Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

Spatially Explicit Capture-Recapture Disease Uncertainty Models

F. Ketwaroo, E. Matechou, M. Silk and R. Delahay

Wednesday 16th June, 2021

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

OUTLINE

Introduction

Model

Simulation Results

Disease Transmission

Discussion

Introduction	Model	Simulation Results	Disease Transmission	Discussion
●0000	0000000	0000	00	00

MOTIVATION

This work is motivated by the study of European badgers (*Meles meles*) naturally infected with bovine tuberculosis (bTB) at Woodchester Park in Gloucestershire (UK).

BOVINE TB IN THE UK

► Bovine TB is a serious disease of UK cattle.

▶ It is estimated to cost millions/billions to tax payers.

BOVINE TB IN THE UK

- ► There is evidence suggesting that it is European badgers that act as a major reservoir of bTB and play an important role in the transmission of bTB to cattles (Donnelly et al., 2006)¹.
- This has resulted in the controversial culling of badgers.
- Hence, for effective control of bTB there is a need to accurately monitor population level as well as to better understand disease dynamics among badgers.

¹ Donnelly, Christl A., et al. "Positive and negative effects of widespread badger culling on tuberculosis in cattle." Nature 439.7078 (2006): 843-846.

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

SAMPLING

- The badger population is monitored by CR sampling.
- Trapping is done year round excluding February to April inclusive to avoid trapping breeding females.
- The study area has been divided into three zones of approximately equal size and each zone is trapped four times during each year.

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

DISEASE TESTING

- Three test are done on captured individuals to infer the disease status:
 - 1. Interferon-Gamma immunoassay
 - 2. Serological tests
 - 3. BrockTB Stat-Pak test
- Each test is imperfect, resulting in false positive and false negative errors, making it difficult to infer an individual's disease state.

Introduction 00000	Model ●0000000	Simulation Results 0000	Disease Transmission 00	Discussion 00

MODEL OVERVIEW

- With the aim of monitoring populations levels as well as better understanding disease dynamics, we have develop a novel open spatial capture recapture (OSCR) model that uses a hidden Markov model (HMM) to account for imperfect observations of true epidemiology states.
- This OSCR model allows individuals to survive and to be recruited between sampling occasions.
- This framework enables a better understanding of how disease dynamics are linked to population dynamics within a spatial context, giving estimates of critical parameters, such as abundance, survival probabilities, disease transmission probabilities, local density and disease density maps, etc..

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

UNOBSERVED STATES

Let i = 1, ..., M individuals, k = 1, ..., K sampling occasions and t = 1, ..., T years.

$$z_{i,k,t} = \begin{cases} 1 & \text{alive} \\ 0 & \text{unrecruited/dead} \end{cases}$$

$$d_{i,k,t} = \begin{cases} 1 & \text{infected} \\ 0 & \text{uninfected} \end{cases}$$

Introduction Me	lodel	Simulation Results	Disease Transmission	Discussion
00000 00	000000	0000	00	00

INITIAL DISTRIBUTIONS

alive unrecruited

$$\gamma = \begin{pmatrix} \gamma_{1,1} & (1 - \gamma_{1,1}) \end{pmatrix}$$

 γ_{1,1} is the recruitment probability that a "pseudo-individual" enters the population at the start of the study.

infected unifected

$$\delta = \begin{pmatrix} \delta_I & (1 - \delta_I) \end{pmatrix}$$

 δ_I is the probability of being infected at the start of the study conditional on being alive the start of the study.

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

STATE TRANSITION PROBABILITIES

$$\begin{array}{c} \text{alive} \quad \text{unrecruited} \quad \text{dead} \\ \Gamma_z^{(k,t)} = \quad \text{unrecruited} \quad \begin{pmatrix} \phi_{d_{k,t}} & 0 & 1 - \phi_{d_{k,t}} \\ \gamma_{k,t} & 1 - \gamma_{k,t} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

- ▶ φ_{d_{k,t} is the probability of survival from one sampling occasion to the next conditional dependent on disease status.}
- γ_{k,t} represents the recruitment probability that an "pseudo-individual" may enter the population at sampling occasion k time t.

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

STATE TRANSITION PROBABILITIES

$$\label{eq:gamma_linear_constraint} \begin{split} & \text{infected} \quad \text{unifected} \\ \Gamma_{d|z}^{(k,t)} = \begin{array}{c} \text{infected} & \left(\begin{array}{cc} 1 & 0 \\ \psi & 1-\psi \end{array} \right) \end{split}$$

- ψ is the probability of an uninfected individual becoming infected.
- ► Transition of disease status is conditional on *z*_{*k*,*t*}. That is, only alive and uninfected individuals can become infected.

INDIVIDUAL ACTIVITY CENTER (s_i)

Badgers at Woodchester park are highly site-attached species that do not change activity centers much over their lifetime.

 $s_i \sim \text{Uniform}(S)$

where S is the region of interest.

STATE-DEPENDENT OBSERVATION PROCESS

Let $y_{i,j,k,t}$ be the observation event for individual *i* at trap *j* on sampling occasion *k* during time *t*.

$$y_{i,j,k,t}|z_{i,k,t} \sim \text{Bernoulli}(p(x_j, s_i)z_{i,k,t})$$

where $p(x_j, s_i)$ is the Gaussian model:

$$p(x_j, s_i) = p_{0_{d_{i,k,t}}} \exp\left(-\frac{1}{2\sigma_{d_{i,k,t}}^2} \| x_j - s_i \|^2\right)$$

where p_0 is the baseline encounter probability and σ represents the rate at which detection probability declines as a function of distance. Both are dependent on the individuals disease status. IntroductionModelSimulation ResultsDisease TransmissionDiscussion0000000000000000000000000

STATE-DEPENDENT OBSERVATION PROCESS Let $\omega_{i,k,t}$ be the disease test results for individual *i* on sampling occasion *k* time *t*.

Test result	Test 1	Test 2	Test 3	Probability of the combination of test results		
combination	(StatPak)	(IFNγ)	(Culture)			
				if uninfected	if infected	
1	-	-	-	Sp1*Sp2*Sp3	(1-Se ₁)*(1-Se ₂)*(1-Se ₃)	
2	+	-	-	(1-Sp ₁)*Sp ₂ *Sp ₃	Se1*(1-Se2)*(1-Se3)	
3	-	+	-	Sp1*(1-Sp2)*Sp3	(1-Se ₁)*Se ₂ *(1-Se ₃)	
4	-	-	+	Sp1*Sp2*(1-Sp3)	(1-Se ₁)*(1-Se ₂)*Se ₃	
5	+	+	-	(1-Sp ₁)*(1-Sp ₂)*Sp ₃	Se ₁ *Se ₂ *(1-Se ₃)	
6	+	-	+	(1-Sp ₁)*Sp ₂ *(1-Sp ₃)	Se1*(1-Se2)*Se3	
7	-	+	+	Sp1*(1-Sp2)*(1-Sp3)	(1-Se ₁)*Se ₂ *Se ₃	
8	+	+	+	(1-Sp ₁)*(1-Sp ₂)*(1-Sp ₃)	Se ₁ *Se ₂ *Se ₃	

+ = positive test result; - = negative test result

 $\omega_{i,k,t}|d_{i,k,t} \sim \text{Categorical}(8, p_{d_{i,k,t}})$

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	●000	00	00

Number of simulation runs: 30, T = 2, K = 4

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	00

IntroductionModelSimulation ResultsDisease TransmissionDiscussion0000000000000000000000

MODELLING DISEASE TRANSMISSION

Half Normal

Let $\theta_{i,l}$ be the probability that individual *i* is infected by individual *l*. We let $\theta_{i,l}$ follow a half normal distribution:

$$\theta_{i,l} = \exp\left(-\frac{1}{2\sigma^2} \parallel s_i - s_l \parallel^2\right)$$

Then the probability of individual *i* being infected at occasion *k*, time *t* $(\psi_{i,k,t})$ can be written as

$$\psi_{i,k,t} = 1 - \left(\prod_{l=1}^{L} 1 - \theta_{i,l}\right)$$

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	0●	00

MODELLING DISEASE TRANSMISSION

Intersection of Home Range Area

 $logit(\psi_{i,k,t}) = \beta_0 + \beta_1 \cdot A_{i,k,t}$

 $A_{i,k,t}$ is the sum of intersection area between uninfected individual *i* and all infected individuals at the previous time point.

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	●0

DISCUSSION

- These models are computational expensive and future work will be focused on making these models more computational efficient.
- Another area of focus will be how to choose between the different models of disease transmission.
- The limitation of the half normal approach is that infected individuals are "treated" like traps i.e. we don't account for the fact that they also move.
- Any suggestions on how to account for how close/far an individual is from infected individuals will be much appreciated.

Introduction	Model	Simulation Results	Disease Transmission	Discussion
00000	0000000	0000	00	0.

Thank you! Any questions/comments?

Contact: fk231@kent.ac.uk