Population Structure and Asset Returns

Stephen Bonnar, Lori Curtis, Miguel Leon-Ledesma, Jaideep Oberoi, Kate Rybzynski, Mark Zhou

> July 17, 2017 ARTC University of Kent

> > Page 1 of 33

Baby boomers entering retirement \rightarrow concerns of diminished returns, compromised pensions

Higher old-age dependency ratio may lead to

- less saving (dissaving) & investment
- shift in asset allocation toward low risk, low return, assets
- reduced labour force growth

With implications for asset returns and retirement outcomes.

Overlapping Generations Model (OLG) with:

- aggregate uncertainty
- two asset classes (risky and risk-free)
- multi-pillar pension systems (saving, pay-go, earnings based)
- endogenous labour supply

 \rightarrow Generates standard age specific labour, consumption, asset holding, & portfolio allocation qualitatively consistent with data

 \rightarrow Older population \rightarrow moderately lower asset returns

Demographics

- Overlapping generations, $j \in \{1, 2, ..., 20\}$, ages 18 97
- Five life stages: YW, MW, W, SR, R
- Intra-cohort heterogeneity, $i \in \{1,2\}$, baseline i = 1
- fertility rate: n
- survival probability: $\phi_j^i \in \{1,2\}, \ \phi_J^i = 0$

$$N_{j,t}^{i} = \begin{cases} (1+n)\chi^{i}N_{0,t-1}, & \text{if } j=1, \\ \phi_{j-1}^{i}\chi^{i}N_{j-1,t-1}, & \text{if } 1 < j \le J. \end{cases}$$

Household Time Endowment

$$H_{j} = \begin{cases} H(1 - FC_{j} - FE_{j}), & \text{if } j \in \{YW, MW\}, \\ H, & \text{if } j \in \{W, SR, R\}. \end{cases}$$
(2.1)

- Fixed constant H units of time
- Education (FE) and child rearing (FC)
- SR can work maximum of $l_p H$

Periodic utility from Consumption and Leisure

$$u^{i}(c,h) = \frac{c^{1-\gamma_{c}}}{1-\gamma_{c}} + \Psi \frac{(H_{j}-h)^{1-\gamma_{h}}}{1-\gamma_{h}}$$

- Coefficient of relative risk aversion: γ_c
- Parameter that regulates Frisch elasticity of labour supply: Y_h
- Utility weight of leisure relative to consumption: $\boldsymbol{\Psi}$

Assets

Total Asset Holdings: $\theta_{i,t}^{i}$

Risk Free Bonds

- Return in period t+1: \bar{r}_t
- Share of total assets in risk free: $\eta_{i,t}^{i}$
- Zero net supply: $\sum_{j} \sum_{i} \eta_{j,t}^{i} \theta_{j,t}^{i} N_{j,t}^{i} = 0$ (2.2)

Risky Capital

- Return in period t+1: r_{t+1}
- Share of total assets: 1 $\eta_{j,t}^{i}$
- Total capital: $K_t = \sum_j \sum_i (1 \eta_{j, t-1}^i) \theta_{j, t-1}^i N_{j, t-1}^i$ (2.3)

Page 7 of 33

Production

$$Y_{t} = z_{t} K_{t}^{\alpha} H_{t}^{1-\alpha}$$
 and $K_{t+1} = (1-\delta) K_{t} + q_{t} I_{t}$

$$\ln(z_t) = \rho \ln(z_{t-1}) + v_t \quad \text{where} \quad v_t \sim N(0, \sigma_z^2)$$

$$\ln(\mathbf{q}_t) = \rho_q \ln(q_{t-1}) + v_{q,t} \quad \text{where} \qquad v_{q,t} \sim N(\mathbf{0}, \sigma_q^2)$$

- Aggregate efficient labour is: $H_t = \sum_j \sum_i \varepsilon_j^i h_{j,t}^i N_{j,t}^i$ (2.4)
- Baseline: $\varepsilon_j^i = 1 \rightarrow \text{no age & type-specific labour productivity.}$

•
$$corr(\sigma_q^2, \sigma_z^2) = 0$$

Pay-as-you-go Pension

1

Pay-as-you-go proportional pension scheme

$$p_{j,t} = \begin{cases} 0, & \text{if } j \in \{YW, MW, W\}, \\ \frac{\tau_{s}w_{t}H_{t}}{\sum_{j \in \{OW, R\}} \sum_{i} N_{j,t}^{i}} & \text{if } j \in \{SR, R\}. \end{cases}$$
(2.5)

• Fixed tax, τ_s , on labour income uniformly distributed to retirees.

Partially Funded Pension

Partially funded, employment earnings based pension

$$p_{j,t}^{G} = \begin{cases} 0, & \text{if } j \in \{YW, MW, W\}, \\ \kappa_{j} \left(\frac{w_{ss} \sum_{i} \varepsilon_{SR-1}^{i} h_{SR-1, SS}^{i} N_{SR-1, SS}^{i}}{\sum_{i} N_{SR-1, SS}^{i}} \right) & \text{if } j \in \{SR, R\}. \end{cases}$$
(2.6)

• Government taxes working cohorts at rate τ_s^G , and pays out fraction κ_i of pre-retirement income.

Government Budget

In the three pillar model:

$$\sum_{j=SR}^{R} p_{j}^{G} N_{j,t}^{i} = \left[\eta_{G} (1 + (1 - \tau_{r}) \bar{r_{t-1}}) + (1 - \eta_{G}) (1 + (1 - \tau_{r}) r_{t}) \right] \theta_{G} + \tau_{s}^{G} w_{t} H_{t} + B_{t}^{G}$$
(2.7)

Aggregate Asset holdings in the three pillar model:

$$\sum_{j} \sum_{i} \eta_{j,t}^{i} \theta_{j,t}^{i} N_{j,t}^{i} + \eta_{G} \theta_{G} = B_{t}^{G}$$
$$K_{t} = \sum_{j} \sum_{i} \left(1 - \eta_{j,t-1}^{i}\right) \theta_{j,t-1}^{i} N_{j,t-1}^{i} + \left(1 - \eta_{G}\right) \theta_{G}$$

• Government holds pool of assets, θ_G , with proportion η_G in risk-free bonds, and issues bonds B_t^G to balance budget.

Taxes and Bequests

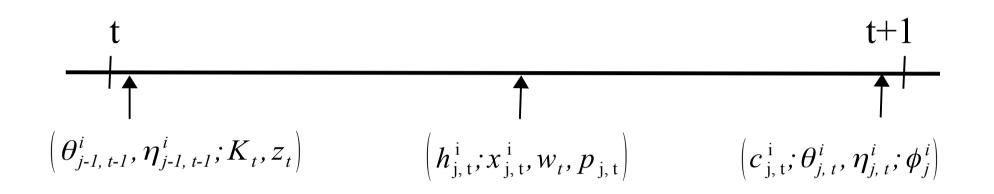
Taxes

- Consumption tax: τ_c
- Labour Income tax: τ_h
- Investment income tax: τ_r
- Tax on pension income: τ_p
- Tax for pay-go pension and social security: τ_s and τ_s^G

Bequests

- Base model has accidental bequests only.
- Bequest motive utility from leaving bequest $v(X) = \Gamma \frac{X^{1-\gamma_b}}{1-\gamma_b}$

Timeline and State Space $(s_t; z_t)$



 $s_t = (x_{2,t}^1, \dots, x_{j,t}^i, \dots, x_{J,t}^I; z_t)$, where $x_{j,t}^i$ is the value of asset holdings pd t

$$x_{j,t}^{i} = \left[\eta_{j-l, t-l}^{i} \left(1 + (1 - \tau_{r}) \bar{r_{t-1}} \right) + (1 - \eta_{j-l, t-l}^{i}) \left(1 + (1 - \tau_{r}) r_{t} \right) \right] \theta_{j-l, t-l}^{i}$$

Page 13 of 33

Household Decision

$$V_{j}^{i}(s_{t};z_{t}) = \max_{\{c_{j,t}^{i},h_{j,t}^{i},\theta_{j,t}^{i},\eta_{j,t}^{i}\}} u^{i}(c_{j,t}^{i},h_{j,t}^{i}) + \beta \phi_{j}^{i} E_{t} [V_{j+1}^{i}(s_{t+1};z_{t+1})]$$

s.t.

$$(1+\tau_{c})c_{j,t}^{i} + \theta_{j,t}^{j} \leq \left[(1-\tau_{s} - \tau_{s}^{G} - \tau_{h})w_{t}\varepsilon_{j}^{i}h_{j,t}^{i} + x_{j,t}^{i} + (1-\tau_{p})(p_{j,t} + p_{j}^{G}) + \xi_{t} - HC \right]$$

where

$$h_{j,t}^{i} \leq H_{j}^{c} = \begin{cases} H_{j}, & \text{if } j \in \{YW, MW, W\}, \\ \iota_{p}H, & \text{if } j \in \{SR\}, \\ 0, & \text{if } j \in \{R\}, \end{cases} \&$$

$$HC_{j} = \begin{cases} 0, & \text{if } j \in \{YW, MW, W\}, \\ 0.2 \exp(\frac{4(j-12)}{J-12} - 4), & \text{if } j \in \{SR, R\}. \end{cases}$$

Page 14 of 33

Household Decision – oldest generation

$$V_{J}^{i}(s_{t};z_{t}) = \max_{[c_{J,t}^{i},\theta_{J,t}^{i},\eta_{J,t}^{i}]} u^{i}(c_{J,t}^{i},0) + \beta E_{t}[v^{i}(X_{J+1,t+1}^{i})]$$

where

$$X_{{\rm J+1},{\rm t+1}}^{\rm i} = \Big[\, \eta_{{\rm J},{\rm t}}^{\, i} \big(\, 1 + \big(\, 1 - \tau_{\rm r} \big) \overline{r}_{\rm t} \, \big) + \big(\, 1 - \eta_{{\rm J},{\rm t}}^{\, i} \, \big) \big(\, 1 + \big(\, 1 - \tau_{\rm r} \, \big) r_{{\rm t+1}} \, \big) \Big] \theta_{{\rm J},{\rm t}}^{\, i}$$

and

$$\nu(X) = \Gamma \frac{X^{1-\gamma_b}}{1-\gamma_b}$$

Solution to Household Problem

$$\begin{cases} For j < J \\ j,t \end{cases}^{-\gamma_{c}} = \beta \phi_{j}^{i} E_{t} \Big[(1 + (1 - \tau_{r}) r_{t+1}) (c_{j+1,t+1}^{i})^{-\gamma_{c}} \Big], \\ 0 = \beta \phi_{j}^{i} E_{t} \Big[(1 - \tau_{r}) (\overline{r_{t}} - r_{t+1}) (c_{j+1,t+1}^{i})^{-\gamma_{c}} \Big], \end{cases}$$
(3.11) (3.12)

$$\frac{\psi^{i}(H_{j}-h_{j,t}^{i})^{-\gamma_{h}}+\lambda_{j,t}^{2}}{(c_{j,t}^{i})^{-\gamma_{c}}}=\frac{1-\tau_{s}-\tau_{s}^{G}-\tau_{h}}{1+\tau_{c}} \quad w_{t}\varepsilon_{j}^{i}, \qquad (3.13)$$

$$\lambda_{j,t}^2 \Big(H_j^c - h_{j,t}^i \Big) = 0$$
(3.14)

$$\begin{aligned} {}^{\scriptscriptstyle Forj=J} & \left(\, c_{\rm J,t}^{\rm i} \, \right)^{\!-\!\gamma_b} = \beta \Gamma E_t \Big[\big(\, 1 \!+\! \big(\, 1 \!-\! \tau_r \big) r_{\rm t+1} \big) \big(\, X_{\rm J+1,t+1}^{\rm i} \big)^{\!-\!\gamma_b} \Big], \\ & 0 = \beta \Gamma E_t \Big[\big(\, 1 \!-\! \tau_r \big) \big(\, \overline{r_t} \!-\! r_{\rm t+1} \big) \big(\, X_{\rm J+1,t+1}^{\rm i} \big)^{\!-\!\gamma_b} \Big] \end{aligned}$$

Page 16 of 33

Firm Decision

Firm maximizes profits, resulting in:

$$r_{t} = \alpha z_{t} K_{t}^{\alpha - 1} H_{t}^{1 - \alpha} - \delta , \qquad (3.15)$$

$$w_{t} = (1 - \alpha) z_{t} K_{t}^{\alpha} H_{t}^{-\alpha}. \qquad (3.16)$$

where $\delta \in [0,1]$.

Recursive Competitive Equilibrium

- Value functions $V_{j}^{i}(s_{t};z_{t})$,
- Household policy functions for consumption, $c_{j,t}^{i}(s_{t};z_{t})$, labour supply, $h_{j,t}^{i}(s_{t};z_{t})$, total saving, $\theta_{j,t}^{i}(s_{t};z_{t})$, and share of saving invested in risk-free bonds, $\eta_{j,t}^{i}(s_{t};z_{t})$,
- Inputs for the representative firm $K_t(s_t;z_t)$ and $H_t(s_t;z_t)$,
- Government policy, $p_t(s_t;z_t)$ and $B_t^G(s_t;z_t)$,
- Rates of return $\bar{r_t}(s_t; z_t)$ and $r_t(s_t; z_t)$, and wage $w_t(s_t; z_t)$,

Such that in each period the:

- household problems are solved,
- the competitive firm maximizes profits,
- all markets clear.

Parameterization

Base model, with J = 20, i = 1, $\chi = 1$, $\varepsilon = 1$, HC = 0, $\Gamma = 0$, and sets several parameters fixed and exogenous to the model:

Parameter	Value	Description		
Н	4	Time available to household (one period represents 4 yrs)		
β	0.8515	Discount factor (0.95 annual)		
α	0.3	Capital's share of production		
ρ _z	0.4401	Autocorrelation coefficient for TFP		
σ_z	0.0305	Std. Deviation of error for TFP process		
$ ho_q$	0.4401	Autocorrelation coefficient for IST		
σ_q	0.1221	Std. Deviation of error for IST process		
5	0.192	Depreciation Rate		
n	0.0489	Population Growth rate		
Yc	2.0	Relative risk aversion – consumption		
γ _b	2.0	Relative risk aversion - bequest		
γ 1	3.0	Inverse of intertemporal elasticity of substitution of non-market time		
Ψ	21.833	Utility weight of non-market time relative to consumption		
τ_c, τ_r, τ_p	0.123, 0.167, 0.167	Tax rates on consumption, investment income, pension,		
$\tau_h + \tau_s + \tau_s^{G}$	0.167	Tax on labour income		
ratio _s	1.0	Proportion of labour tax to social security		
ι _p	0.08	Labour constraint for SR		

Lifecyle Consumption, Labour, & Asset Profiles

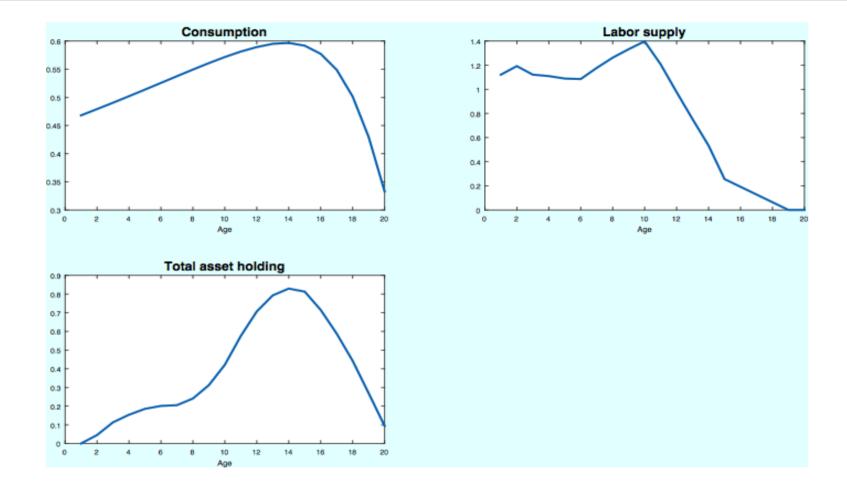


Figure 1 – Lifecycle consumption, labour and asset profiles

Page 20 of 33

Observed Age-Specific Portfolio Allocation

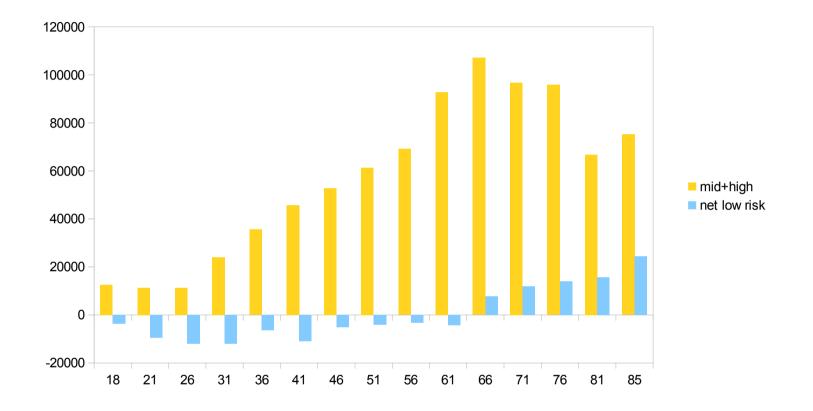


Figure 2 –Portfolio allocation by age: risky vs net low-risk financial assets Page 21 of 33

Portfolio Allocation – 2 pillar pension model

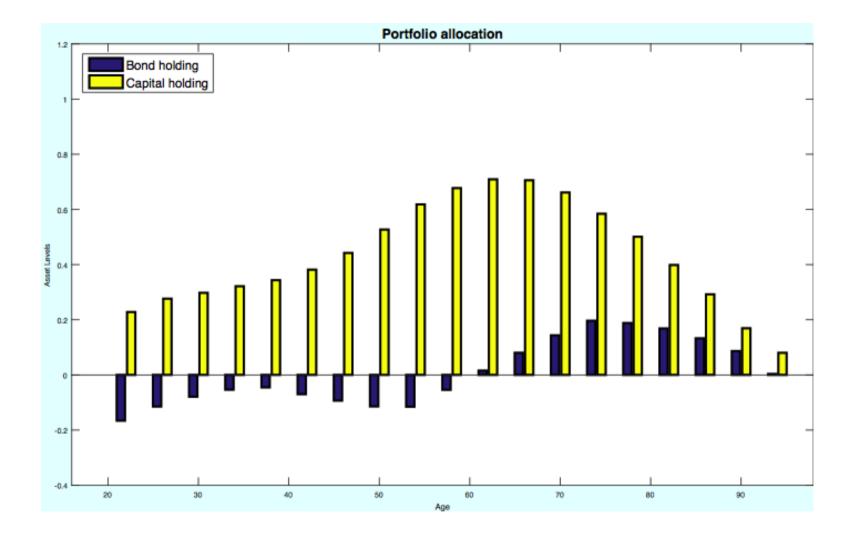


Figure 3 – Age-specific portfolio allocation in 2 pillar model

Page 22 of 33

Portfolio Allocation – 3 pillar pension model – baseline

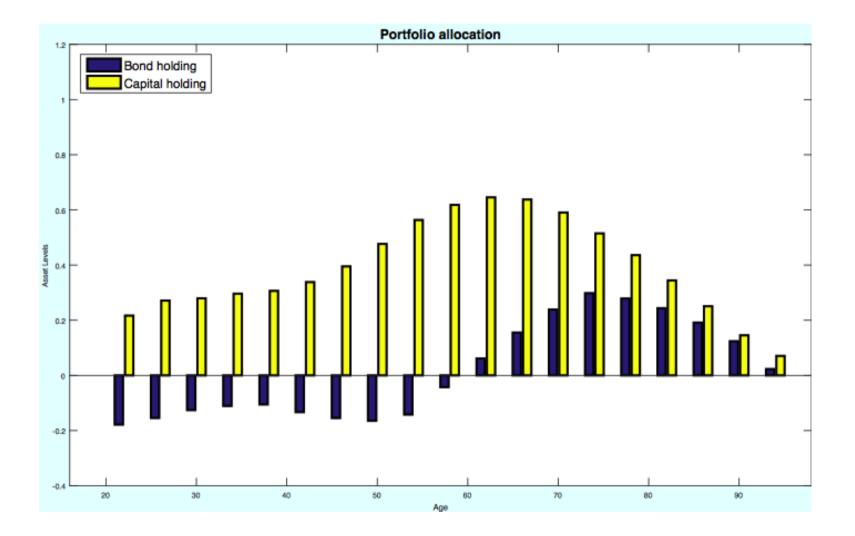


Figure 4 – Age-specific portfolio allocation in 3 pillar model

Page 23 of 33

3-pillar Model Results under Alt. Demog. Structures

Variable	Base-3pillar	+10%	+20%	-10%	-20%
$E_t(r_{t+1})$	0.2855	0.2788	0.2735	0.2919	0.2965
$\overline{r_t}$	0.2851	0.2784	0.2730	0.2915	0.2961
Prv risky assets/GDP	0.5223	0.5233	0.5362	0.5214	0.5206
C _{20,t}	0.3327	0.3771	0.4183	0.2984	0.2512

• Model predicts modest differences.

Portfolio Allocation - Alternative Replacement Ratio

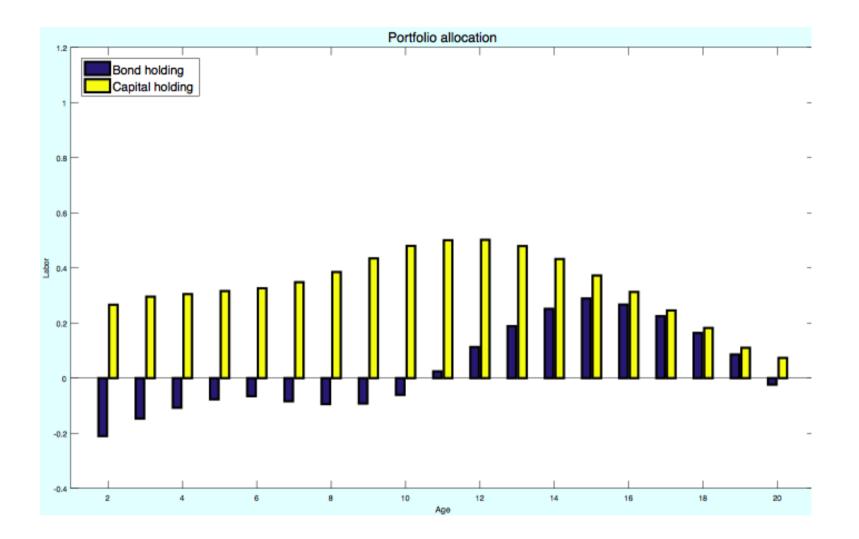


Figure 5–Age-specific portfolio allocation, high replacement ratio, $\kappa = 0.4$

Page 25 of 33

Portfolio Allocation- 3 pillar + health costs + bequest

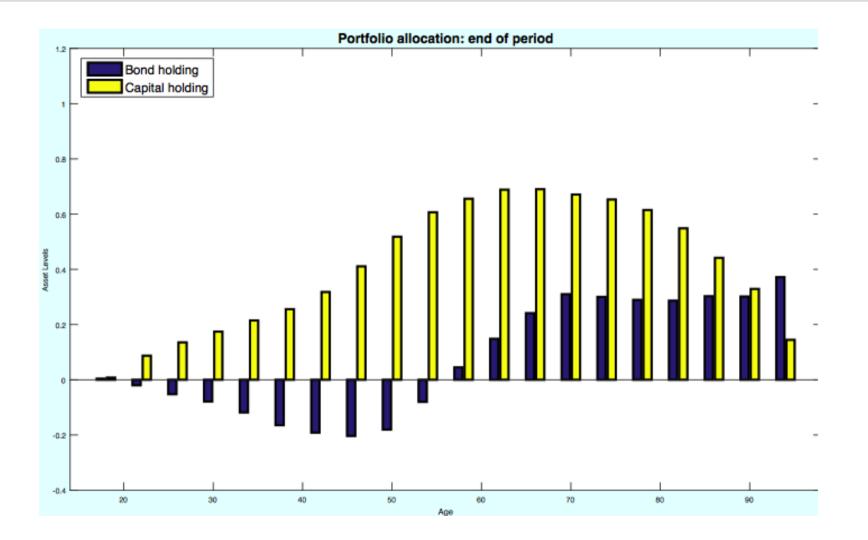
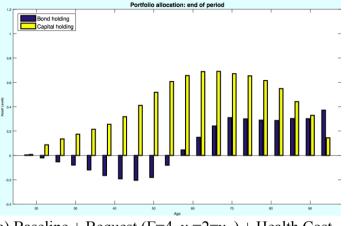
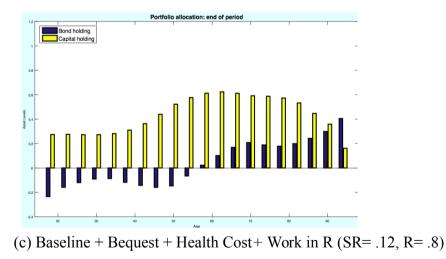


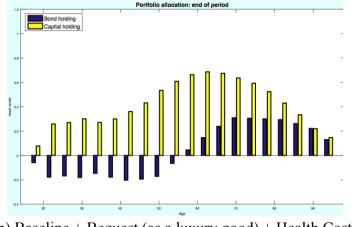
Figure 6 – Age-specific portfolio allocation, 3 pillar +bequest +health cost Page 26 of 33

Portfolio Allocation under alternative models

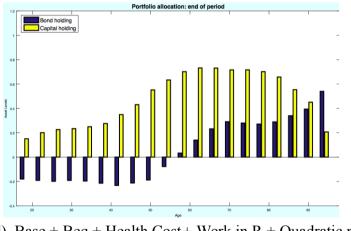


(a) Baseline + Bequest (Γ =4, γ_b =2= γ_c) + Health Cost





(b) Baseline + Bequest (as a luxury good) + Health Costs

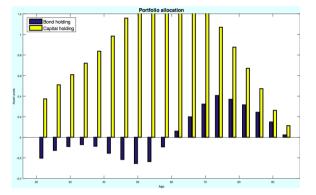


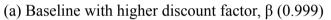
(d) Base + Beq + Health Cost + Work in R + Quadratic productivity

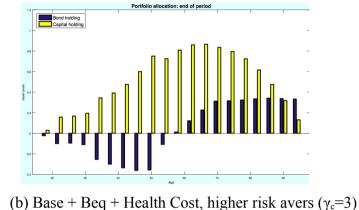
Figure 7 – Age-specific portfolio allocation, alternative models

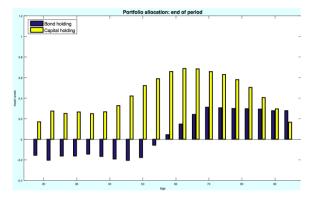
Page 27 of 33

Sensitivity Analysis









(c) Base + Beq(Γ =4, γ_b =1.5)+ Health Cost low curv on bequest

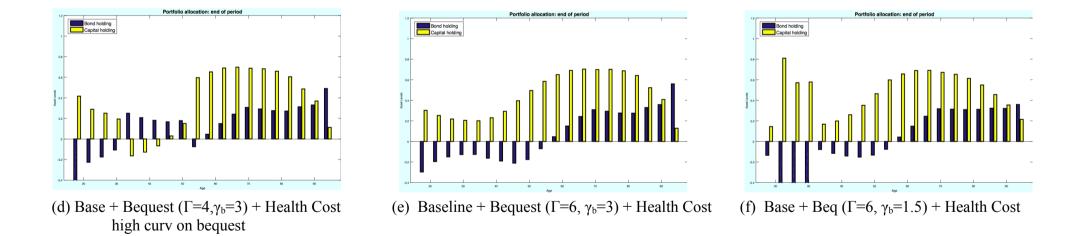


Figure 8 – Age-specific portfolio allocation, alternative parameter values

Page 28 of 33

Discussion and Next Steps

- Asset prices are moderately lower with older population: Higher survival probability for age 65+ (max20% at j=J)
 → approximately 4% lower returns on capital and on bonds
- Higher replacement ratio \rightarrow lower asset accumulation

Next steps:

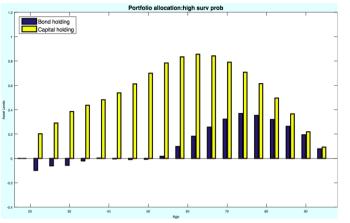
- Improve portfolio allocation match

 → consumption saturation
 → intra-cohort heterogeneity
- Explore further intra-cohort heterogeneity models

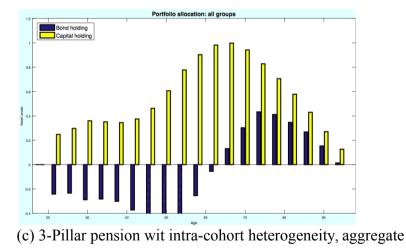
Appendix

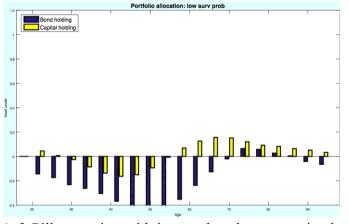
Page 30 of 33

Heterogeneity – high and low survival rate



(a) 3-Pillar pension with intra-cohort heterogeneity, high survival





(b) 3-Pillar pension with intra-cohort heterogeneity, low survival

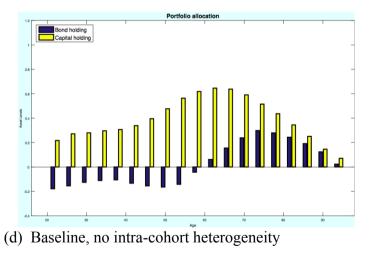


Figure 9– Age-specific portfolio allocation with intra-cohort heterogeneity Page 31 of 33

Heterogeneity – high and low survival rate (cont)

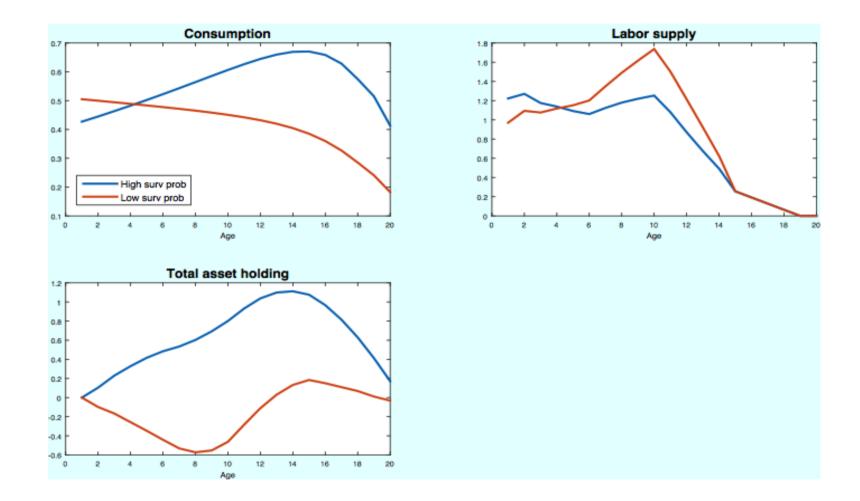
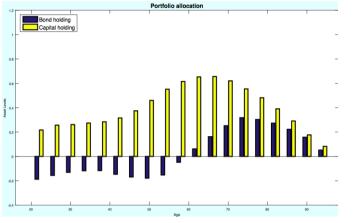


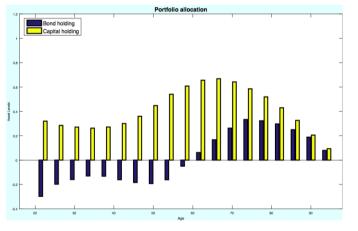
Figure 10 – Consumption, labour & asset profiles under heterogeneity

Page 32 of 33

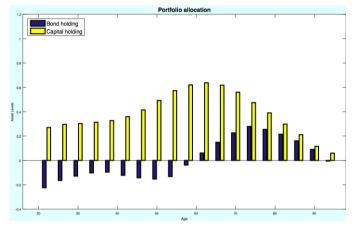
Portfolio allocation under Alt. Demog. Structures



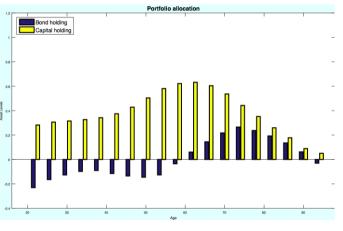
(a) Baseline + 10% maximal higher survival probability



(c) Baseline + 20% maximal higher survival probability



(b) Baseline - 10% maximal higher survival probability



(d) Baseline - 20% maximal lower survival probability

Figure 11 – Age-specific portfolio allocation, alternative demographics

Page 33 of 33