occasion 𝑡, using a logistic regression for 𝑝0 and a log-linear
model for 𝜎, both of which have the binary disease status as the only covariate, allowing disease status to potentially affect
behaviour in terms of space use.

Finally, we model the result of test𝑄,𝜔𝑄𝑖,𝑡, for individual 𝑖 on occasion 𝑡, conditional on their disease status, as a Bernoulli(𝜔𝑄𝑖,𝑡)
random variable, with

𝜔𝑄𝑖,𝑡|𝑑𝑖,𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 𝑞𝑄00, 𝑑𝑖,𝑡 = 0

𝑞𝑄11, 𝑑𝑖,𝑡 = 1

where we refer to the probability of a true positive result by test 𝑄 as 𝑞𝑄11 (sensitivity of test 𝑄) and to the corresponding
probability of a true negative result as 𝑞𝑄00 (specificity of test 𝑄), and 𝑄 ∈ {DPP®, Ifn,Cul}. Following Buzdugan, Vergne,
Grosbois, Delahay, and Drewe (2017), we assume independence between tests and hence define the joint distribution of the
three test results as the product of the marginal Bernoulli distributions. The sensitivity and specificity of each test are inferred
parameters, thus, enabling the diagnostic accuracy of each test to be evaluated. This formulation accounts for imperfect tests
and enables a higher diagnostic accuracy than single test use (Drewe et al. 2010).

We model the transition between latent states accordingly, so that at 𝑡 = 1

𝑧𝑖,1 ∼ Bernoulli(𝛾1)
𝑑𝑖,1|𝑧𝑖,1 ∼ Bernoulli(𝑧𝑖,1𝛿𝐼 )

where 𝛾1 is the recruitment probability that a “pseudo-individual” is in the population at the start of the study and 𝛿𝐼 is the
probability of being infected at the start of the study. For 𝑡 ≥ 2,

𝑧𝑖,𝑡 ∼ Bernoulli(𝜙𝑑𝑖,𝑡−1𝑧𝑖,𝑡−1 + 𝛾𝑡𝛼𝑖,𝑡)
𝑑𝑖,𝑡 ∼ Bernoulli(𝑧𝑖,𝑡

[

𝑑𝑖,𝑡−1 +
{

(1 − 𝑑𝑖,𝑡−1)𝜓𝑖,𝑡−1
}]

)

where 𝜙𝑑𝑖,𝑡−1 is the probability of survival from occasion 𝑡−1 to 𝑡 conditional on disease status on occasion 𝑡−1 for individual 𝑖,
𝜓𝑖,𝑡 is the disease transmission probability, that is the probability that an individual that is uninfected on occasion 𝑡−1 becomes
infected by occasion 𝑡, 𝛾𝑡 is the recruitment probability that a “pseudo-individual” is first recruited, and hence is first available
for capture, on occasion 𝑡 and 𝛼𝑖,𝑡 is a latent indicator variable of whether an individual is available to be recruited or not on
occasion 𝑡. We define 𝛼𝑖,𝑡 =

(

1 − I
(

∑𝑡−1
𝑡=1(𝑧𝑖,𝑡) > 0

))

such that 𝛼𝑖,𝑡 = 1 if individual 𝑖 is available to be recruited on occasion 𝑡,
𝛼𝑖,𝑡 = 0 otherwise to ensure an individual can only be recruited once.
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We note that, clearly, only individuals that are alive and uninfected can become infected and, as is the case in our motivating
data, once infected, individuals cannot become uninfected. To investigate the relationship between density and disease transmis-
sion, we model 𝜓𝑖,𝑡 as a function of population density on each occasion. We discretize the study space using a grid and create
𝑅 non-overlapping habitat cells. We denote the cell in which individual AC 𝑖 falls by 𝑐𝑖, with 𝑐𝑖 ∈ {1,… , 𝑅}. Local density
of grid cell 𝑟, 𝑟 = 1,… , 𝑅, on occasion 𝑡 is defined as 𝓁𝑟,𝑡 = ∑𝑀

𝑖=1 𝐼(𝑧𝑖,𝑡 = 1, 𝑐𝑖 = 𝑟), where 𝐼(𝑧𝑖,𝑡 = 1, 𝑐𝑖 = 𝑟) is an indicator
variable equal to 1 if individual 𝑖 is alive on occasion 𝑡 and its AC falls within cell 𝑟, and 0 otherwise. Thus, we build a logistic
regression model for the probability of disease transmission

logit(𝜓𝑖,𝑡) = 𝛽0 + 𝛽1𝓁𝑐𝑖,𝑡 (1)

such that an uninfected individual can become infected due to its local density (𝓁𝑐𝑖,𝑡) at the individual AC location in its habitat
cell. The coefficient, 𝛽1, determines the direction and size of the effect of local density on disease transition probability.

Finally, population size on occasion 𝑡, 𝑁𝑡, can be estimated as 𝑁𝑡 =
∑

𝑖 𝑧𝑖,𝑡 and population density on occasion 𝑡, 𝐷𝑡, as
𝐷𝑡 = 𝑁𝑡∕area(𝑆), while the corresponding sizes of the infected population (𝑁 i

𝑡 ) and of the uninfected population (𝑁u
𝑡 ) can

be estimated as 𝑁 i
𝑡 =

∑

𝑖 𝑧𝑖,𝑡𝑑𝑖,𝑡 and 𝑁u
𝑡 =

∑

𝑖 𝑧𝑖,𝑡(1 − 𝑑𝑖,𝑡), respectively. Hence, disease prevalence (𝐷i
𝑡) can be estimated as

𝐷i
𝑡 = 𝑁 i

𝑡∕𝑁𝑡. Density estimates for infected/uninfected individuals can be easily computed as well as realized disease density
maps.

We fit models in a Bayesian framework using MCMC methods via R package NIMBLE (de Valpine et al. 2017) version
0.13.0. Additionally, to increase the computational efficiency of using a Bayesian implementation via DA, we vectorize com-
putation and perform block sampling on correlation parameters (Turek et al. 2021) when appropriate. We employ user-defined
NIMBLE functions to reduce the total number of nodes in the model and improve MCMC efficiency. We use the R package
nimbleSCR (Bischof et al. 2020) version 0.2.1 to create habitat grids and for the computation of local density. To improve con-
vergence and mixing, we use a coarse habitat grid to provide the model with a large number of latent density points to serve as a
covariate on disease transmission probability. We also center latent density to improve computation by reducing the correlation
between the intercept and fixed effect. Random walk block samplers are assigned to (𝑞DPP ®

11 , 𝑞Ifn
11 , 𝑞

Cul
11 ), (𝑞DPP ®

00 , 𝑞Ifn
00 , 𝑞

Cul
00 ) and

(𝑝0𝑑𝑖 , 𝜎𝑑𝑖) to improve MCMC efficiency. The code is freely available on https://github.com/xxxx/Modelling-disease-dynamics-
from-spatially-explicit-capture-recapture-data. The data from the Woodchester Park study can be made available on request to
Animal and Plant Health Agency via Richard Delahay.
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4 SIMULATION STUDY

We performed a simulation study to assess the performance of the proposed modelling framework in estimating population
density and all other model parameters, as well as the impact on estimation when the effect of (local) population density on
transmission probability is ignored and, more importantly, when density dependent disease transmission, disease status and its
effect on other model parameters are ignored altogether. We refer to our proposed model as M(𝜓𝓁), to the model that does not
account for density-dependence in 𝜓 as model M(𝜓0) and to the standard open SCR model that does not account for density
dependence and disease status as model M(SRC0).

We investigate model performance at both high and low population size levels, 𝑀 = (1000, 500), given high and low density
effects on disease transmission, 𝛽1 = (0.25, 0.1). We set 𝑇 = 8 and the rest of the parameter values as: 𝜙𝑑𝑖=0 = 0.9, 𝜙𝑑𝑖=1 = 0.8,
𝛾1 = 0.4, 𝛾2 = 𝛾2∶4 = 0.1, 𝛾3 = 𝛾5 = 0.2, 𝛾4 = 𝛾6∶𝑇 = 0.15, 𝑝0𝑑𝑖=0 = 0.5, 𝑝0𝑑𝑖=1 = 0.2, 𝜎𝑑𝑖=0 = 0.5, 𝜎𝑑𝑖=1 = 1, 𝛿𝐼 = 0.15,
𝛽0 = −2.5, 𝑞DPP®

11 = 0.492, 𝑞Ifn11 = 0.809, 𝑞Cul11 = 0.1, 𝑞DPP®
00 = 0.931, 𝑞Ifn00 = 0.936 and 𝑞Cul00 = 0.999. This setting results in

mean(N1∶T) ≈ (400, 200).
We used an 11 × 11 habitat grid in which we centered a 7 × 7 trapping grid resulting in a buffer width of 2 distance units.

For each case, we performed 10 simulation runs and used relative bias (

RB = θ̄−θ
θ

) to measure relative error and coefficient
of variation (

CV = SD(θ̂)
|θ̄|

) to measure relative precision, where 𝜃 is the true parameter value, �̄� is the mean and SD(θ̂) is the
standard deviation of the posterior distribution obtained, across the 10 runs.

From Tables 1 and 2 in the Supplementary Material and Figure 1 , we can see that our proposed modelling approach performed
well in estimating all demographic and disease-dynamics related parameters. Estimation of the density effect (𝛽1) is possible
(Figure 1 ) but is more challenging than for other parameters, as also reported by Milleret et al. (2023). As expected, the quality
of inference is best in larger populations and when density effects are high. When the population size is relatively low and/or
the true value of 𝛽1 is low, estimation of 𝛽1 is computationally challenging (Figure 1 ), requiring more MCMC samples to reach
convergence and to obtain sufficient effective sample sizes. Consequently, this simulation study demonstrates the ability of our
model to simultaneously model population demographics and disease dynamics within a spatio-temporal context.

From Figures 2 and 3 , it can be seen that the M(SCR0) model underestimates population size for the first half of the study
period, but tends to overestimate it at the end in all cases. This result highlights the need to account for the spatial variation in
disease transmission and the disease status of individuals where there are links to demographic parameters and/or space use.
All three models had similar CV for 𝑁 . The M(𝜓0) model shows a small RB for 𝑁 in some cases, but overall its performance
is similar to the M(𝜓𝓁) model. As shown in the Supplementary Material Figure 1, we simulated the density values, which serve
as the latent covariate in model M(𝜓𝓁), using a realistic scenario of small and gradual changes, with activity centres simulated
from a homogeneous Poisson process, as is the standard assumption of SCR models, including the one in this paper. As a result,
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Figure 1 Violin plots of RB, (a), and CV, (b), for 𝛽1 when using our proposed model, M(𝜓𝓁), given high and low population
size levels. Dots represent the median in each case.

especially when the true value for 𝛽1 is low, density does not vary dramatically between sampling occasions or between grid
cells, and hence, ignoring its effect in the M(𝜓0) model does not lead to substantial bias in the estimation of 𝑁 .
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Figure 2 RB and CV of population size, 𝑁 , at high population size data (𝑁 ≈ 400), high and low density effect levels (𝛽1 =
0.25, and 𝛽1 = 0.1, respectively) for three models: our proposed model, M(𝜓𝓁), the model that does not account for density-
dependence in disease transmission, M(𝜓0) and the model that does not account for disease status, M(SCR0). Dots represent
the median in each case.
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Figure 3 RB and CV of population size,𝑁 , at low population size data (𝑁 ≈ 200), high and low density effect levels (𝛽1 = 0.25,
and 𝛽1 = 0.1, respectively) for three models: our proposed model, M(𝜓𝓁), the model that does not account for density-dependence
in disease transmission, M(𝜓0) and the model that does not account for disease status, M(SCR0). Dots represent the median in
each case.
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5 CASE STUDY

We analyse SCR data collected from 2014 to 2018 by the long-term study at Woodchester Park using the modelling framework
defined in Section 3. These years were selected as they correspond to a period when the population was undisturbed by man-
agement interventions and the diagnostic test for TB did not change, as opposed to the previous years where different tests were
employed and subsequent years when badger culling for TB control was initiated in the surrounding area. We use an 11 × 8

habitat grid in which we place a 7×7 trapping grid. Prior settings are provided in the Supplementary Material section 2.2 where
informative priors for the sensitivity and specificity of each test were elicited from Drewe et al. (2010) and Ashford et al. (2020).

Table 1 displays the most important posterior estimates obtained. Caterpillar plots of these parameter posterior summaries
are also shown in Supplementary Material section 2.3. All parameters converged according to Gelman and Rubin’s convergence
diagnostic (Gelman & Rubin 1992), displayed good mixing, and had effective sample size (ESS) ≥ 500, with the exception of
the coefficients in the model for disease transmission (ESS ≈ 100).

Table 1 Case study. Posterior summaries of model parameters.
Parameters Mean St.Dev 95% PCI
𝛾1 0.329 0.028 (0.274, 0.384)
𝛾2 0.011 0.008 (0.001, 0.031)
𝛾3 0.115 0.029 (0.062, 0.173)
𝛾4 0.006 0.005 (0.002, 0.020)
𝛾5 0.066 0.027 (0.020, 0.123)
𝛾6 0.030 0.013 (0.009, 0.057)
𝛾7 0.134 0.037 (0.069, 0.217)
𝛾8 0.010 0.009 (0.002, 0.035)

𝜙𝑑𝑖=0 0.901 0.012 (0.877, 0.925)
𝜙𝑑𝑖=1 0.811 0.029 (0.754, 0.867)

𝑝0𝑑𝑖=0 0.782 0.048 (0.693, 0.878)
𝑝0𝑑𝑖=1 0.185 0.029 (0.134, 0.248)
𝜎𝑑𝑖=0 0.267 0.008 (0.251, 0.283)
𝜎𝑑𝑖=1 0.581 0.038 (0.512, 0.664)

𝛿 0.210 0.043 (0.134, 0.298)
𝛽0 −3.712 0.573 (−5.474,−2.925)
𝛽1 0.065 0.195 (−0.286, 0.508)

𝑞DPP®
11 0.520 0.026 (0.471, 0.573)
𝑞Ifn
11 0.656 0.038 (0.587, 0.730)
𝑞Cul
11 0.182 0.031 (0.126, 0.243)
𝑞DPP®
00 0.978 0.007 (0.961, 0.990)
𝑞Ifn
00 0.907 0.013 (0.879, 0.931)
𝑞Cul
00 0.991 0.005 (0.978, 0.998)
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Figure 4 a indicates that during the study period (2014-2018) the Woodchester badger population was in decline, with both
the number of uninfected and infected individuals decreasing over the course of the study. Disease prevalence during this period
remained relatively stable, albeit with some weak evidence for a decline from approximately 20% to nearer 15% (Figure 4 b).
Additionally, our model output includes posterior summaries of the number of individuals newly infected on each sampling
occasion (Supplementary Material Figure 17), which in this case is shown to be decreasing, in line with the decreasing population
size.

Model results also confirmed known differences between infected and uninfected badgers in relation to their behaviour and
survival. There was a significant difference between baseline capture and the scale parameter for uninfected and infected indi-
viduals (see Table 1 ), indicating that the latter were less likely to be captured at their activity center and had a larger home
range area than the former.

Specifically, assuming a circular home range area, the effective home range area for an uninfected badger was estimated as
0.334 km2 ( 95% PCI ∶ (0.297 km2, 0.377 km2)) whilst for an infected badger was estimated as 1.586 km2 ( 95% PCI ∶

(1.234 km2, 2.08 km2)). Infected individuals also had a lower survival probability (𝜙) than uninfected individuals (Table 1 ),
with the lack of overlap of the 95% PCIs indicating that these differences are statistically significant. Overall, the survival
probability of infected individuals was approximately 10% lower than for uninfected individuals, albeit with more error around
this estimate - potentially caused by the smaller sample size of infected individuals or greater variability in their survival. The
sensitivity (𝑞11) and specificity (𝑞00) estimates for each test also provide valuable information on test performance. Specifically,
Cul was found to have low sensitivity (18.2%) but had the highest specificity (99.1%), Ifn was the most sensitive (65.6%) and had
relatively high specificity (90.7%), whereas the DPP® had intermediate sensitivity (52.0%) and very high specificity (97.8%).
These estimates are similar to those obtained by Ashford et al. (2020) for DPP® and Drewe et al. (2010) for Ifn and Cul and
reflect known differences in the performance of the tests and the biological processes being targeted (e.g. Ifn detecting an initial
cellular response to infection while Cul detects bacterial shedding by infectious individuals). Hence, the tests may in some cases
be identifying animals at different stages of infection.

Figure ?? displays the population density maps for infected and uninfected individuals across years in spring after cubs have
been recruited to the population. These plots are standardized across years with the black dots representing the setts trapped.
These outputs reveal spatio-temporal variation in the density of uninfected and infected individuals across the population. High
densities of infected badgers were concentrated in the central (and northern) and western area of the study site at the start of our
study period, becoming more diffuse over time. The eastern parts of the study site maintained consistently higher densities of
uninfected badgers throughout the period.

Finally, density is estimated to have a weak positive effect on the probability of disease transmission that is not clearly different
from zero (wide 95% PCI that includes 0). The simplistic interpretation would be that transmission was independent of local
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population density during our study period. However, as discussed in Section 4, density is a latent variable with an unknown
effect, and hence the power to detect small effects relies heavily on the number of sampling occasions and the number of
individuals. Consequently, we can interpret this finding as evidence that strong density-dependence of transmission is highly
unlikely, but that transmission could instead either be weakly density-dependent or close to frequency-dependent.
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Figure 4 Violin plots, (a), of total (𝑁𝑡), uninfected (𝑁𝑢
𝑡 ), infected (𝑁 𝑖

𝑡 ) population size, and (b) disease prevalence. Dots repre-
sent the posterior median.

6 DISCUSSION

We have developed a novel SCR model that uses disease data from multiple imperfect tests together with SCR data to simultane-
ously model population demographics and disease dynamics within a spatiotemporal context. Accounting for observation error
in both the individual capture process and the disease testing process, our modelling approach accounts for spatial variation in
survival and individual capture probabilities as a function of individual (latent) disease state as well as variation in disease trans-
mission as a function of population density. This allows for a better understanding of how disease dynamics relate to population
demographics in a spatiotemporal context.

We also conducted an extensive simulation study to assess model performance for a number of scenarios. Our simulations
generated encouraging results for our modelling approach and highlighted that, if spatial variation in disease transmission and
heterogeneity in demographic rates (capture and survival probabilities) induced by individual disease status are not accounted
for, biased estimates of population density can be produced. Notably, there are existing models that use finite mixtures to model
heterogeneity in these demographic rates (Pledger, Pollock, & Norris 2010). We have not considered these models but it is likely
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that they might return similar inference on population density to our proposed model. However, such models do not provide
information on density-dependent disease transmission or information on individual disease status effects on such demographic
parameters. Finally, our model assumes that individual home range changes once an individual becomes infected, but without
allowing for additional individual heterogeneity in home range we cannot test if for at least some individuals change in home
range preceded disease.

Applying this new model to a dataset on European badgers, naturally infected with M. bovis, our model provided valuable
insights into badger-M. bovis ecology with broader implications for wildlife disease ecology in general Our model results agreed
closely with previous findings from the Woodchester Park study system. Estimates of population size align with those from the
long-term study (R. J. Delahay et al. 2013; McDonald et al. 2018) and support the observed recent decline, whilst our estimates of
individual badger home range area are also similar to those from previous studies of this population (Garnett, Delahay, and Roper
(2005), Tuyttens et al. (2000)). Finally, our estimates of disease prevalence and incidence, as well as disease-associated changes
in survival are similar to those found previously for this study population (prevalence: R. J. Delahay et al. (2013); incidence and
changes in survival: Graham et al. (2013). However, the approach considered in this paper is the first to simultaneously model
all these processes from the available SCR data and hence properly account for uncertainty in every stage of the process.

One key advantage of our modelling framework is that by using longitudinal diagnostic test results to infer the (unobservable)
disease status of an individual, we are able to gain new insights into how individual movement patterns vary with disease status.
Specifically, our results show that infected badgers ranged over larger areas than uninfected badgers. Previous research has
detected a tendency for test-positive individuals (i.e. those likely to be infected) to make greater use of outlying setts (Weber,
Bearhop, et al. 2013) and have more between-group contacts (Silk et al. 2018; Weber, Carter, et al. 2013), both of which
are traits expected to be linked to wider ranging behaviour. Our model results indicate these changes may (to some extent) be
linked directly to infection. The tendency for infected badgers to start ranging further likely has important implications for the
epidemiology of the badger-M. bovis host-pathogen system. Due to the modular nature of badger contact networks (Rozins et al.
2018), movements between groups offer important opportunities for transmission that enable wider pathogen spread. Therefore,
changes in the behaviour of infected badgers could play an important role in the longer-term persistence of the disease. Previous
research in the Woodchester system has revealed a positive association between new individuals arriving in a group and the
incidence of disease (Vicente, Delahay, Walker, & Cheeseman 2007). Infected badgers ranging over larger areas than uninfected
badgers, using areas that are larger than typical social group territory size, would provide a mechanism to explain these findings;
it is disproportionately likely that an individual moving between groups is infected relative to the overall population.

Our results also add to our knowledge of how transmission scales with population density in the badger-M. bovis system.
We find no clear relationship between local population density and the incidence of infection in the Woodchester Park badger
population (R. J. Delahay, Smith, Ward, & Cheeseman 2005; R. J. Delahay et al. 2013) . Historically, many infections that spread
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by (non-sexual) close contact were assumed to exhibit density-dependent (as opposed to frequency-dependent) transmission,
and this principle of density-dependence underpins some interventions to control disease in wildlife populations (Carter et al.
2009; McCallum 2016). More recently, studies have more commonly considered a continuum between frequency-dependent and
density-dependent transmission driven by changes in individual behaviour (Hopkins et al. 2020). For example, our result of lack
of evidence for density-dependence transmission suggested that it may be best to consider the transmission of many infectious
diseases including tuberculosis to be a function of population density at low population densities (i.e. density-dependent) but
independent of it (i.e. frequency-dependent) at high population densities (Hu, Nigmatulina, & Eckhoff 2013). Our results fit well
with this general pattern given that the Woodchester Park badger population was relatively high density during the study period,
compared with badger populations elsewhere. At this population scale, it is likely that the social structure of the population plays
an important role and it would be valuable for future research to focus on this question at finer social and spatial scales.

Finally, by separately estimating the density of uninfected and infected badgers in the population, our SCR model provides an
intuitive approach to the analysis of spatiotemporal variation in M. bovis epidemiology in the population whilst accounting for
uncertainty generated from the use of capture-recapture data (i.e. imperfect capture of badgers) and the limitations of diagnostic
test data (i.e. imperfect knowledge of disease state). The local density maps generated (Figure ??) can provide a useful tool
for visualizing hotspots of disease (i.e. areas with a high prevalence of infected individuals) or guiding surveillance (e.g. by
revealing areas with rapidly increasing or decreasing prevalence). Consequently, our study highlights the value of integrating
disease status within an SCR framework for applied disease ecology more generally.

The choice of grid size is a crucial factor in this modelling framework as it can impact accuracy and computational efficiency.
A smaller grid size provides finer resolution, capturing intricate details and small-scale patterns in density. However, using a
smaller grid size comes at the cost of increased computational complexity and memory requirements. On the other hand, a
larger grid size provides a coarser resolution that can overlook smaller-scale patterns but reduces the computational burden.
Thus, it is important to strike a balance between accuracy and computational efficiency when selecting grid size. To achieve
this, a sensitivity analysis can be carried out. Varying the grid size helps determine the most appropriate grid size and also helps
ensure that the chosen grid size does not unduly influence the results. At the same time, since disease transmission is dependent
on latent density, the grid size needs to be chosen such that there are adequate latent density points to serve as a covariate on
disease transmission.

One caveat to our model is that we assumed individual activity centres do not change over the period of study. This reflected
limited badger movement as highlighted by Rogers et al. (1998) and in the Supplementary Material Figure 12. However, this
assumption will be violated for species that change activity centres frequently. Our modelling approach can be extended to
accommodate such movement by using different state models such as the independent (J. Royle, Chandler, Sollmann, & Gardner
2014) and the Markovian random walk model (Raabe, Gardner, & Hightower 2014). We have also assumed independence
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between individuals in terms of the locations of their activity centres, however, populations can exhibit attraction or repulsion,
which means that the spatial pattern cannot be described by a homogeneous Poisson process. In these cases, our model would
need to be extended using models that account for repulsion (Diana, Matechou, Griffin, Jhala, & Qureshi 2022) and/or attraction
(McLaughlin & Bar 2021).

Another avenue for future work is the modelling of disease transmission. Here we assumed that once infected an individual
remained so for the rest of its life, consistent with the normal approach when modelling M. bovis transmission in badgers.
However, in other cases it may be important to introduce further states to the disease model, such as a recovered state (to represent
individuals in which the disease has resolved and individuals may have acquired protection from re-infection) or a vaccinated
state. Such multistate disease models have been fitted to capture-recapture data (e.g Marescot et al. 2018), and could be easily
incorporated within our modelling framework.

It could also be possible to vary how disease transmission probability is associated with the spatiotemporal distribution of
infected and uninfected individuals. In this paper, we used a logistic regression to investigate the effect of (latent) local density on
disease transmission probability and induce heterogeneity. However, other latent variables of this type could also be considered.
For example, one might consider alternative models, for example a model which assumes that an uninfected individual is more
likely to become infected the closer it is to infected individuals, or a model which considers disease transmission probability
as a function of the overlap of home range areas between an uninfected individual and surrounding infected individuals. Thus,
future work can be focused on developing such models and comparing model performance.

In conclusion, our SCR model provides a novel tool to investigate the relationship between population demographics, spatial
behaviour, and infectious disease dynamics in imperfectly sampled systems. By applying it to other host-pathogen systems, it
may be possible to gain valuable insights into how spatial behaviour and pathogen epidemiology are interwoven with important
implications for wildlife disease ecology and management.
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